O'ZBEKISTON RESPUBLIKASI OLIY VA O'RTA MAXSUS TA'LIM VAZIRLIĞI

A.T. IMOMNAZAROV

ELEKTROMEXANIK TIZIMLARNING ELEMENTLARI

Oliy ta'limning 5521300 — «Elektrotexnika, elektromexanika va elektrotexnologiyalar» bakalavrviatura yo'nalishini talabalari uchun darslik

«TA'LIM» NASHRIYOTI
TOSHKENT — 2009

www.ziyouz.com kutubxonasi
Ushbu darslikda sanoat korxonalarida keng qo'llanilayotgan zamonaviy elektromexanik tizimlarning tarkibi yuzilishi, boshqaruvchi o'zgaruvchan va o'zgarmas tok o'zgartikchi tizimlarning turları, ishlash asoslari va asosiy tavsiflari, boshqaruv tizimlarining analog hamda raqamli qurilma va bloklarining tuzilishi va ishlash asoslari hamda elektromexanik tizimlarni boshqarishda mikroprosessorli tizimlarni qo'llashning asoslari bayon qilinagan. Shuningdek, asinxron elektr yurit- mali elektromexanik tizimlarda boshqaruvchi o'zgartikchilarni qo'llash negizida energiya tejamkorligiga erishish usullari kabi mavzular ham yoritilgan.

Darslik oliy ta'limning «Elektroexnika, elektromexanika va elektroexnologiyalari» bakalavriat yo'nalishli ta'labalari uchun mo'ljallangan bo'lib, undan shu sohada faoliyat olib bo'vuvchilar ham foysalanishlari mumkin.

Mas'ul muharrir: O.O.Hoshimov — texnika fanlari doktori, professor.

Ta'qrizchilar:
- M.M. To'laganov — Toshkent TITining «Elektroexnika, elektromexanika va elektroexnologiyalari» kafedrasi dotsenti, texnika fanlari nomzodi,

KIRISH

Ishlab chiqarishdagi mashina va mexanizmlarning mehnat unumdorligini oshirish hamda siftali mahsulot ishallab chiqarish ushbu sanoat qurilmalarning avtomatlashganlik darajasiga bevosita bog'liqdir. Sanoat qurilmalarining avtomatlashganlik darajasi bu qurilmalarning zamoni va energetik ko'rsatkichlari yukorli bo'lgan texnika vositalari bilan jihozlanshi yangiylanadi. Sanoat qurilmalari ishchi organlarini harakatlantiruvchi va unlar boshqaruvchi avtomatlashtirilgan boshqaruv tizimlarining asosini elektromexanik tizimlar (EMT) tashkil etadi.

EMTning tashkil etuvchi elementlariga ishchi mashininganing ijrochi organini harakatga keltiruvchi elektr motor va uning koordinatalarini boshqaruvchi boshqaruvchil o'zgartik ich, o'zgartikchning boshqaruv tizimi, turli o'lish o'zgarikchilar, vazifalovchi qurilma hamda turli elektron moslama va qurilmalar kiradi. EMTni tashkil etuvchi elementlarning tahlilli shuni ko'rsatadiki, aksariyat elementlar o'zing ishlash asoslar, ichki tuzilishi va boshqa xususiyatlari bilan talabalarga »Elektr mashinalari«, »Elektr va elektron apparatlar«, »Avtomatik boshqarish nazariyasi« va »Elektromexanik tizimlarning boshqaruvchilari eneriya manbalarini« fanlari bo'yicha ma'lumdir.

Akademik M.Z. Homudxonov hamda uning ilmiy maktabi tomonidan elektromexanika fanlarining O'zbekistonda shakllanishi va rivojlantishiga asos solindi. Ular yaratgan mustaqil invertorlarning nazariy asoslar va shular asosida yaratilgan tezligi chastotani o'zgartirib boshqariladigan asinxron motorlari elektromexanik tizimlar elektromexanika fanlarining rivojlantshiga katta hissa bo'lib qo'shildi.

Zamonaviy EMTlarni loyihalash, tahsil qilish va yaratish jarayonida tarkibiy elementlarining vazifaviy xususiyatlari, ya'ni unlarning kirish va chiqish koordinatalari orasidagi o'zaro bog'lanishlarni bilish talab etiladi. EMT elementlarining asosiy vazifalaridan biri elementlarning koordinatalari orasidagi bog'lanishlarning matematik ifodasini aniqlash, vazifaviy va tuzilishi sxemalarini yaratish, uzatish funksiyalari hamda hisob sxemalarining kattaliklarini aniqlash, elementlarga dinamik zvenolar deb qarab, unlarning xususiyatlari tahlil qilish va ushbu texnik ko'rsatkichlar majmuasi asosida real elektromexanik tizimlar yaratishdan iboratdir.

»Elektromexanik tizimlarning elementlarini« fanni oly va 'limming «Elektro-teknika, elektromexanika va elektro texnologiyalar» bakalavriatura yo'nalishining ixtisoslik fanlari bilan umumiy texnikaviy asos fanlar oralig'idagi bog'lovchi ko'prilik vazifasini o'taydi va ixtisos fanlarini o'zlashtirishda zarur nazariy va amaliy manba bo'lib xizmat qiladi.
TAYANCH SO’ZLAR VA SO’Z BIRIKMALARI

Elektromexanik tizim (EMT) — elektr energiyani mexanik energiyaga o’zgartiruvchi texnik qurilmalar tizimi.

EMTning elementlari — elektromexanik tizimning ishlashini ta’minlovchi texnik vosita, qurilma va moslamalar.

Boshqariluvchi o’zgartikchilar — kirish ko’rsatkichini o’zgartirish natijasida chiqish ko’rsatkichi boshqariladigan boshqariluvchi yarimo’tkazgichli va elektromexanik o’zgartikchilar.

Boshqariluvchi o’zgarmas tok o’zgartikchilar — o’zgarmas tok motorining chiqish ko’rsatkichlar: tezligi, tezlanishi, burilish burchagi va boshqa mexanik ko’rsatkichlarini boshqarishga xizmat qiluvchi boshqariluvchi yarimo’tkazgichli to’g’rilagichlar, o’zgarmas tok impuls kengligi o’zgartiriladigan o’zgartikchilar, parametrlik o’zgartikchilar, o’zgarmas tok generatorlar.

Boshqariluvchi o’zgaruvchan tok o’zgartikchilar — o’zgaruvchan tok (asinxron va sinxron) motorlar chiqish ko’rsatkichlar: tezligi, tezlanishi, burilish burchagi va boshqa mexanik ko’rsatkichlarini boshqarishga xizmat qiluvchi yarimo’tkazgichli chastota o’zgartikchilar, yarimo’tkazgichli kuchlanish rostlagichlar, parametrlik o’zgartikchilar, asinxron va sinxron generatorlar.

Boshqariluvchi o’zgarmas tok elektromexanik o’zgartikchilar — mustaqil qo’zg’aluvchan chulgan o’zgarmas tok generatorlar.

Elektromashina kuchaytirgichchi (EMK) — generator rejimida ishlaydigan o’zgarmas tok generatori, ko’ndalang va bo’ylama magnit maydonlari vositasida birlamchi boshqaruv signalini kuchaytiruvchi o’zgarmas tok generatori.

Taxogeneratorlar — aylanish tezligini elektr signaliga o’zgartiruvchi generator rejimida ishlaydigan mikromashinalar.

Selsinlar — burchak burilishi yoki chiziqli siljishlarni burchak buralishi o’zgartirib masofaga uzatuvchi sinxron aloqa vositasiga ega bo’lgan induksion qurilmalar.

Buriluvchi transformatorlar — burilish burchagini proporsional kuchlanishga o’zgartiruvchi o’zgaruvchan tok mikromashinalari.
Boshqariluvchi o‘zgaruvchancha tek elektromexanik o‘zgartikchilariy - asinxron va sinxron generatorlar.

Boshqariluvchi o‘zgarmas tek elektr o‘zgartikchilariy - qiymati boshqarilmaydigan o‘zgaruvchan tek kuchlanishingi qiymati boshqariladigan o‘zgarmas tek kuchlanishiga o‘zgartiruvchi yarimo‘tkazgichli to‘g‘rilagichlar.

Boshqariluvchi o‘zgaruvchancha tek elektr o‘zgartikchilariy - qiymati va chototasi boshqarilmaydigan o‘zgaruvchan tek kuchlanishingining amplituda hamda chototasini boshqarishga xizmat qiluvchi yarimo‘tkazgichli o‘zgartikchilar.

Impuls-fazali boshqaruv tizimi - o‘zgarmas va o‘zgaruvchan tek yarimo‘tkazgichli o‘zgartikchilarning tiristor, tranzistor hamda boshqar yarimo‘tkazgich asboblarini boshqarishga xizmat qiluvchi texnik qurilma.

Vazifalovchi qurilma - elektromexanik tizimning ish rejimini belgilab beruvchi qurilma.

O‘lchov o‘zgartikch - elektrik yoki noelektrik kattaliklarni boshqaruv tizimi uchun mos ko‘rinishtiga ega bo‘lgan elektrik signal ko‘rinishtiga keltiruvchi qurilma.

Bevosita chastota o‘zgartikch - amplituda va chastotasi o‘zgarmas bo‘lgan tarmoqdagi o‘zgaruvchan tek kuchlanishingi to‘g‘ridan-to‘g‘ri amplituda va chastotasi boshqariladigan o‘zgaruvchan tek kuchlanishiga o‘zgartiradigan yarimo‘tkazgichli elektr o‘zgartikchich.

Bilvosita chastota o‘zgartikch - tarmoqdan uzatilayotgan amplituda va chastotasi o‘zgarmas bo‘lgan o‘zgaruvchan tek kuchlanishingi avval qiymati boshqariladigan o‘zgarmas tokka o‘zgartirib, so‘ngra amplituda va chastotasi boshqariladigan o‘zgaruvchan tek kuchlanishiga o‘zgartiruvchi yarimo‘tkazgichli elektr o‘zgartikchich.

Avtonom inverter - o‘zgarmas tek kuchlanishini chastotasi boshqariladigan o‘zgaruvchan tekk kuchlanishiga o‘zgartiruvchi yarimo‘tkazgichli elektr o‘zgartikchich.

Induktiv-sig‘im o‘zgartikchilar - o‘zgaruvchan tek zarjiridagi tek va kuchlanish rezonansi hodisasi asosida tek yoki kuchlanish qiymatlarini ma’lum bir oraliqda stabil ushlab turuvchi parametrik o‘zgaruvchan tek o‘zgartikchich.

EMTning asosiy elementlari - bevosita elektr energiya oqimining ko‘rsatkichlarini o‘zgartirib (boshqarib) motoraga uzatuvchi texnik qurilmas - boshqariluvchi o‘zgartikchilar.

EMTning boshqaruv elementlari - o‘zgaruvchan va o‘zgarmas tek o‘zgartikchilarni boshqarish uchun zarur bo‘lgan axborotlarini ishlab chiqaruvchi hamda qabul qiluvchi, qayta ishlovchi va boshqaruv signallarini shakl-
lantiruvchi qurilmalar: impuls-fazali boshqaruv tizimi, har xil elektrik va noelektrik o‘ilchov o‘zgartkichlari, kuchaytingichlari, rostlagichlar, moslagichlar va hokazo.

Kompensatsion qurilmalar — elektr tarmog‘i va unga ulangan asinxron motorlarning quvvat koeffitsiyentlarini orttirishga xizmat qiluvchi kondensator batareyalari va sinxron kompensatorlar.

Simmetriyalovchi qurilmalar — fazalardagi tok va kuchlanishlarni bir tekisda taqsimlashni amalga oshiruvchi inductiv hamda sig‘imli yoki faqat sig‘imlardan iborat bo‘lgan texnik qurilmalar.
1-bob. ELEKTROMEXANIK TIZIM ELEMENTLARINING ASOSIY KO‘RSATKICHKLARI VA TAVSIFLARI

Bu bobda avtomatlashgan elektr yuritma elementlarining vazifaviy xususiyatlari, ularning tavsiflari va ishlash asoslarli hamda tizimda tutgan o‘rni to‘g‘risida ma'lumot beriladi. EMT har bir elementning ichki tuzilishini nomalum deb qarab, ammo uning tashqi xususiyatlari, ya‘ni kirish va chiqish ko‘rsatkichlari ma'lum deb qaraladi.

1.1. ELEKTROMEXANIK TIZIM ELEMENTLARI TO‘G‘RISIDA TUSHUNCHA

«EMTning elementlari» atamasi qo‘llanilganda elektromexanik tizim tarkibiga kiruvchi boshqaruv tizimlari va ma'lum boshqaruv vazifalarini bajaruvchi konstruktiv yoki texnik qurilmalar tushuniladi. EMTning har bir elementi bu matematik andoza yoki zveno bo‘lmay, balki konstruktiv jihatdan tugil texnik qurilmadir. Elementlarning ichki tuzilishi, ishlash asoslari, ichki jaryonlarning kechishi va qurilmalarning texnik jihatdan murrayablik darajasi xilma-xil bo‘lishi mumkin.

1.1- rasmla EMTning tizim sxemasi tasvirlangan. EMTning tarkibiga kiruvchi elementlar o‘zingiz bajaradigan vazifalari va tizimdagi tutgan o‘rning qarab bir necha turga bo‘linadi.

EMTning elementlari energetik holati nuqtayi nazariy aniq qaraganda ishchi va boshqaruv elementlarga bo‘linadi.

Ishchi elementlardan o‘tayotgan asosiy elektr energiya oqimi, mekanik energiyaga aylantirilib, ishchi organ (IO)ga uzatiladi, bu qismlar EMTning energetika qismi deb ham yuritiladi (1.1- rasmlarning punktirli chiziqdan o‘ng tarafida joylashgan qismlar).

1.1- rasm. Elektromexanik tizimning tarkibiy tuzilishi.

Zamonaviy o‘zgartkichlarning asosiy qismini yarimo‘tkazgichli o‘zgartkichlar, ya’ni tiristorli va tranzistorli o‘zgartkichlar tashkil etib, ular o‘zgaruvchan tokni o‘zgarmasga, impuls kengligi boshqariladigan o‘zgarmas tok va bevosita hamda bilvosita chasteta o‘zgartkichlar sifatida elektromexanik tizimlarda keng qo‘llaniladi.
Boshqaruv elementlari EMT tarkibida egallagan o'rniga qarab ikki guruhga bo'linadi:

1. EMTning dinamik va statik xususiyatlarini hamda harakat vazifalarini shakllantiruvchi elementlar, bular EMT boshqaruv tizimini tashkil etuvchi rostlagichlar, o'lichov o'zgartkichlar, har xil o'zgartkichlar va boshqa shunga o'xshash vazifalarni bajaruvchi elementlar.

2. Ishchi element tarkibiga ajralmas bo'lib kiruvchi va elementning matematik ifodasida u bilan yaxlitlikni aks ettiruvchi elementlar, bular masalan, tiristortlarni boshqarishda ishlatiladigan kommunatsion zanjirlar.

Birinchi guruhga kiruvchi boshqaruv elementlari ushbu kursda mufassal o'rganiladi va bu guruh o'z navbatida bir necha guruhchalarga bo'linadi, bular:

- EMT ko'rsatkichlarini rostlashga xizmat qiluvchi turli xildagi sozlovchi va rostlovchi qurilmalar;
- teskari bog'lanish zanjirlaridagi signallarni hosil qiluvchi va shakllantiruvchi safatida foydalaniladigan elektrik hamda noelektrik o'lichov o'zgartkichlar;
- boshqaruv qismlari kirish va chiqish signallarining o'zaro tok turi, darajasi kabi ko'rsatkichlar bo'yicha moslashtiruvchi qurilmalar.

Texnik ijrosi nuqtayi nazardan ushbu guruhlashtirish EMT boshqaruv elementlarining juda xilma-xil bo'lishi mumkinligini taqozo qiladi. Misol uchun, vazifalovchi qurilma uzluksiz va uzluqli-raqamlı tezlatkich uzatkichlar asosida yaratilishi yoki mantiqiy elementlar asosida dasturiy bloklardan iborat bo'lishi mumkin.

Rostlagich qurilmalar safatida operatsion kuchaytirigichlar asosida yaratilgan tipik bloklar ishlatsilmoqda.

O'zgaruvchan va o'zgarmas tok taxogeneratorlari, selsinlar, induktivli hamda optik aylanuvchi o'lichov o'zgartkichlar, shuningdek, tok, kuchlanish, quvvat va boshqa elektr kattaliklar o'zgartkichlar ham o'lichov o'zgartkichlar guruhini tashkil etadi.

Fazaviy detektorlar, emmitorli qaytargichlar, quvvat kuchaytirigichlar, raqam-uzluksiz va uzluksiz-raqamlı o'zgartkichlar moslovchi qurilmalarini tashkil etadi.

Shunday qilib, rostlagichlar, o'lichov o'zgartkichlar va moslashtiruvchi elementlar vazifasini faqat uzluksiz signallarda ishlovchi qurilmalargina emas balki diskret-raqamlı qurilmalar ham bajariishi mumkin. Uzluksiz signallarda ishlovchi vazifalovchi va rostlagichlar safatida moslashtirilgan mikro EHMning hisoblash qurilmalari ham ishlatilishi mumkin.
1.2. ELEKTROMEXANIK TIZIM ELEMENTLARINING KO'RSATKICHLARI VA TAVSIFLARI

EMTning har qanday elementning matematik andozasi ushbu elementning ko'p qutbli «qora quticha» shartli tasviri orqali ifodalanadi (1.2-a rasm): $x_1, x_2, ..., x_n$ – kirish – boshqaruv ta'siri, y – chiqish kattaligi, W – energiya manbayining g'alayonli ta'siri, z – yuklanishning g'alayonli ta'siri.

1.2-rasm. Elektromexanik tizim elementlarining «qora quticha» ko'rishshdag'i tasviri.

EMT elementlarining ko'rsatkichlari tabiatiga qarab uzluksiz yoki uzluklisi diskret bo'lishi mumkin, biroq ularni uzatuvchi kattaliklar ularning fizik xossalariga mos kelmasligi ham mumkin, ya'ni nazoratdagi o'lishanadigan va olinadigan xabarlar har xil fizik tabiatli bo'lishi mumkin. Masalan, boshqaruv ta'siri sifatida faza qabul qilingan bo'lsa, uning fizik uzatuvchisi bo'lib elektr impulsli bo'lishi mumkin; chiqish kattaligi sifatida davr tezligi (chastota) o'lishanishi yoki nazorat qilinishi kerak bo'lsa, uning fizik ifodasi kuchlanish, tok, impulslar bo'lishi mumkin.

Har qanday elementda qandaydir bir y ichki koordinata bo'lishi mumkin, bu koordinata tashqi chiqish kattaligini shakillantirishda muhim rol o'ynaydi. Misol uchun, tashqi koordinatasi elektr yurituvchi kuch (EYuK) bo'lgan o'zgarmas tok generatorining ichki koordinatasi qo'zg'atuvchi chug'amning magnit yurituvchi kuch (MYuK) bo'lsa, tiristorli o'zgarmas tok o'zgartkichining ichki koordinatasi boshqaruv burchagi a bo'ldi.

Mutloq o'ksariyat EMT elementlarining chiqish kattaligi EYuK yoki kuchlanish bo'lib, bu qurilmalarning quvati elektr energiya manbayining quvvatiga nisbatan juda kichik bo'lgani uchun W – energiya manbayining

www.ziyouz.com kutubxonasi
g'alayonli ta'sirini hisobga olmaslik mumkin, shunda elementning soddalash-
tirilgan «qora quticha» tasviri 1.2- b rasmda ko'rsatilgan holga keladi. Shundi-
y qilib, EMTning har qanday elementi uch ko'rsatkich guruhi, ya’ni
x, y, z bilan ifodalaniishi mumkin.

Elementning tashqi ko'rsatkichi \(y = f(x, z) \)ikki o'zgaruvchan katta-
likning funksiyasidan iberatdir. Agar g'alayonli ta’sir \(z \) ni o’zgarmas katta-
lik deb qabul qilsak, u holda

\[
y = f(x), z = \text{const}
\]
bo‘ladi va 1.3- a rasmda keltirilgan tavsiflar to’plamiga ega bo‘lamiz, bu
tavsiflar elementning boshqaruv tavsiflari deb ataladi.

Chiqish ko'rsatkichining boshqaruv ko'rsatkchiga bog'liqligi element-
ning boshqaruv xususiyatlarini baholaydi:

\[
y = f(z), x = \text{const}
\]
funksiya asosida hosil bo‘ladigan tavsiflar to’plami elementning tashqi tavsif-
lari deb ataladi (1.3- b rasm).

1.3- rasm. Elementning boshqaruv (a) va tashqi (b) tavsiflari.

Bu tavsiflar elementning yuklanishga nisbatan aks ta’sirini bildiradi. Yuklanish bo’yicha g’alayonli ta’sir elementning boshqaruv xususiyatlariga
bilvosita ta’sir etadi. Tashqi tavsiflarning qiyaligi qancha kam bo’lsa, boshqaruv
tavsiflarining yuklanishga bog’liqligi shuncha kam bo‘ladi. \(\frac{dy}{dz} = 0 \) bo’lgan-
dagina element boshqaruv tavsifiga yuklanishning ta’siridan qutilish mumkin,
shunda boshqaruv tavsif \(y = f(x) \) birgina x ning funksiyasi bo’lib qoladi.
Bunday boshqaruv tavsiflari ko’pincha uzlukli-diskret qurilmalar uchun
xosdir.

Kirish ko’rsatkichlari bir nechta bo’lgan holda elementning eng avval
amalga oshiradigan funksiyasi ushubu ko’rsatkichlarga ekvivalent mos yagona
ko‘rsatkichga keltiruvchi amalni bajarish va so‘nggra shu asosida natijaviy boshqaruv signalini hosil qilishdir.

EMTning har bir elementning vazifaviy xususiyatlarini hisobga olgan holda ularning ish rejimlarini tahlil qilish uchun bundan buyon elementlarning l.2- b rasmdagi tasvirni o‘rniga l.4- rasmda keltirilgan birmuncha takomillashgan elementning blok-tizim sxemasidan foydalanamiz. B1 - kirish bloki, bu blokda boshqaruv signallarini ekvivalent yagona ko‘rsatkichga keltirish va ichki koordinata v ga o‘zgartirish amali bajariladi. B2 - chiqish blokida ichki v koordinata chiqish ko‘rsatkichi y ga aylantiriladi. BYu - yuklagich bloki g‘alayonli va tashqi ko‘rsatkich ta’sirlarining ochiziqli $\mu = f(y, z)$ funksiyasini hosil qilish bilan bir qatorda bu funksiyani B2 ning kirish qismiga uzatadi. l.4- rasmdagi element tavsiflarining bloklar bo‘yicha matematik ifodasini yozib chiqamiz:

\begin{align}
\text{B1 bloki uchun} & \quad v = \phi_1(x), \\
\text{B2 bloki uchun} & \quad y = \phi_2(x + \mu), \\
\text{Element uchun} & \quad y = [\phi_1(x) + \mu(y, z)] = \phi(x, z).
\end{align}

1.4- rasm. Elementning blok-tizim sxemasi.

EMT elementlari uchun xarakterli bo‘lgan hollarni ko‘rib chiqamiz. Aytaylik, g‘alayonli ta’sir $\mu(z) = z$ bo‘lib, faqat yuklanishgagina bog‘liq bo‘lsa hamda B1 chiziqli blok bo‘lib, uning chiqishidagi funksiya $v = \phi_1(x) = k_1x$ bo‘lsa, u holda elementning boshqaruv tavsifi quyidagi funksiya ko‘rinishida bo‘ladi:

\begin{equation}
y = \phi_2[k_1x + \mu(z)] = \phi_2 \left[k_1 \left(x + \frac{\mu(z)}{k_1} \right) \right].
\end{equation}
Agar (1.6) dagi boshqaruv signali \(x = \text{const} \) bo'lsa, u holda boshqaruv tavsifi (1.5- a rasm)da keltirilgan ko'rinishda bo'ladi. Agar qo'shimcha ravishda B2 bloki ham chiziqli bo'lsa, u holda boshqaruv tavsifining matematik ifodasini quyidagi ko'rinishda yozish mumkin:

\[
y = \phi_2(v + \mu) = k_2 \left[\phi_1(x) + \mu(z) \right].
\]

(1.7) ni yanada soddalashtirilsa va elementning g'alayonli ta'siri \(z = \text{const} \) bo'lsa, uning boshqaruv tavsifi (1.5- b rasm)da keltirilgan tasvirga ega bo'ladi. Qo'shimcha ravishda BYu bloki ham chiziqli, ya'ni \(\mu(z) = -k_{yu}z \) bo'lsa, elementning tashqi tavsifining matematik ifodasini quyidagicha ifodalash mumkin:

\[
y = k_2 \phi_1(x) - k_2 k_{yu} z = y_0 x - k_2 k_{yu} z
\]
va tavsifi chiziqli funksiya ko'rinishida bo'ladi (1.5- d rasm).

1.5- rasm. Elementning xarakterli hollari tavisflari.

Avtomatik boshqaruv nazariyasi kursidan ma'lumki, ketma-ket ulangan dinamik zvenolarning umumiy uzatish funksiyasi shu zvenolar uzatish funksiyalarining ko'paytmasidan iborat bo'ladi, ya'ni elementning turg'un ish rejimi uchun umumiy uzatish koeffitsiyent \(k = k_1 \cdot k_2 \) bo'lib, bunda: \(k_1 \) va \(k_2 \) - B1 va B2 bloklarning uzatish koeffitsiyentlari. Bundan shunday xulosa chiqarish mumkinki, demak, elementning taklif qilinayotgan blok-tizimi modeli elementning umumiy uzatish funksiyasini topishga ham imkon beradi.

Boshqaruv signallarining ikki bosqichli o'zgarishlarini hisobga oluvchi elementlarning blok-tizimli modeli elektromexanik tizim elementlari uchun umumiy bo'lib, bu modellarda ko'rsatkichlarni o'zgartirishning nochiziqliligini hisobga olish bilan birga o'tish jarayonlaridagi inversionlikni ham

www.ziyouz.com kutubxonasi
hisobga olish imkonini beradi. Elementlarning inersionligi ularning kirish va chiqish zanjirlarida elektromagnit qurilmalarning, chunonchi sig‘imli filtrlarning bo‘lishi bilan izohlanadi. (1.1) – (1.5) tenglamalar elementning turg‘un holatini ifodalagani uchun bu tenglamalarda bloklarning inersionligi hisobga olinmagan. Blok-tizim modelidagi B1 va B2 bloklarni birinchi tartibli inersion zvenolar deb qarashning o‘zi kifoya va bloklar uchun chiziqlilikka keltirilgan differensial tenglamalarni operator ko‘rinishda quyidagicha ifodalangan:

\[(Tr + 1)v = k_1 x, \]
\[(Tr + 1)y = k_2 (v + \mu), \]

bunda: \(T_1, T_2 \) – B1 va B2 bloklarning vaqt doimiyliklari.

Shunday qilib, EMT ni tashkil etuvchi elementlarining taklif etilayotgan blok-tizim modeli bu elementlarning ham turg‘un va ham noturg‘un ish rejimlarini tahlil qilish imkonini beradi.

NAZORAT UCHUN SAVOLLAR

1. Elektromexanik tizim qanday asosiy elementlardan tashkil topgan?
2. Elektromexanik tizimlarning kuch elementlariga qanday qurilmalar kiradi?
3. Elektromexanik tizimlarning boshqaruv elementlariga qanday qurilmalar kiradi?
4. Elektromexanik tizim elementlarining qanday asosiy tavsiflari bor?
5. Elektromexanik tizim elementlarining boshqaruv tavsiflari qanday quriladi?
6. Elektromexanik tizim elementlarining tashqi tavsiflari qanday quriladi?
7. Elektromexanik tizim elementlarining blok-sxemasi nechta blokdan tashkil topgan?
8. Elektromexanik tizim elementlari chiqish blokining vazifasi nima?
9. Elektromexanik tizim kuch elementlarining ichki koordinatasi qanday koordinata?
10. Elektromexanik tizim elementlarining kirish bloki qanday vazifani bajaradi?
11. O‘zgarmas tok generatori uchun ichki koordinata qanday fizik kattalik bo‘ladi?
12. Boshqariluvchi o‘zgarmas tok o‘zgartkichi uchun ichki koordinata qanday fizik kattalik bo‘ladi?
2-bob. BOSHQARILUVCHI O‘ZGARMAS TOK O‘ZGARTKICHLARI

2.1. YARIMO‘TKAZGICHLI O‘ZGARMAS TOK O‘ZGARTKICHLARININ ASOSIY KUCH SXEMALARI VA KO‘RSATKICHLARI

Hozirgi paytda elektromexanik tizimlarning o‘zgarimas tokli avtomatlashgan elektr yuritmalarida boshqariluvchi elektr energiya manbayi sifatida o‘zgaruvchan tokni o‘zgarmas tokka aylantiruvchi boshqariluvchi yarimo‘tkazgichli to‘g‘rilagichlar keng ishlatalmoqda. Bunday to‘g‘rilagichlarda yarimo‘tkazgich sifatida, asosan, boshqariluvchi diodlar, ya’ni tiristorlar-dan foydalaniladi va shuning uchun ham bu to‘g‘rilagichlar tiristorli o‘zgarmas tok o‘zgartkichlari (yoki tiristorli to‘g‘rilagichlar) deb ataladi.

Har qanday bir yo‘nalishli tiristorli o‘zgarmas tok o‘zgartkichi (TO‘) ning ish rejimlarini tahlil qilishda, odatda, umumlashgan m fazali hisob sxemalardan keng foydalaniladi (2.1- rasm).

2.1- rasmtdagi sxemada keltirilgan shartli belgilar va ularning fizik ma‘nolar: \(L_{yuk} \), \(R_{yuk} \) — yuklagich, tok o‘tkazgich simlar va silliqlovchi reaktorlarning inaktivligi va aktiv qarshiligi, \(e_{yuk} \) — motorning EYuK (agar TO’ motorning qo‘zg‘atish chug‘amiga uylangan bo‘lsa, u holda \(e_{yuk} = 0 \));
\(\Delta U_{TO} \) — tiristordagi kuchlanish pasayishiga mos kuchlanish (bu qabul qilingan kuchlanish pasayishi yuklanishning tok qiymatiga bog‘liq bo‘lmay tiristorlar uchun bir xil qiymat qabul qilingan); \(R_f \) — transformatorning fazalari va anod taqsimlagichlarning birgalikdagi aktiv qarshiligini; \(L_f \) — transformator va anod taqsimlagichlarning birgalikdagi tarmoq inaktivligini. \(V_f \) — \(V_m \) tiristorlar ideal, ya’ni to‘liq boshqariluvchan deb qaraladi.

2.1- rasm. Tiristorli o‘zgarmas tok o‘zgartkichining hisob sxemasi.
TO'ning statik rostlash tavsifi \(E_d = f(\alpha) \) umumiy ko‘rinishda quyidagi matematik ifodadan iborat bo‘ladi:

\[
E_d = \frac{\pi}{2} \int_{\frac{m}{2} - \alpha}^{\frac{m}{2} + \alpha} E_{fm} \sin \omega_0 t d\omega_0 t = E_{d_{max}} \cos \alpha,
\]

(2.1)

bunda: \(E_{d_{max}} = \sqrt{2} E_2 f \frac{m}{\pi} \sin \frac{\pi}{m} \) – TO‘ning maksimal EYuK; \(E_{fm} \) – o‘zgartkich fazasi elektr yurituvchi kuchining amplituda qiymati, \(E_2 \) – transformator ikkilamchi chulg‘ami faza kuchlanishining haqiqiy qiymati, \(m \) – o‘zgartkichning fazalari soni, \(\omega_0 \) – manba kuchlanishning aylanma chastotasi.

\(E_{d_{max}} \) ning qiymati o‘zgartkich ishchi sxemasi turlariga (2.2- rasm) va ta‘minlovchi tarmoq elektr ko‘rsatkichlariga bog‘liq (2.1- jadval). Yuklanishning quvvati \(P_d = E_{d_{max}} I_d \) ga teng bo‘ladi (bunda \(I_d \) yuklanish toki).

2.2- rasm. TO‘ning bir fazali ko‘prik (a), uch fazali ko‘prik (b) va uch fazali nol (d) kuch sxemalar.

TO‘ ishchi sxemalar tahlil qilinadigan bo‘limlsa, bir fazali ko‘prik sxemalar (2.2- a rasm) asosan kichik quvvatli elektr yuritmalar uchungina qo‘llanilishi bilan chegaraalanadi. Uch fazali sxemalar esa asosan o‘rta va katta quvvatli elektr yuritmalarda ishlatiladi. Uch fazali ko‘prik sxema (2.2- b rasm) uch fazali nol sxemaga (2.2- d rasm) nisbatan bir qator afzalliklarga
ega. Bu afzalliklarning nimalardon iborat ekanligi 2.1- jadvaldan ham ko‘rinib turibdi:

1) transformatorning ikkilamchi chulg‘amida kuchlanishlar bir xil bo‘lgan holda to‘g‘rilangan EYuKning qiymati ikki marra katta;
2) to‘g‘rilangan EYuKning tebranish chastotasi ikki marta ko‘p (chas-tota $f = 300$ Hz) bo‘lishi bilan birga amplitudasi ikki marta kichikdir;
3) ishchi sxema tarmoqqa transformatorsiz ham ulanishi mumkin;
4) transformatorning rusumiy quvvati kam va bor-yo‘g‘i $S_t = 1,05P_d$ nigina tashkil etadi.

<table>
<thead>
<tr>
<th>TO‘ ishchi sxemalarining turlari</th>
<th>Bir fazali ko‘prik sxema</th>
<th>Uch fazali mol sxema</th>
<th>Uch fazali ko‘prik sxema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fazalar soni, m</td>
<td>2</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Rasmning tartib soni</td>
<td>2.2- a</td>
<td>2.2- d</td>
<td>2.2- b</td>
</tr>
<tr>
<td>To‘g‘rilangan EYuKning maxm qiymati, $E_{d_{max}}$</td>
<td>$0,9 E_{2f}$</td>
<td>$1,17 E_{2f}$</td>
<td>$1,35 E_{2f}$</td>
</tr>
<tr>
<td>Maksimal teskari kuchlanish, $U_{tes,kuch}$.</td>
<td>$1,57 E_{d_{max}}$</td>
<td>$2,09 E_{d_{max}}$</td>
<td>$1,05 E_{d_{max}}$</td>
</tr>
<tr>
<td>Transformatorning ikkilamchi chulg‘amidagi liniya tok, I_2</td>
<td>I_d</td>
<td>$0,58 I_d$</td>
<td>$0,817 I_d$</td>
</tr>
<tr>
<td>Har bir tiristordan o‘tayotgan o‘rtacha tok, I_{dr}</td>
<td>$0,5 I_d$</td>
<td>$0,33 I_d$</td>
<td>$0,33 I_d$</td>
</tr>
<tr>
<td>Transformatorning rusumiy quvvati, S_t</td>
<td>$1,11 P_d$</td>
<td>$1,35 P_d$</td>
<td>$1,045 P_d$</td>
</tr>
</tbody>
</table>

Ushbu afzalliklar uch fazali ko‘prik sxemali TO‘larning keng qo‘llanilishiga asos bo‘lib, hozirda ular quvvati bir necha ming kilovatt bo‘lgan o‘zgarmasi to‘ elektir yuritmalarida ham ishlatilmoqda.

Umuman olganda, TO‘larning iqtisodiy, texnik va foydalanish ko‘rsatkichlari yuqori bo‘lishi bilan elektromexanik o‘zgartkichlardan aylanuvchi qismlari yo‘qligi bilan bir qatorda quyidagi ko‘rsatkichlari bilan ham yaqqol ajralib turadi:

1) tiristorlardagi quvvat isrofining juda kamliga hisobiga (kuchlanish pasayishining 1 Voltdan ham kamliga tufayli) foydali ish koefitsiyentining yuqori bo‘lishi;
2) tiristorlarning yarim boshqaruvchanligi sabablari va boshqaruv zanjurlarida sig‘imli filtrlarning borligi hisobigagina kichik qiymatdagi inersionlikning mavjudligi;

2 — A.T. Imomnazarov

17

www.ziyouz.com kutubxonasi
3) tezkor ta’sirli muhofaza turlarining ishlatilishi va tiristorli o’zgartikchning vazifaviy elementlari alohida modullar tarzida bajarilishi o’zgartikchning ishonchli ishlashini ta’minlaydi;
4) katta joyni egallamaydi, shovqinsiz ishlaydi, o’rnatishga alohida joy tayyorlash talab etilmaydi.

Shu bilan bir qatorda TO’ ba’zi kamchiliklardan ham xoli emas:
1) kuchlanishni chuquq rostlash jarayonida reaktiv tok ortishi tufayli quvvat koeffitsiyenti pasayadi;
2) ortiqcha yuklanishga o’ta ta’sirchan;
3) tiristorli o’zgarmas tok o’zgartikchining ishlashi ta’minlanayotgan elektr tarmoqdagi kuchlanish shaklining o’zgarishiga olib keladi; bu transformerlarda, simlarda quvvat isrofining ortishiga olib keladi;
4) radio to’siq to’lqinlarining tarqalish darajasini orttirishga olib keladi.

2.2. TIRISTORLI O’ZGARMAS TOK O’ZGARTIKCHINING ASOSIY TAVSIFLARI

TO’ning blok-tizim sxemasi 1.4- rasmda keltirilgan EMT elementining blok-tizim sxemasi asosida tuzilib, bunda: kirish bloki B1 tiristorlarni boshqarish vazifasini bajaruvchi impuls-faza boshqarish tizimi IFBTni tashkil etadi, kirish ko’rsatkich bo‘lib boshqaruv kuchlanishi U_b bo’ladi, o’zgartikchning ichki ko’rsatkich sifatida tiristorlarning boshqaruv burchagi α bo’ladi. Chiqish bloki B2 o’zgartikchning ishchi sxemasi IS ni anaglatadi, uning chiqish ko’rsatkichi to’g’rilangan EYuK E_d bo’ladi (2.3- rasm). TO’ning chiqish ko’rsatkich E_d ga yuklanish toki I_d ning ta’siri g’alayonli ta’sir bo‘lib, BYu yuklagich bloki orqali B2 ning kirish qismiga ta’sir qiladi, I_d ning E_d ga ta’siri faqatgina o’zgartikchning uzlukli tok rejimidagina mavjuddir.
TO'ning o'zgarmas tok motoriga ulanishi, ya'ni yuklanishning induktiv-
aktiv xarakterda bo'lishligi, o'zgartkichda uch xil tok rejimi uzlaksiz, uzlukli
va chegara tok rejlamlari mavjud bo'lishiga olib keladi. TO'ning tashqi tavsifi,
ya'ni \(U_d = f(I_d) \) ning matematik ifodasi quyidagicha ifodalangizi:

\[
U_d = E_{d_{\text{max}}} \cos \alpha - \Delta U_{T0} - \left[\frac{m}{2\pi} \omega_0 L_f + R_f \left(1 - \frac{\gamma}{\pi}\right) \right] I_d \tag{2.2}
\]

va bunda: \(\gamma \) - tiristorlarning kommutatsiya burchagi.

(2.2) ifoda kommutatsiya boshidagi tok \(i_0 \) va oxiridagi tok \(i_{\gamma} \) o'rtacha
qiymati yuklanish toki \(I_d \) ga teng degan taxminga mos keladi va haqiqatda
ham bu tenglik o'rtacha va katta quvvatli o'zgarmas tok elektr yuritmalarli
uchun haqiqatga yaqinindir. Agar \(\gamma = 4\pi / m \) ligini hisobga olinadigan bo'lsa, u
holda (2.2) ni birmuncha soddasahtirish mumkin:

\[
U_d = E_{d_{\text{max}}} \cos \alpha - \Delta U_{T0} - \left[\frac{m}{2\pi} \omega_0 L_f + R_f \right] I_d , \tag{2.3}
\]

bunda: \(R_e = \frac{m}{2\pi} \omega_0 L_f + R_f \) - TO'ning umumiyy aktiv qarshiligi ekanligi
hisobga olinadigan bo'lsa, u holda (2.3)ni yanada ixchamlashtirish mumkin bo'ladi:

\[
U_d = E_{d_{\text{max}}} \cos \alpha - \Delta U_{T0} - R_e I_d . \tag{2.4}
\]

2.4- rasmda keltirilgan tavsiflar to'plami (2.4) ifoda asosida boshqaruv
burchagi \(\alpha \) ning o'zgarmas qiymatli uchun qurilgan tiristorli o'zgartkich-
ning tashqi tavsiflaridir. Bu tavsiflar boshqaruv burchagi \(\alpha \leq \pi - (\gamma + \delta) \)
o'zgarishi oralig'i uchun mos bo'lib, bunda \(\delta \) - burchak tiristorning yopil-
ish xususiyatlarini tiklash uchun kerak bo'libdigan vaqt. TO'ning inver-
torlik chegarasidagi zona uchun tashqi tavsif

\[
U_d = -E_{d_{\text{max}}} \cos \delta + \frac{m}{2\pi} \omega_0 L_f I_d \tag{2.5}
\]

bilan ifodalangizi, 2.4- rasmdagi 3- to'g'ri chiziqli funksiyani beradi.

1- to'g'ri chiziq absissa o'qi \(I_d \) ga parallel bo'lib, o'zgartkichning
to'g'rilangan EYuk E_d ni beradi. 2- to'g'ri chiziq (2.4) ifodaga mos
to'g'rilangan \(U_d \) ning tok \(I_d \) bilan bog'liq funksiyasini beradi. Yuklagich
tokining ortib borishi \(R_e I_d \) proporsional ortib borishi bilan xarakterlanadi va
tavsifning nishabi shunga qarab ortib boradi. Bu tushunchalar hammasi
o'zgartkichning uzlaksiz tok rejimi uchungina mos keladi.
2.4- rasm. Tiristorli o'zgartkichning tashqi (a) va boshqaruv (b) tavsiflari.

Endi $U_d = f(I_d)$ tavsifning chegara tok rejimi ko'rsatkichlarini aniqlay-miz. Chegara tok rejimida kommutatsiya zonasi bo'limasligi bilan xarakter-
lidir, tiristorlarning o'tkazish davri $\lambda = \pi / m$ ning boshlanishida ham va
oxirida ham $I_d = 0$. Bu rejimga mos tenglamalar quyidagicha ifodalanganadi:

$$I_{dch} = \left(1 - \frac{\pi}{m} \cotg \frac{\pi}{m} \right) \frac{E_{d\text{max}}}{x_{yu} + x_f} \sin \alpha, \quad (2.6)$$

$$U_{dch} = E_{d\text{max}} \cos \alpha. \quad (2.7)$$

Chegara tok rejimidagi tiristorli o'zgartkichning tok va kuchlanishlar-
ning qiymatlarini topishda (2.6) va (2.7) ifodalardan foydalaniladi. Bunda x_{yu} va x_f — yullanish va transformator ikkilamchi chulg'amlarining inductiv
qarshiliklari 2.4- a rasmiyagi 4- egri chiziq — ellips o'zgartkichning chegara
tok rejimi ko'rsatkichlarini asosida quriladi va bu tavsif uzluksiz va uzluuki tok
rejimlarini bir-biridan ajratib turadi.

5- egri chiziq ΔU_{T0} kuchlanish pasayishini hisobga olgan holdagi che-
gara rejim ko'rsatkichlarini ifodalaydi.

TO'ning uzluuki tok rejimida o'zgartkichning o'rtacha to'g'rilangan
kuchlanishi yuklagich zanjirining EYuKiga teng bo'lib, tiristor o'tka-
uzuvchanligining har bir $2\pi/m$ davrida $I_d = 0$ bo'lib, tashqi tavsifi quyidagi formula bilan ifodalanadi:

$$U_d = E_{d\text{ max}} = E_f \cos(\alpha - \frac{\pi}{m}) - \Delta U_T 0$$ (2.8)

va u 2.4- rasmdagi 6- egri chiziq ko'rinishiga ega bo'ldi.

Tiristorli o'zgartkichning boshqaruv tavsiflari to'g'ilangan EYuK bo'yicha $E_d = f(\alpha)$ va to'g'ilangan kuchlanish bo'yicha $U_d = f(\alpha)$ (2.4) tenglangan toki I_d ning turli o'zgarmas qiymatlarida boshqaruv burchagi α ni o'zgartirib quriladi. TO'ning uzuksiz tok rejimi uchun boshqaruv tavsifi 2.4- b rasmda keltirilgan. 1- egri chiziq to'g'ilangan EYuK $E_d = E_{d\text{ max}} \cos\alpha$ ning boshqaruv burchagi α ga bog'liq ravishda o'zgarishini ko'rsatadi. 2- egri chiziq esa to'g'ilangan kuchlanishning boshqaruv burchagi α ga bog'liq o'zgarishini tasvirlaydi.

O'rtada katta quvvatli elektr yuritmalar uchun tiristorli o'zgartkich uzuksiz tok zonasining arzimasi bo'lishi sababli o'zgartkichning bu tok rejimi amaliyotda ko'pincha hisobga olinmaydi. Ammo kuzatuvchi elektr yuritma tizimlarida, ya'ni boshqaruv kichik signallar asosida boshqariladigan tiristorli o'zgartkichli elektr yuritmalarda uzuksiz tok rejimini hisobga olish zarurdir.

2.3. TIRISTORLI O'ZGARMAS TOK O'ZGARTKICHKLARINING DINAMIK XUSUSIYATLARI

Tiristorli o'zgarmas tok o'zgartkichning dinamik xususiyatlarni ko'rib chiqamiz. Agar tiristorli o'zgarmas tok o'zgartkichning ishchi sxemasi aktiv-induktiv xarakterdagi yuklagichga ulangan (2.5- a rasm) va ishlash rejimi uzuksiz tok rejimi bo'lsa I_d ga nisbatan o'tish jarayonining differentsiyal tenglamasi operator ko'rinishda quyidagicha yoziladi:

$$T_c = pI_d(p) + I_d(p) = \frac{U_d(p)}{R_{yuk} + R_e},$$

bunda: $T_c = \frac{L_{yuk} + L_f}{R_{yuk} + R_e}$ tiristorli o'zgarmas tok o'zgartkichning chiqish zanjirlari ko'rsatkichlarini hisobga olingan holdagi vaqt doimiyligi;
L_f, R_e – transformatorning ikkilamchi chulg’ami va ulanuvchi similarning inductivligi hamda tiristorli o‘zgartmas tok o‘zgartkichining ekvivalent aktiv qarshiligini; I_{yuk}, R_{yuk} – yuklanish zanjirining inductivligi va aktiv qarshiligini.

2.5-rasm. TO‘ning aktiv-induktiv yuklanishga (a), o‘zgartmas tok motori qo‘zg’atish chulg’amiga (b) va yakor zanjiriga (d) ulanish sxemalari.

Tiristorli o‘zgartmas tok o‘zgartkichini o‘zgartmas tok motorining qo‘zg’atish chulg’ami (QCh)ga ulangan bo‘lsa (2.5- b rasm), u holda QCh ning vaqt doimiyligini hisoblashda albatta o‘zgartkichning ko‘rsatkichlari ham ishtirok etadi:

$$T_c = T_k = \frac{L_{qch} + L_f}{r_{qch} + R_e},$$

bunda: L_{qch}, r_{qch} – qo‘zg’atish chulg’amni zanjirining inductivligi va aktiv qarshiligini.

22
Agar tiristorli o'zgarmas tok o'zgartkichi o'zgarmas tok motorining yakor zanjiriga ulangan bo'lsa (2.5- d rasm), unda tiristorli o'zgarmas tok elektr yuritmaning boshqaruv ta'siri deb $E_d(p)$ni, chiqish kattaligi deb $E_yuk(p) = co(p)$ni qabul qilinsa, unda motorning uzatish funksiyasi quyidagicha ifodalanadi:

$$\frac{E_{yuk}(p)}{E_d(p)} = \frac{1}{T_m T_{ya} p^2 + T_m p + 1},$$

bunda: $T_m = \frac{J r + R_e}{c^2}$ — motorning elektromexanik vaqt doimiyligi;

$$T_{ya} = \frac{L + L_f}{r + R_e}$$ — motorning elektromagnit vaqt doimiyligi; L va r — yakor zanjirining inductivligi va aktiv qarshilig; c — motorning konstruktiv elementlariga bog'liq bo'lgan doimiyligi.

Agar tiristorli o'zgarmas tok elektr yuritma uzlukli tok rejimida ishlayotgan bo'lsa, u holda elektromagnit vaqt doimiyligi T_{ya} ni hisobga olmaslik mumkin, biror elektromexanik vaqt doimiyligi $T_m = J R_n / c^2$ ga teng bo'ladi,

bunda $R_n = \frac{E_{d \text{max}} - U_{dch}}{I_{dch}}$ — o'zgartkichning uzlukli tok rejimida hosil bo'ladigan nochiziqli ichki qarshilig. Demak, tiristorli elektr yuritmadi-gi motorning boshqaruv ta'siri bo'yicha uzatish funksiyasi nodavriy zveno-ing uzatish funksiyasi kabi bo'ldi, ya'ni quyidagi ko'rinishga ega bo'ldi:

$$\frac{E_{yuk}(p)}{E_d(p)} = \frac{1}{T_m p + 1}.$$

2.4. TIRISTORLI O'ZGARMAS TOK O'ZGARTKICHING KUCH TIRISTORLARINI BOSHQARISH

Hozirgi paytda TO' ishchi sxemalaridagi tiristorlarni boshqarish uchun vertikal prinsipida ishlovchi impuls-faza boshqaruv tizimlari (IFBT) keng qo'llanilmoqda. IFBTga qo'yiladigan asosiy talablar tiristorlarning normal ishlashini ta'minlashi va har qanday nonormal rejimlardan muhofaza qilishi lozim va bu talablar quyidagilardan iborat:
1) boshqarish-impulslining amplitudasi 200 – 400 mA dan kam bo‘limasligi kerak;

2) impuls kengligi shunday bo‘lishi kerakki, bu oraliqda tiristordagi tokning o‘isishi uning o‘rtacha qiymatiga yetib olishga ulgurishi kerak va odatda bu kenglik 10 – 15° ga teng bo‘ladi;

3) boshqaruv jarayonidagi asimmetriyani yo‘qotish uchun (asimmetriya darajasi 3° dan ortmasligi kerak) impulsning boshlanishidagi tiklik darajasi yuqori (10 A/s tartibda) bo‘lishi lozim;

4) boshqaruv burchagining o‘zgarish diapazoni $-2(\gamma + \delta) \leq D \leq \pi(\gamma + \delta)$ bo‘lib, tiristorlarning boshqarish burchagining maksimal qiymati $\alpha = 150° – 160°$ bo‘lishi kerak;

5) boshqaruv tizimining tezkorligi TO‘ning amalda inersiyasiz qurilma sifatida ishlashiga imkon yaratishi lozim.

2.6- a rasmda IFBTning funksional sxemasi keltirilgan bo‘lib, bunda TKG – tayanch kuchlanishi U_{tk} ni hosil qiladi (U_{tk} ning shakli sinusoidal, arrasimon va boshqa ko‘rinishlarda bo‘lishi mumkin) bu signal FSQ – faza siljitish qurilmasida boshqaruv kuchlanishi U_b bilan taqqoslanib, ularning ayirmasi ($U_b – U_{tk}$)ning ishorasi o‘zgarishi IG – impuls generatorida boshqaruv impulsining yuzaga kelishiga va kuch sxemadagi tiristor V ni ochishga imkon beradi. 2.2- jadvalda amaliyotda keng qo‘llaniladigan tayanch kuchlanishi U_{tk} ning ikki xil ko‘rinishi uchun IFBTning boshqaruv tavsifi $U_b = f(\alpha)$ va kuchaytirish koeffitsiyenti $K_{IFBT} = f(\alpha)$ ning matema-

![Diagram](image-url)
2.2- jadval

<table>
<thead>
<tr>
<th>Tayanch kuchlanish shakli</th>
<th>(U_{TK} = f(\omega t))</th>
<th>(U_{TK} = f(\omega t), K_{IFBT} = f(\alpha))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinusoidal</td>
<td>[U_{TK} = U_{TMK} \sin \omega t]</td>
<td>[U_b = U_{TMK} \cos \alpha]</td>
</tr>
<tr>
<td></td>
<td>[K_{IFBT} = \frac{1}{U_{TKM} \sin \alpha}]</td>
<td></td>
</tr>
<tr>
<td>Arrasimon</td>
<td>[U_{TK} = U_{TMK}(1 - \frac{\omega t}{Q})]</td>
<td>[U_b = U_{TMK}(1 - \frac{\omega t + \alpha}{Q})]</td>
</tr>
<tr>
<td></td>
<td>[K_{IFBT} = \frac{Q}{U_{TKM}}]</td>
<td></td>
</tr>
</tbody>
</table>

Tik ifodalari berilgan. 2.6- b rasmda sinusoidal va arrasimon ko‘rinishdagi tayanch kuchlanishli IFBTning rostlash tavsiflari \(\alpha = f(U_b / U_{br}) \) berilgan bo‘lib, bu tavsiflar tayanch kuchlanishingining shakli sinusoidal bo‘lganda (1- egri chiziq) va arrasimon bo‘lganda (2- egri chiziq) to’g‘ri chiziqlari ko‘rinishda bo‘ladi. Xuddi shu ikki xil ko‘rinishga ega bo‘lgan tayanch kuchlanishli IFBTlarning kuchaytirish koefitsiyenti 2.7- a rasmda keltirilgan. Tayanch kuchlanishingining shakli sinusoidal (1- egri chiziq) va (2- to‘g‘ri chiziq) bo‘lgan holdagi IFBT kuchaytirish koefitsiyentlari taqqoslasa, \(U_{TK} \) ning shakli arrasimon bo‘lgan holda kuchaytirish koefitsiyenti o‘zgarmas bo‘lib, tiristorlarning ochilishini boshqarishda katta qulaylik yaratadi.

TO‘ning natijaviy kuchaytirish koefitsiyenti

\[K_{TO} = K_{IFBT} \cdot K_{IS} \] (2.9)

bo‘lib, bunda \(K_{IS} = \frac{de_d}{d\alpha} \) - o‘zgartkich ishchi sxemasining kuchaytirish
2.7- rasm. IFBTning (a) va TO'ning kuchaytirish koefitsiyentlarining (b) va to'g'rilangan EYuK ning boshqaruv kuchlanishiga (d) bog'liqlik tavsiflari.

koefitsiyent bo'lib, (2.1) tenglamaning boshqaruv burchagi α bo'yicha olingan hosilasidir.

2.7- b rasmda tiristorli o'zgartkichning kuchaytirish koefitsiyenti K_{TO}'ning boshqaruv kuchlanishi U_b ga bog'liq ravishda o'zgarishi va bu o'zgarishga tayanch kuchlanishi shaklining bevosita ta'siri ko'rsatilgan.

TO'ning boshqaruv tavsifi $E_d = f \left(\frac{U_b}{U_{b,n}} \right)$ ham so'zsiz 1FBT tayanch kuchlanishi U_{b} shakliga bog'liqdir, agar U_{ik} ning shakli sinusoidal bo'lsa (2.2- jadval) hisobga olinganda, o'zgartkichning boshqaruv tavsifi chiziqli funksiya bo'ladi (2.6- b rasm, 2- to'g'ri chiziq), ya'ni

$$E_d = E_{d,\text{max}} \cos \alpha = E_{d,\text{max}} \cos \left(\arccos \frac{U_b}{U_{b,n}} \right) = E_{d,\text{max}} \frac{U_b}{U_{b,n}} \quad (2.10)$$

ko'rishdada yoziladi. Agar U_{ik} ning shakli arrasimon bo'lsa, $\alpha = f \left(\frac{U_b}{U_{b,n}} \right)$ funksiya chiziqli bo'lishi bilan (2.6- b rasm, 2- to'g'ri chiziq) o'zgartkichning boshqaruv tavsifi

$$E_d = E_{d,\text{max}} \cos \alpha = E_{d,\text{max}} \sin \left(Q \frac{U_b}{U_{b,n}} \right), \quad (2.11)$$
ko‘rinishda bo‘lib, agar U_d ning shakli uchburchak ko‘rinishda bo‘lsa, TO‘ning boshqaruv tavsifi

$$E_d = E_{d_{\text{max}}} \sin \left(\frac{\pi}{2} \frac{U_b}{U_{b,n}} \right),$$

ko‘rinishda bo‘ladi (2.7- d rasm, 2- to‘g‘ri chiziq).

Misol tariqasida ishchi sxemasi uchazl ko‘prik sxema bo‘lgan sanoat uchun ishlab chiqarilayotgan noreversiv (yoki bir yo‘nalishli) tiristorli o‘zgartkich funksionl sxemasining (2.8- a rasm) ishlash asosini ko‘rib chiqamiz.

2.8- rasm. Noreversiv TO‘ning prinsipial elektr sxemasi (a), tiristorlarga berilayotgan impulslar ketma-ketligi (b) va impuls generatorining ishlash diagrammalari (d).

Ko‘prik sxemasining nol sxemadan farqi shundaki, har qanday ish vaqtida ham yuklagichga ketma-ket ulangan ikki tiristor ishlaydi. Ikkala tiristorning bir vaqtida ishlab turishi o‘zgartikchin uzlukli tok rejimida o‘chib
qolmasligini ta’minlaydi. Har bir 60° da bir tiristor yopiladi va keyingi tiristor ochiladi. Kengligi 60° bo’lgan impulsni hosil qilishingning birnuchaga texnik murakkabligi bo’lishi bilan bir qatorda tiristorda qo’shimcha quvvat sarfiga ham olib keladi va uning ortiqcha qizishga sabab bo’ladi. Shuning uchun ham keng impulslardan foydalaniladi. Har bir tiristor 60° da asosiy ochuvchi impuls qabul qilishidan tashqari (2.8 - b rasm, to’liq o’q) qo’shimcha impuls ham qabul qiladi (2.8 - b rasm, shtrixli o’q).

Masalan, V1 – nomerli tiristorga IG dan qo’shimcha impuls yuborilib turiladi. 2.8 - d rasmda impuls generatorlar aylana bo’ylab joylashtirilgan doirachalar shaklida, ular ishlab chaqarilayotgan asosiy impulslar radial o’qlar tarzida, qo’shimcha impulslar yo‘yli o’qlar ko’rinishda tasvirlangan. Tiristorli o’zgartikich ishchi sxemalardagi tiristorlarga boshqaruv impulslarini tiristorlarning navbatma-navbat ulanish diagrammasi (2.8 - b rasm) asosida IG – impuls generatorlaridan yuboriladi. IG larga qo’shimcha impulslarning kirish va chiqish yo’nalishlarini bildiruvchi vertikal o’qlar dagitib sonlar shu generatorlarning qaysi impuls generatori bilan bog‘langanligini bildiradi. IFBT ning tarkibida bir xil olti boshqarish bloklari BB1 – BB6 da hosil bo’lgan tayanch kuchlanshlar U_n bilan boshqarish bloklari uchun umumiy bo’lgan U_b ayirmasi IG1 – IG6 impuls generatorlariga uzuqilib, ularda boshqarish impulslarini hosil qilinadi. Tiristorlarning boshqarish birchaklari α ni rostlash boshqarish kuchlanishi U_n ni o’zgartirish bilan amalga oshiriladi.

2.5. REVERSIV TIRISTORLI O’ZGARMAS TOK O’ZGARTIKICHKLARINI BOSHQARISH

Tiristorlar o’tkazuvchanliligning faqat bir tomonliligini reversiv tiristorli o’zgartikichlarni bir tiristorlar komplektida bajarish imkonini bermaydi. Shuning uchun reversiv tiristorli o’zgartikch – RTO‘larda bir-biri bilan elektrik bog‘langan tiristorlarning ikki komplekt ishchi sxemalari va har biri uchun alohida boshqarish tizimlari bo’lishi shart. RTO‘ning har bir komplekt ishchi sxemalari yuklagich tokini faqat bir tomonga o’tkazishga xizmat qiladi. RTO‘ning ishchi sxemalari qarshi – parallel (2.9 - a rasm) va chorrarha (2.9 - b rasm) ko’rinishda ulangan sxemalar bo’lishi mumkin.

RTO‘larning ishchi sxemalari ichida qarshi – parallel sxemaning chorrahali sxemaga nisbatan amaliyotda keng qo’ilanilishi quyidagi afzalliklari bilan izohlanadi:
- moslashtiruvchi transformatorming quvvati past bo‘lishligi (to’g‘rilangan tok zanjirida quvvatning 1,262 ga nisbatan 1,05 bo‘lishi);
2.9- rasm. Reversiv tiritorlari o‘zgarmasi tok o‘zgartkichining qarshi — parallel (a) va chorraha (b) kuch sxemalar.

— uch chulg‘amli transformatorga nisbatan konstruktiv sodda ikki chulg‘amli transformatorning qo‘llanilishi yoki bo‘limas va umuman transformersiz bevosita elektr ta’minoti manbayiga ulanishi mumkinligi;

— qo‘llaniladigan barcha transformator va reaktorlarning salmoq hamda o‘lcham ko‘rsatkichlari kichik bo‘lishi.

RTO‘larning ishchi sxemalarini komplektlarini boshqarishda birgalikda yoki alohida boshqarish usullari qo‘llaniladi.

Birgalikda boshqarish usuli bilan RTO‘ni boshqarilganida tiritorlarning bir komplekti to‘g‘rilagich rejimida ishlasa, ikkinchi komplekti invertor rejimida ishlash uchun tayyorlab qo‘ylgan bo‘ladi va quyidagi shart bajarlishi zarur:

\[E_{d1} + E_{d2} - 2\Delta U_{TO^*} = 0 \]

bunda: \(E_{d1}, E_{d2} \) — tiritor komplektlarining to‘g‘rilangan EYuKlarining doimiy tashkil etuvchilari.
\[\Delta U_{TO'} = 0 \] deb qabul qilinsa (2.13) tenglama boshqarish burchaklari orqali ifodalanadi.

\[\alpha_1 + \alpha_2 = 180^\circ, \] (2.14)

bunda: \(\alpha_1 = \alpha_{TO'G} < 90^\circ \) — to‘g‘rilagich rejimida ishlayotgan tiristor komplektining boshqarish burchagi; \(\alpha_2 = \alpha_{INV} > 90^\circ \) — invertor rejimida ishlayotgan tiristor komplektining boshqarish burchagi.

RTO‘ni kelishilgan birgalikda usul bilan boshqarilganda birozgina boshlang‘ich — uzluksiz xarakterdagi muvozanatlovchi tokning bo‘lishi, o‘zgartkichning boshqaruv va tashqi tavsiflariga ta’siri ijobiy bo‘lib, (2.13) tenglamadagi tenglikka ideal riyoa qilinganda uzlukli tok rejimi mavjud bo‘lmaydi. 2.10- a rasmla RTO‘ning rostlash tavsifi berilgan bo‘lib, 2.10- b rasmda esa tashqi tavsifi keltililgan. RTO‘ning tashqi tavsifidan ko‘rinib turibdiki, uzlukli tok rejimining bo‘lmasligi o‘zgartkichning to‘g‘rilagich rejimidan invertor rejimiga o‘tishi hech qanday sakrashsiz, silliq kechadi, kuchlanish pasayishi faqatgina \(I_dR_e \) gajina bog‘liqdir.

2.10- rasm. Kelishilgan birgalikda boshqariladigan RTO‘ning boshqaruv (a) va tashqi (b) tavsiflari.

Birgalikda boshqarish usulining afzalligi avvalambor soddaligidir, bir rejimdan ikkinchisiga o‘tishga har doim tayyorligi, statik tavsiflarning bir
ishoraligidir. Kamchiliklari esa to'g'rilagich rejimida tiristorlardan to'liq foydalanish mumkin emasligi, ya'ni
\[\beta_{\text{min}} \geq \gamma + \delta \] (2.15)
bo'lishi \(\alpha_{\text{min}} \) ni ham chegaralab qo'yadi; muvozanatlovchi konturlarda muvozanatlovchi reaktorlarning bo'lish shartligi.

O'tish jarayonlarining ma'lum bir pog'onalarida oniy qiymatlari teng bo'ilmasligi tufayli (2.13) dagi shart bajarilmay qolishi natijasida muvozanat konturida dinamik muvozanatlovchi tok \(I_{\text{den}} \) ning yuzaga kelishi mumkin. \(I_{\text{den}} \) ning ta'sirini kamaytirish maqsadida tiristorli elektr yuritmalarning chiqish qismida nodavriy zvenolar tarzida filtrlar ishlatiladi.

Kelishilmagan birgalikda boshqariladigan usul bilan RTO' boshqarilganda invertor komplektning EYuKi \(E_{\text{dl}} \) ning qiymati to'g'rilagich komplektning EYuKi \(E_{dTT0} \) ning qiymatidan katta qilib olinadi, ya'ni
\[\alpha_1 + \alpha_2 > \pi \] (2.16)
yoki \(\alpha_{TOG} > \beta_I \) shart bajariladi.

To'g'rilagich rejimida ishlayotgan tiristor komplektining boshqarish burchagi \(\alpha_{TOG} \) ning o'zgarishi davomida invertor rejimida ishlayotgan tiristor komplektining boshqarish burchagi \(\beta_I \) ning qiymatini shortga asosan eng kichik qiymatiga tenglab o'zgarmas qilib ushlab turlganida muvozanat tokning qiymati kelishilgan boshqaruvgadiga nisbatan kam bo'lgani uchun ishlatiladigan muvozanatlovchi reaktorlarning induktivligi sezlarli darajada kichik bo'lishi ham mumkin. Agar kommutatsiya sharti bo'yicha \(\beta_I \rightarrow 0 \) mumkin bo'lsa, chegaralovchi reaktorlardan butunlay voz kechish ham mumkin. \(\alpha_1 + \alpha_2 = 300^\circ \) shart uchun ham muvozanatlovchi tokning qiymati nolga teng.

Muvozanatlovchi tolklori chegaralash va minimumga keltirish uchun tiristorli elektr yuritmalarda rostlagichlardan foydalaniladi. 2.11- rasmda to'g'rilangan kuchlanishning haqiqiy qiymati \(U_d \) bo'yicha manfiy texkari bog'lanishli yogiq avtomatik rostlash tizimning boshqaruv \(U_d = f(U_d) \) va tashqi \(U_d = f(I_d) \) tavsiflari keltirilgan. O'zgartiqchining to'g'rilagich rejimidan invertor rejimiga o'tishda luft hosil bo'lishadi va uning absolut qiymati
\[|U| = |\Delta U_d| = \frac{2U_{\text{max}}}{1+k} \] (2.17)
bo'lib, bunda: \(k \) — tizim o'chiq qismning umumiy kuchaytirgich koefitsiyenti.
Lyuftning hosil bo‘lishi invertor rejimi kuchlanishining o‘zgarishi oralig‘ining ba‘zi bir qiymatlarida invertorning kuchlanishi to‘g‘rilagich rejimi kuchlanishidan absolut jihatdan katta bo‘lishidir.

RTO‘ ishchi sxemalari alohida boshqarilganda bir tiristor komplektiga boshqarish uchun signal berilganda, ikkinchi komplekt tiristorlar yopiq rejimda bo‘lishi kerak, bu esa muvozanatlovchi toklarning bo‘lmasligi va hosil bo‘lishiga imkoni yo‘qoladi hamda reaktorlarga hojat qoldirmaydi. Ti-ristor komplektlarini alohida boshqarish jarayoni quyidagi mantiqiy tenglal-malar tizimi asosida olib boriladi:

\[
\begin{align*}
Y_1 &= (\bar{x}_0 + x_1) + x_2 \\
Y_2 &= (\bar{x}_0 + \bar{x}_2) + x_1
\end{align*}
\]

bunda: \(Y_1, Y_2\) — mos IFBTlarni ishdan to‘xtatish uchun beriladigan signal-
lar; \(x_1, x_2\) — to‘g‘rilagich komplektlaridagi tok o‘lchov o‘zgartikichlarining signallari; \(x_0\) — tiristor komplektining qaysi biri ishlashi kerakligini bil-
diruvchi signal (statik rejimda \(x_0 = 0 \) bo'lishi \(x_1 = 1 \), \(x_2 = 0 \), \(x_0 = 1 \) esa \(x_1 = 0 \), \(x_2 = 1 \)).

2.12- rasm. MQQning tarkibi yuzilish sxemasi.

Mantiqiy o'zgaruvchan kattaliklar ustidagi chiziqcha ularning inversiya, ya'ni teskari qiymatlarini beradi. Mantiqiy tenglamalar tizimi (2.18) asosida mantiqiy qayta ulash qurilmasi (MQQ) yaratilib, RTO'larini alohida boshqarishning o'zagini tashkil etadi. MQQning tizim sxemasi 2.12- rasmida tasvirlangan.

Misol tariqasida MQQ yordamida uch fazali ko'prik sxemali RTO' tiristor komplektlarini alohida boshqarishni ko'rib chiqamiz (2.13- rasm). RTO' quyidagi asosiy qism va bloklardan iborat: IFBT1 va IFBT2 — har bir tiristor komplektlariga mos keluvchi impuls-faza boshqaruv tizimlari; TK1 va TK2 — RTO'ning tiristor komplektlari; TO'O'1 va TO'O'2 — tiristor komplektlaridagi toklarni o'lichash va uzatish vazifalarini bajaruvchi tok o'lichov o'zgartikchilar; MQQ — mantiqiy qayta ulash qurilmasi; BO'O' — boshqaruv o'lichov o'zgartikchilar; K — kuchaytirgich.

Boshqarish signali \(x_0 \) BO'O' da hosil qilinib, MQQ ga uzatiladi: \(x_0 = 1 \) bo'lishi \(\Delta U_b > 0 \) bilan xarakterlanib, tiristorli komplekt TK1 ni ishga tushishga tayyorlaydi; \(x_0 = 0 \) bo'lishi \(\Delta U_b < 0 \) bilan xarakterlanib, tiristorlar komplekti TK2 ni ishga tushishga tayyorlaydi. TK1 va TK2 komplekt zanjirlarida tok, ya'ni \(x_1 \) va \(x_2 \) signallar TO'O'1 va TO'O'2 lardan MQQga uzatiladi. Agar MQQ ga \(x_0 = 1 \) signal berilsa, TO'O'laridan mos ravishda olinayotgan \(x_1 = 1 \) va \(x_2 = 0 \) signallar MQQga yuboriladi, IFBT1 ga yuborilayotgan signal

\[
y_1 = (x_0 + x_1) + x_2 = (1 + 1) + 0 = 0
\]

bo'ldi, bu esa TK1 komplektini ishga tushishga buyuriladi. IFBT2 ga MQQ dan yuborilayotgan signal

3 — A.T. Imomnazarov
\[Y_2 = (x_0 + x_1) + x_1 = (0 + 0) + 1 = 1 \]

bo'lib, TK2 ning o'chirishga signal beradi.

Agar \(x_0 = 1 \) bo'lib, \(x_1 = 0 \) va \(x_2 = 1 \) signallar MQQga yuborilsa, u holda IFBT1 ga yuborilayotgan boshqarish signali

\[Y_1 = (x_0 + x_1) + x_2 = (1 + 0) + 1 = (0 + 0) + 1 = 1 \]

bo'lib, TK1 komplektni o'chirishga signal bo'ladi, IFBT2ga yuborilayotgan boshqarish signali

\[Y_2 = (x_0 + x_1) + x_1 = (1 + 1) + 0 = 0 + 0 = 0 \]

bo'lib, TK2 komplektni ishga tushirishga buyuradi.

2.13- rasm. Alohindan boshqariladigan RTO'li elektr yuritmaning funksional sxemasi.

Shunday qilib, RTO'larini alohida boshqarish usulining asosiy bo'g'ini bo'lgan MQQ quyidagi vazifalarni bajaradi:

1) vazifalovchi kuchlanish bilan testkari bog'lanish kuchlanishi ayirmasi \(\Delta U_p \) ning ishorasiga qarab tiristor komplektlarining qaysi birini ishlatisht kerakligini aniqlaydi;

2) ishlayotgan tiristor komplektida tokning mavjudligi asosida ishlamayotgan tiristor komplektida tok bo'lmalsligini hisobga olib, uni ishga tushirish uchun boshqarish signallarini yubormaslik;
3) Ishlayotgan tiristor komplektidan tok o‘tayotganida uning boshqaruv
zanjirlarida impuls uzilishiga yo‘l qo‘yimaslik;
4) Bir tiristor komplektining o‘chishida va ikkinchi komplektning ishga
tushish oralig’ida vaqtinchalik pauza hosil qilish.

2.6. IMPULS KENGLIGI BOSHQARILADIGAN
O‘ZGARMAS TOK O‘ZGARTIKHLARI

Kichik quvvatli (bir necha kilovatgacha bo‘lgan) o‘zgarmas tok elektr
yuritmalarida uzluksiz xarakterdagi o‘zgarmas tok kuchlanishi kengligi boshqa-
riladigan impulslarga o‘zgartirilib, elektr motorlarning boshqarishni keng
qo‘llash taraqqiy etmoqda. Bunday turgan o‘zgartikchlar asosini im-
pulsnings amplituda va chastota qiymatlar o‘zgarmas qoldirilib, faqat kengli-
gini o‘zgartiradigan modulator (1KM) tashkil etadi. Impuls kengligi boshqa-
riladigan o‘zgartikchlar (IKBO‘) TO‘larga qaraganda tezlikni rostlash oralig‘i
kattaroq, ya’ni \(D = \frac{(2000 \div 6000)}{1} \) yuqori darajada bo‘lishi bilan motor-
ing tok bo‘yicha yuklanishi katta bo‘lishi va tarmoq kuchlanishining shakliga
ta’siri kam bo‘lishi bilan ijobiy farqlanadi.

IKBO‘ning funksional sxemasi 2.14- a rasmda tasvirlangan bo‘lib,
yuklanishdagi kuchlanishing o‘rtacha qiymati quyidagi ifoda yordamida
aniqlanadi:

\[
U_{o^*RT} = \frac{\tau}{T_k} U_T = U_T \gamma
\]

(2.19)

bunda: \(U_T \) - manba kuchlanishi; \(\gamma = \frac{\tau}{T_k} \) - impuls chuqurligi; \(T_k \) - kom-
mutatsiya davri; \(\tau \) - kommutatsiya davrining ishchi qismi.

(2.19) tenglamadan ko‘rinib turibdiki, yuklanishdagi kuchlanishing
\(U_{o^*RT} \) qiymati \(U_T = \text{const bo‘lganidagina impuls chuqurligiga bog‘liq bo‘ladi}
(2.14- d rasm).

IKBO‘ning elektromexanik tizim elementi siftidagi blok-rizim ko‘rinishdagi
modeli ikki blokdan, ya’ni B1 bloki - impuls kengligi modulatori (IKM)dan
va B2 bloki - kommutator (K)dan iborat bo‘ladi (2.14- b rasm).

IKMning vazifasi \(U_b \) boshqaruv kuchlanishing qiymatiga mos keluv-
chi kenglikdagi impulslarini hosil qilishdir. Boshqariladigan kenglikdagi im-
pulslarini hosil qilishning ikki xil usuli mavjud bo‘lib, ulardan biri faza
oralig‘i boshqariladigan ikki to‘g‘ri burchakli impulslarini qo‘shish asosida

www.ziyouz.com kutubxonasi
2.14- rasm. Impuls kengligi boshqariladigan o'zgarmas tok o'zgarikichining funksional sxemasi (a), blok-tizim modeli (b) va kuchlanishlar diagrammasi (d).

(2.15- a rasm); bunday qurilma to'g'ri burchakli kuchlanishlarni hosil qiluvchi MB1 va MB2 multivibratorlardan, faza siljitish qurilmasi FSQ dan hamda chiqish kuchlanishlarni qo'shuvchi va to'g'rilovchi qurilma TQQ dan iborat bo'лади.

2.15- b rasmda kerakli impuls chuqurligiga ega bo'lgan natijaviy impulslarni hosil qilinishi kuchlanishlar diagrammasi orqali tasvirlangan.

Ikkinchi usul ma'lum chastota va shaklga ega bo'lgan tayanch kuchlanishi U_TK bilan boshqaruv kuchlanishi U_b ni qo'shish natijasida impuls kengligi boshqariladigan signal hosil qilinadi. 2.16- rasmda shunday impuls kengli modulatori IKM ning funksional sxemasi tasvirlangan bo'lib, bunda TKG - tayanch kuchlanish generatori, SQ - solishtirish qurilmasi, BQ - bo'sag'a qurilmasi, BITQ - boshqariluvchan impulslarini tashkil qiluvchi qurilma. Tayanch kuchlanishi generatori TKG dan chiqqan U_{TK} SQA boshqaruv kuchlanishi U_b bilan taqqoslanilib, ularning ayirmashi BQga uza-tiladi. U_{TK} ning shakli arrasimon bo'lib, chastotasi $f_{TK} = I/T_K$ ga teng bo'лади. Agar BQ dagi signal $U_{TK} - U_b > 0$ bo'lsa, BQ dan chiqayotgan signal maksimal darajada (<bir> signal) bo'лади va bu signallar BITQga yuboriladi hamda TKGning signali bilan taqqoslanilib, kommutatorni boshqarish uchun impulslar U_{IKM} ishlab chiqaradi.
2.15- rasm. Multivibratorli IKM ning funksional sxemasi (a) va kuchlanishlar diagrammasi (b).

2.16- rasm. Tayanch kuchlanish generatorli IKM ning funksional sxemasi.

Kommutatorlardi tiristor yoki tranzistorlar kalit rejimida ishlab, ularning ishlash taktlari IKMdan chiqqan signalarning ko'rsatkichlariga bog'liqdir. Tayanch kuchlanishi shakli arrasimon bo'lganda, IKBO'ning o'rtacha kuchlanish tavsifi to'g'ri chiziqli funksiyani beradi:

\[U_{o'rl} = \gamma U_T = \frac{U_b}{U_{TK\ max}} U_T = k_{o'z} U_b, \]

bunda: \(k_{o'z} \) - IKBO'ning kuchaytirish koeffitsiyenti.

Noreversiz IKBO‘ning ishchi sxemasi sodda bo‘lib, tiristor kalit V1 dan va diod D1 dan iboratdir (2.17- a rasm). Yuklagich Z_{yu} dagi kuchlanish quydagi formula yordamida aniqlanadi:

$$U_{O'RT} = \frac{1}{T_k} U_T t_{ul} = \gamma U_T.$$ (2.21)

D1 ning vazifasi kommutatorning $T - t_{ul}$ vaqt oralg‘ida, ya’ni o‘chiq holatida o‘zinduxiya EYuK ta’sirida yuklanishda tokning uzilib qolishiga yo‘l qo‘ymaslikdan iborat. Reversiz IKBO‘ning ishchi sxemasi ko‘prik sxema asosida bo‘lib, kalitlarning kommutatsiyasi turli qonuniyatlar asosida bajarilishi mumkin (2.17- b rasm). Tiristorlarni simmetrik boshqarish usuli bilan ochganimizda t_{u} vaqtida tiristorlar jufti V1 va V3 ishlab, V2 va V4 tiristorlar o‘chirilgan bo‘ladi. Bunday kommutatsiya yuklanishda har xil ishorali impuls EYuK hosil qiladi:

$$U_{O'RT} = \frac{1}{T_k} (U_T t_{ul} - U_T t_0) = U_T (2\gamma - 1)$$ (2.22)
va bu reversiv IKBO‘ ning o‘rtacha kuchlanishini beradi.

38
2.17- rasm. IKBO'ning noreversiv (a) va reversiv (b) kuch sxemalari.

Bunday kommutatsiya usulida ishlayotgan IKBO'ning kuchlanishi $U_{o:RT} = 0$ bo'lganida yuklanishdan o'jayotgan tok uzilib qolmaydi va o'zgartiqichning tashqi tavsif chiziqli xarakterga ega bo'ladi. Tok pulsatsiya darajasining yuqori bo'lishi IKBO'larging asosiy kamchiliklaridir.

Tiristorlarni nosimmetrik boshqarganimizda IKBO'ning chiqishidagi kuchlanish bir qutbli impluslardan iborat bo'ladi. Har qaysi tiristorli juft kalitlar $t_u + T_k$ vaqt oralig'ida va bitta tiristor kalitning boshqasiga nisbatan T_k davrga silishi vaqtida ulanishi bilan xarakterlanadi. Tiristorlarning navbat bilan ishlash tartibi quyidagicha: V1, V3 – V1 – V1, V3 – V3 – V1, V3 va hokazo t_u vaqt oralig'ida ikkala tiristor ulangan holda impuls EYuK hosil bo'lib, bir tiristor ulangan t_0 vaqt oralig'ida impuls EYuK hosil bo'ilmay balki o'zinduksiya toki ulangan tiristor va diod orqali yopiq kontur hosil qiladi. EYuK qutblurini o'zgartish uchun juft tiristorlar V2 va V4 ulanadi. Agar yuklanish vazifasini o'zgarmas tok motori bajarganda IKBO'ning muhim ko'rsatkichi bo'lgan tok pulsatsiyasini aniqlaymiz

$$\Delta I_n \approx \frac{U_T}{R_{ya} k T_{ya} f_k} \gamma (1 - \gamma),$$ \hspace{1cm} (2.23)

bunda: R_{ya} – motor yakor zanjiring aktiv qarshiligini, Om.

T_{ya} – yakor zanjiring elektrnomagnet vaqt doimiyligi, s; k – sxema koeffitsiyenti; bir qutbli EYuK impulslar uchun $k = 1$, har xil qutbli EYuK impulslar uchun esa $k = 0,5$.

(2.23) tenglamadan ko'rinib turibdiki, nosimmetrik kommutatsiya rejimida ishlayotgan IKBO'ning tok pulsatsiyasining darajasini simmetrik kommutatsiya rejimga nisbatan ikki marta kam bo'ladi va shu bilan birga IKBO'ning nosimmetrik qonuniyati bilan kommutatsiyaluvchi sxemalarning afzaliiliklari yaxqol ko'rinadi.
1. Yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlariga qanday o’zgartkichlar kiradi?
2. Yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichining blok sxemasi qanday bloklardan tashkil topgan?
3. Yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlarining qanday kuch sxemalari amaliyotda keng qo’ilaniladi?
4. Yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlarining impuls-faza boshqaruv tizimi qanday qurilmalardan tashkil topgan?
5. Impuls-faza boshqaruv tizimida qanday ko‘rishdagi tayanch kuchlanishlari qo’ilaniladi?
6. Nima uchun tayanch kuchlanishi arrasimon bo’lganda impuls-faza boshqaruv tizimining kuchaytirish koeffitsiyenti chiziqli xarakterga ega bo’ladi?
7. Yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlarining boshqaruv tavsifi qanday quriladi?
8. Yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlarining tashqi tavsifi qanday quriladi?
9. Reversiv yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlarining qanday kuch sxemalari amaliyotda keng qo’ilaniladi?
10. Reversiv yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlarini boshqarishda qanday usullardan foydalaniladi?
11. Reversiv yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlarini kelishilgan birgalikda boshqarishing qanday afzalliklari va kamchiliklari bor?
12. Reversiv yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlarini kelishilmagan birgalikda boshqarishing qanday afzalliklari va kamchiliklari bor?
13. Reversiv yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlarini alohida usulda boshqarilganda mantiqiy qayta ulash qurilmasi qanday vazifani bajariadi?
14. Reversiv yarimo’tkazgichli boshqariluvchi o’zgarmas tok o’zgartkichlarini alohida boshqarishing qanday afzalliklari va kamchiliklari bor?
15. Impuls kengligi boshqariladigan o’zgarmas tok o’zgartkich qanday asosda ishaydi va uning asosiy bloki qanday blok?
16. Reversiv impuls kengligi boshqariladigan o’zgarmas tok o’zgartkichining kuch sxemasi qanday ishaydi?
3-bob. BOSHQARILUVCHI O‘ZGARUVCHAN TOK O‘ZGARTKICHLARI

3.1. TIRISTORLI KUCHLANISH ROSTLAGICHI

O‘zgaruvchan tok elektr yuritmalarida, xususan asinxron elektr yuritmalarida stator chulg‘amidagi kuchlanish qiymatini o‘zgartirish asosida tezlik va momentlarni rostlovchi tizimlarini qo‘llash mumkin. Agar tezlikni rostlamoqchi bo‘lsak, tezlik bo‘yicha teskari manfiy bog‘lanishli yopiq tizim hosil qilishi va asinxron motor statoridagi kuchlanishni tiristorli kuchlanish rostlagichi (TKR) yordamida o‘zgartirishimiz kerak bo‘ladi. 3.1- rasmda TKRli asinxron elektr yuritmaning funksional sxemasi tasvirlangan. Agar asinxron elektr yuritma stator chulg‘amidagi kuchlanishni to‘g‘ridan-to‘g‘ri tezlikka bog‘liq bo‘lmagan holda TKR yordamida boshqorganimizda, asinxron elektr yuritma momentni rostlovchi elektr yuritma sifatida ishlaydi (3.2- rasm, 1–5- tavsiylar).

![Diagram](image)

3.1- rasm. TKRli avtomatlashtirilgan asinxron elektr yuritmaning funksional sxemasi.

3.1- rasmda tasvirlangan avtomatlashtirilgan asinxron elektr yuritmaning TKR kuch sxemasi dagi tiristorlarning ochilishini boshqarish impuls-
faza boshqaruv tizimi kirish qismiga berilayotgan boshqarish kuchlanishi $U_b = U_d - e_{TG}$ tenglama asosida aniqlanadi, bunda, U_d — tezlikni rostlash tizimiga beriladigan vazifalovchi kuchlanish; e_{TG} — taxogeneratorning EYuK.

3.2- rasmda vazifalovchi kuchlanish U_d ning bir necha qiymatlar uchun avtomatlashtirilgan asinxron elektr yuritma yopiq tizimining tezlik tavsiflari keltirilgan bo'lib va bu usulda tezlikni rostlashda tezlikning rostlash diapazoni 10 : 1 dan ortmaydi.

3.2- rasm. TKRli avtomatlashtirilgan asinxron elektr yuritmaning mexanik tavsiflari.

Hamma fazalarida yuklanishning qiymatini simmetrik taqsimlangan deb qaraganimizda uch fazali TKRni bir fazali ekvivalent sxema bilan almash-tirish mumkin (3.3- rasm). Agar V1 vaV2 tiristorlarni ideal va yuklanishing xarakteri aktiv-induktiv deb qabul qilsak, u holda Z_{yuk} dan o‘tayotgan tok

$$i_{o'gr} = \frac{U_m}{Z_{yuk}} \sin(\omega t - \varphi)$$

(3.1)

bo‘lib, bunda: U_m — tarmoq kuchlanishning amplituda qiymati, V; $Z_{yuk} = \sqrt{R_{yuk}^2 + (\omega L_{yuk})^2}$ — yuklanishning kompleks qarshiligi, Om;
$$\varphi = \arctg \frac{\omega L_{yuk}}{R_{yuk}}$$ — quvvat koeffitsiyenti.
3.3- rasm. TKRning bir fazali ekvivalent sxemasi.

Agar boshqarish burchagi α ning qiymati φ ga teng bo‘lsa, u holda har yarim davrda tiristorlar navbati bilan ochilib turishi natijasida yuqanalishdagi tok turg‘un tok ($i_{turg'}$)ka teng bo‘ladi (3.4- rasm, shtrixli chiziq). Agar $\alpha > \varphi$ bo‘lsa, u holda yuqanalishdan o‘tayotgan tok $\alpha - \varphi$ vaqtga kechikadi, kuchlanish va tok tavsiflarida toksiz pauza yuzaga keladi. Har bir yarim davrda yuqanalishdagi tokning qiymati turg‘un va ozod toklarning yig‘indisidan iborat bo‘ladi:

$$i_{yuk} = i_{turg'} + i_{ozod},$$

bunda

$$i_{ozod} = I_{ozod}e^{-(R_{yuk} / L_{yuk})} = I_{ozod}e^{-(\omega t - \alpha) / ig\varphi}. \quad (3.3)$$

Tiristorlarning o‘tkazuvchanlik burchagi λ, α va φ larga bog‘liq bo‘lib, i_{yuk} ni topishdagi $\omega t = \alpha + \lambda$ ning o‘rniga qo‘yish bilan aniqlanadi:

$$\sin(\alpha + \lambda - \varphi) - \sin(\alpha - \varphi)e^{-\lambda / ig\varphi} = 0. \quad (3.4)$$

O‘tkazuvchanlikning chegaraviy qiymatlari $\alpha = \varphi$ bo‘lganida π ga va $\alpha = \pi$ bo‘lganida esa nolga teng bo‘lishi shuni ko‘rsatadiki, α ning φ dan to π gacha o‘zgarishi, yuqanalish kuchlanishi yarim davrining o‘rtacha qiymati eng katta qiymati $\frac{2}{\pi}U_m$ (tiristordagi kuchlanish pasayishi hisobga olinmaganda) to 0 gacha o‘zgarishi mumkin.

3.5- rasmda uch fazali nol simsiz TKRning tavsiflari keltirilgan bo‘lib, bunda boshqarish burchagi α qayd etilgan yuqanalishning fazasi φ esa o‘zgaruvchan ko‘rsatkich sifatida qaraladi.

43
3.4- rasm. TKR chiqishidagi kuchlanish va toklarning shakllanishi tavsiflari.

3.5- rasm. Uch fazali nol simli TKR ning kuchlanishni rostlash tavsiflari.

TKR ning impuls-faza boshqaruv tizimi TO' IFBTdan prinsipial farq qilmaydi, ishlash prinsipi vertikal prinsipga asoslangan. Blok sxemasi xuddi 2.6- a rasmda tasvirlangan tayanch kuchlanishi generatori TKGdan, faza siljitish qurilmasi FSQdan hamda impuls generatori IGdan tashkil topgan. 3.1- rasmda tasvirlangan TKRli avtomatlashtirilgan asinxron elektr yurit-madagi tiristorlarning tartib sonlari tiristorlar ishlashining ketma-ketligini anglatib, GIning uch fazali ko'prik sxemali to'g'rilagich uchun mo'ljallangan
tiristorlarni boshqarish uchun ishlab chiqarilayotgan impulsning tarqlish diagrammasi ham TKR ischi tiristorlarni boshqarishga mos keladi.

Asinxron motor uchun φ o'zgaruvchan ko'rsatkich bo'lib, odatda, $\varphi_{\min} \approx 20 - 30^\circ$ da $\varphi_{\max} \approx 90^\circ$ gacha o'zgarishi mumkin. $\alpha_{\min} = \varphi$ bo'lgani uchun boshqaruv burchagi yuqinlash toki fazasi siljishing funksiyasi bo'lib o'zaradi, bu esa albattra IFBTni murakkablashtirishga olib keladi. Agar α_{\min} ni o'zgarmas qiymat deb qaralsa va $\alpha_{\min} = \varphi_{\min}$ bo'lsa, u holda $\varphi > \varphi_{\min}$ qiymatlarida impulsning kengligi $\varphi - \alpha_{\min}$ bo'lishadi va TKR da bir yarim davrli ish rejimi vujudga keladi. Haqiqatdan ham $\lambda > \pi$ bo'lib, VI tiristordan tokning o'tishi vaqtli yarim davrdan ko'pdir (3.4- rasmga qarang). $\alpha + \pi$ ga teng vaqtida V2 tiristor ochilishi kerak, ammo VI dan tok o'tishi to'xtamaydi va V2 ning ochilishiga yo'li qo'ymaydi. VI dan tokning o'tishi vaqtga tugaganda V2 ga berilayotgan boshqaruv impuls o'chadi va V2 yopiladi. Shunday qilib, $\alpha_{\min} < \varphi$ bo'lishi TKRning normal ishlashi uchun impulsning kengligi $\varphi_{\max} - \alpha_{\min}$ bo'lishi shart ekanligini anglatadi va bu esa asinxron motorlar uchun $60 - 70^\circ$ ni tashkil etadi. No'l simsz uch fazali TKRlarning uxlusiz tok rejimi uchun $\alpha > \varphi$ bo'lgan holda bir paytda ikki tiristor ishlaydigan rejim uchun impulsning kengligi 60° dan keng bo'lishi talab etiladi.

3.2. YARIMO'TKAZGICHLI BILVOSITA CHASTOTA O'ZGARTKICHLAR

Ta'minlovchi kuchlanishning chastotasini o'zgartirib, asinxron motorning tezligini rostlash, tezlikni rostlash usullari ichida iqtisodiy jihatdan eng samarali usuldir. Tezlikni chastotani o'zgartirib rostlaganimizda butun tezlikni rostlash diapazoni oralig'ida asinxron motoring sirpanishi uncha katta bo'limagan o'zgarmas qiymatda qolishi natijasida motoring isrof quyvati katta bo'lmaydi. Tezlik chastotani o'zgartirib boshqariladigan asinxron elektr yuritmalarning statik va dinamik xususiyatlari o'zgarmas tok elektr yuritmlari bilan deyarlari monand bo'lishadi. Rotor chulg'amli qiisa tutash-tirilgan asinxron motorlarning o'zgarmas tok motorlarga nisbatan 1,5-2 marta yengil bo'lishi va deyarlari 3 marta arzonligini hisobga oladigan bo'lsak, unda chastota bo'yicha boshqariluvchi asinxron elektr yuritmalarning sanoatda kelajakda ishlatilishi imkoniyatlarini hali juda keng ekanligi yaqqol ko'rinadi.
Birinchi chastota o‘zgartikchilar elektromexanik qurilmalar asosida yuzaga keldi (3.6- rasm).

3.6- rasm. Elektromexanik chastota o‘zgartikchning blok sxemasi.

Keyingi paytda takomillashgan yarimo‘tkazgichlarning ishlab chiqarila boshlanishi va ular asosida o‘zgartikchlar texnikasining rivojlaniishi nati-jasida ishonchlilik darajasi yuqori bo‘lgan chastota o‘zgartikchlar tiristor va kuch tranzistorlar bo‘yicha yaratilmoqda. Tiristorli va tranzistorli chastota o‘zgartikchlar (TChO‘) ikki guruhga bilvosita va bevosa chastota o‘zgartikchlarga bo‘linadi.

Bilvosita TChO‘larda tarmoqdan kelayotgan o‘zgaruvchan tok kuchlanishi tiristorli o‘zgartikch (TO‘)da to‘g‘rilanib, avtonom invertor (AI)ga uzatiladi va u yerda o‘zgarmas tok kuchlanish chastotasi rostlanadigan
o‘zgaruvchan tok kuchlanishiga o‘zgartiriladi. 3.7- rasmda shunday TChO‘ning blok sxemasi keltirilgan bo‘lib, bunda TO‘ boshqaruvchi tiriistorli o‘zgarkich, TO‘BT uning boshqarish tizimi, ya‘ni IFBT, rostlash bloki RBning vazifasi chastota rostlashning qayshi qonuniyatga amal qilinayotganiga qarab TChO‘ning statik va dinamik rejimlarida kuchlanish hamda chastota o‘zgarishini o‘zaro moslashtirishdan iborat.

![Diagram](image)

3.7- rasm. Tiriistorli bilvosita chastota o‘zgartikching blok sxemasi.

Bilvosita TChO‘larda o‘zgarmas tokli zvenoning bo‘lishi, avtomom invertrorning chiqishidagi chastotaning ham yuqoriga va ham pastga qarab keng diapazonda rostlashga imkon beradi, bu bilvosita TChO‘ning asosiy afzalligi bo‘lib, bu turdagi TChO‘larning ishlab chiqarishda keng qo‘llanilishiga olib keladi.

TO‘ning tok manbayi (TM) yoki kuchlanish manbayi (KM) rejimida ishlashiga qarab TChO‘ning avtomom inverterlari ham tok avtomom inverteri (TAl) yoki kuchlanish avtomom inverteri (KAl) rejimlarida ishlash mumkin. TChO‘ invertroring KAl rejimida TO‘ning ichki qarshiligining kichik qiymatlari bo‘lishi, invertorga kelayotgan kuchlanishning yuklanish tokiga bog‘liq bo‘lmaslikka olib keladi. Agar TO‘ ning ichki qarshiligini kichik bo‘lmasa va uning ta’siri sezilarli bo‘lsa, u holda \(U_d = \text{const} \) shart TO‘ning kuchlanish bo‘yicha kuchli manfiy teskari bog‘lanishi oqrali amalga oshiriladi. \(U_d \) qutblari o‘zgarmas bo‘lgan uchun yuklanish zanjiridagi o‘zgaruvchan tok tarmoqga energiyaning uzatilishi faqat \(I_d \) ning yo‘nalishi o‘zgarilagadagina mavjud bo‘la oladi, bu esa yana qo‘shimcha tiriistorlar komplekti bo‘lishini taqozo qiladi va bu KAlli TChO‘larning asosiy kamchiliklaridandir.

TChO‘ning TAlli variantida \(I_d \) ning doimiyligi yuklanish kuchlanishi- ga, ya‘ni asinxron motorning tezligiga bog‘liq bo‘lmasli kerak. \(I_d = \text{const} \)
shartining bajarishida TO‘ning ish rejimi tok manbayi rejimi bo‘lib, bu rejim o‘zgarmas tok zanjiriga katta induktivlikka ega reaktorni ulashni va teskari bog‘lanish konturi bo‘lishini taqozo qiladi. Energiyani tarmoqqa uzatish jarayonida \(I_d \) yo‘nalishning o‘zgarmasligi hisobga olinsa, TO‘ kuchlanishning qutblari o‘zgarishi lozim. Bu shart reversiv bo‘Imagan TO‘ning xemasida tiristorli o‘zgartikchning tarmoqqa ergashuvchi invertor rejimiga o‘tkazish asosida amalga oshiriladi. TAIli TChO‘ning asosiy afzalligi bir tiristor komplektida energiyaning tarmoqqa uzatish imkoniyati borligidir.

Asinxron motorning turg‘un ish rejimlaridagi tezligini berilgan ko‘rsatkichlar kattaliklarida ushlab turish uchun albatta tezlik yoki kuchlanish bo‘yicha teskari bog‘lanishlarning bo‘lishi shortligi TAIli TChO‘larning asosiy kamchiliklardan biri hisoblanadi.

Avtonom invertorlarning ish rejimlari qanday bo‘lishidan qat‘iy nazaro ularning boshqarish tizimlari 3.8-rasmda tasvirlanganidck funksional xema madan iborat bo‘ladi.

![Diagram](image)

3.8-rasm. Avtonom invertor boshqaruv tizimining blok xesmasi.

AIiTning tarkibidagi vazifalovchi generator (VG) uzuksiz boshqaruv kuchlanishi \(U_{bf} \) ni chastotasi \(f_{vaz} \) bo‘lgan to‘g‘ri burchakli signalga o‘zgartiradi, impuls taqsimlagich (IT) esa ushbu signalni faza va chastotasi bo‘yicha uch fazali impulslar tizimiga moslashdirib, invertor tiristorlarning olti boshqarish kanallari bo‘yicha taqsimlaydi. Impuls tashkil qiluvchi qurilma (ITQ) ning vazifasi ITdan chiquytgan impulslarini tiristorlarning ochilishiga quvvats, shakli va impuls uzunliklarini mos holga keltirishdir.

Hozirgi paytda AIiTlarni yaratishda mikroelektronika va mikroprotsessor tizimlari asosida keng qo‘llanilayotganligi sababli ularning og‘irlik va o‘lchamlari ixchamlashib bormoqda, yig‘ish va sozlash texnologiyasi ham soddalashib, ishchiliklar davri esa ortib bormoqda.
3.3. AVTONOM INVERTORLAR

Asinxron motorlarning tezligini stator chulq’amiga berilayotgan kuchlanish (yoki tok) chastotasini o’zgartirib tezligi rostlanadigan avtomatlashtirilgan elektr yuritmalardagi TChO’ avtonom inverterlarining ko’prik kuch sxemali turlari keng qo‘llaniladi.

3.9- rasmda kuch sxemasi shartli ko’prik sxema bo‘lgan avtonom invertorning kuch sxemasi keltirilgan bo‘lib, undagi V1–V6 yarimo’tkazgichlarini ochish va yopish jarayonlarini boshqarish boshqaruv signalrini orqali amalga oshiriladi, ya’ni yarimo’tkazgichlar to‘liq boshqariluvchanch deb qaratiladi. Kalit rejimida ishlaydigan tranzistorlar va sun’iy kommunatsiya zanjirli tiristorlar to‘liq boshqariluvchanch yarimo’tkazgichlar deyiladi.

3.9- rasm. Ko’prik kuch sxemali avtonom invertorning sxemasi.

Invertorga aktiv yuklanish ulangan holni ko’rib chiqamiz. 3.9- rasmdagi tiristorlarning tartib soni kuchlanishlar diagrammasidagi tiristorlarning navbatma-navbat ochilishiga mos keladi (3.10- rasm).

Sxemadagi tiristorlarning qayta ulanishi chiqish kuchlanishi chastotasi davrining har 1/6 qismida sodir bo‘ladi. Bunday ishchi sxemaning ikki ish rejimi bo‘lishi mumkin: tiristor chiqish kuchlanishi chastotasining 1/2 davri oralig‘ida ulangan bo‘lishi, ya’ni tiristorlarning o’tkazuvchanlik burchagi $\lambda = 180^\circ$; tiristor chiqishi kuchlanishi chastotasining 1/3 davri oralig‘ida ulangan bo‘lishi, ya’ni $\lambda = 120^\circ$. Birinchi holda bir vaqtning o‘zida birda-niga uchta tiristor tok o‘tkazsa, ikkinchi holda esa ikkita tiristor bir vaqtning o‘zida tok o‘tkazadi.

3.10- a, b rasmlardagi kuchlanishlar diagrammasi invertorning chiqish qismiga aktiv yuklanish ulangan hol uchun to‘g‘ri bo‘lib, agar yuklanishning xaraktleri aktiv-induktiv bo‘lsa, u holda elektromagnit jarayonlarning kechishi ancha murakkab bo‘ladi va ularning tahlilini asoslashda barcha turgadi avtonom inverterlarni kuchlanish avtonom inverterlari (KAI) va tok avtonom invertorlari (TAI) guruhlarga bo‘lib qarash maqsadga muvofiq bo‘ladi.

4 — A.T. Imomnazarov

49
3.10- rasm. Tirimitorlarning o‘tkazuvchanlik burchaklari $\lambda = 180^\circ$ (a) va $\lambda = 120^\circ$ (b) bo‘lgandagi avtonom inverterning kuchlanishlar diagrammasi.

Kuchlanish avtonom inverterning asosiy shartlaridan biri ishchi sxemasidagi tiristorlar to‘liq boshqariluvchan bo‘lishi kerak. Ko‘pgina hollarda KAIning chiqishidagi kuchlanishni yuqullanishga mos ravishda rostlash talab etiladi. KAIning chiqishidagi kuchlanishni kuch sxemasidagi tiristorlarni ma’lum ketma-ketlikda ulash va ochish natijasida rostlash mumkin. KAI chiqish kuchlanishini ma’lum uch usulda rostlash mumkin: 1) ta’minot manbai zanjirida rostlash; 2) chiqish zanjirida rostlash; 3) inverterning ichki vositalari yordamida rostlash.

50
Birinchi usul — KAI chiqishidagi kuchlanish uning kirish zanjiriga ulangan boshqariluvchi o‘zgarmas tok o‘zgartikchi, ya’ni boshqariluvchi to‘g‘rilagich yordamida amalga oshiriladi.

Ikkinchi usul — KAI bilan yuklanish oralg‘iga qarama-qarshi — parallelni ulangan tiristorlar juftligi yordamida amalga oshiriladi.

KAILarning chiqish kuchlanishlarini impuls kengligini o‘zgartirib rostlashda uchinchi usuldan foydalaniladi.

KAI chiqishidagi kuchlanishning talab etilgan darajadagi ko‘rinishga ega bo‘lishi uchun kuch sxemadagi tiristorlarni ma’lum qonuniyatlar asosida ochish va yopish kerak bo‘ladi. Bu qonuniyatlarning majmuasi tiristorlarni ochish va yopish algoritmlari (OYoA)ning asosini tashkil etadi. KAILarning kuch sxemalaridagi tiristorlarning ochilishi va yopilishi ularning boshqarish tizimlarida amalga oshiriladi hamda shuning uchun ham tiristorlarni ochish algoritmi (OA) va ularni yopish algoritmi (YoA) asosida invertor boshqarish tizimining ishlashi shakillanadi.

3.12- a rasmda bir fazali KAILning shartli sxemasi berilgan bo‘lib, chiqishidagi kuchlanishni rostlash birinchi yoki ikkinchi usul bilan amalga osirilishi mumkin.

3.11- rasm. Bir fazali KAAlning sxemasi (a) va uning kuchlanish va tok diagrammasi (b).
V1, V3 va V2, V4 tiristorlarning davriy juft ulanishi va o‘chishi yuklanishdagi kuchlanish U_{yuk} ning shakli to‘g‘ri burchakli, amplitudasi manba kuchlanishiga teng bo‘lishini taqozo qiladi va yuklanishdan o‘tayotgan tokning shakli eksponenta bo‘laklaridan iborat bo‘ladi (3.11- b rasmga qarang). Agar V1 va V3 tiristorlar o‘chirilib, V2 va V4 tiristorlar ulanadigan bo‘lsa, u holda aktiv-induktiv yuklanishdan o‘tayotgan tokning yo‘nalishi ulangan tiristorlarning o‘tkazuvchalanligiga nisbatan teskari bo‘ladi va bu tokni yo‘nalirish uchun V1–V4 tiristorlarga qarama-qarshi yo‘nalishda parallel VD1–VD4 diodlar ulanganadir.

Yuklanishdagi tok va kuchlanishning ishoralari teskari bo‘lgan holda u yoki bu juft diodlar ochiladi. Shunda manbadan kelayotgan tok i_d ishorasini o‘zgartirib E kuchlanishga qarama-qarshi yo‘nalishda oqadi. Agar manba bir tomonli o‘tkazuvchanlikka ega, ya’ni to‘g‘rilagich bo‘lsa, u holda manbaga parallel kondensator ulanishi kerak. Invertordon tok manbagaga qarab yo‘nalganida kondensator zaryadlanadi va tok manbadan yo‘nalganida esa zaryadsizlanadi. Bu kondensatorning sig‘imi, manba kuchlanishi pulsatsiya-

3.12- rasm. Uch fazali KAI chiqish kuchlanishini impuls kengligini o‘zgartirib rostlash jarayonidagi tiristorlarning holatlari, liniya (a) va faza kuchlanishlari (b) o‘zgarishlari diagrammalari.
si sezilarsiz darajada bo‘lishini ta’minlashi uchun yetarli darajada qiymatga ega bo‘lishi kerak.

KAI chiqish kuchlanishini impulsli boshqarish usulini tirishtirning o’tkazuvchanlik burchagi $\lambda = 180^\circ$ bo‘lgan hol uchun ko‘rib chiqamiz.

Tirishtirning o’tkazuvchanlik burchagi $\lambda = 180^\circ$ bo‘lganida bir vaqtida uchta tistor ishlaydi va bu holda kuchlanishning shakli yuklanishga deyarlari bog‘liq bo‘lmaydi.

3.12- a rasmdan ko‘rinib turibdiki, bir paytda uchta tirishtirning ochilishini va interval o‘tishi bilan yopilishini ta’minlaydigan impulslar OYoA vositasida amalgal oshiriladi. Har bir tirishtirning ochilib turish burchagi α ning rostlanishi natijasida chiqishdagi kuchlanish impulsi kengligi o‘zgarir.

Tok avtomon invertori to‘liq bo‘lmagan boshqariluvchisi zararlanishga yarimotko‘laqchilarda bajarlishi mumkin (3.13- a rasm). TA1 yuklanishga parallel ulangan kondensator C ning vazifasi, bir juft tistor ulangan holatda bo‘lganida ikkinchi juft tirishtirning o‘chiq holda bo‘lishi uchun ularga boshqariluvchanlik xususiyatlarnini tiklanish davri oralig‘ida manfiy kuchlanish bilan to‘siq hosil qilishdan iboratdir. Manbadan chiqayotgan tokning pulsatsiyasini kamaytirish maqsadida TA1ning kirish qismiga yetarli darajada induktivlikka ega bo‘lgan reaktor ulanadi. Agar kondensatorni ham yuklanishning bir qismi deb qaraydigan bo‘lsak, yuklanish tokning shakli to‘g‘ri burchakli shaklda bo‘ladi (3.13- b rasm). Yuklanishdagi kuchlanish shakli yuklanishning xarakteriga bog‘liqdir. Invertorning kirish qismidagi

3.13- rasm. Bir fazali TA1ning sxemasi (a) va uning kuchlanish va tok diagrammasi (b).
kuchlanishning manfiy ishorali qismi vaqt oralig‘ida tiristorlarning yopiq holatiga to‘g‘ri keladi.

Shunday qilib, KA larning asosiy afzalligi kuchlanishning yuklanishga bog‘liq emasligi, balki tiristorlar kommutatsiyasining tartibiga bog‘liqligidan iborat. TAllarda tiristorlar kommutatsiyasining tartibi tok shaklini belgilaydi, kuchlanishning shakli yuklanishning xaraktariga bog‘liq bo‘lganligi sababli invertorlarning chiqish tavsiflari 3.14- rasmda tasvirlanganidek bo‘lib, KA lning tashqi tavsifi absissa o‘qì I_{yuk} ga parallel bo‘ladi, ya‘ni U_{yuk} = E (1- egri chiziq). TAlning tashqi tavsifning matematik ifodasi quyldagi ko‘rinishga ega:

\[
U_{yuk} = \frac{EI_d}{I_{yuk} \cos \varphi} \approx \frac{E}{\cos \varphi},
\]

bunda: \(U_{yuk} \) va \(I_{yuk} \) — yuklanish kuchlanishi va tokining birinchi garmonik tashkil qiluvchilarining haqiqiy qiymatlari; \(\cos \varphi \) — yuklanishning quvvat koefitsiyenti. (3.1)dan ko‘rinib turibdiki, manba kuchlanishning o‘zgarmas qiymatida yuklanishdagi kuchlanish quvvat koefitsiyentiga teskari proportional bo‘ladi. Yuklanishda tok qiymatning kamayishi natijasida \(U_{yuk} \to E \) ham kamayadi, natijada yuklanishdagi kuchlanish qiymati ortadi (2- to‘g‘ri chiziq). Yuklanish tokining ortishi esa \(\cos \varphi \) ortishi va birga intilishi natijasida \(U_{yuk} \to E \) ga intiladi.

Sun‘iy kommutatsiya qurilmalari tiristorli avtonom invertorlarning zarur qismlaridan bo‘lishi bilan bir qatorda invertorning rostlash xususiyatlariini, energetik va ishonchliklilik darajalarini ko‘p jihatdan belgilaydi. Quyida amaliyotda keng qo‘llaniladigan sun‘iy kommutatsiya sxemalarining ikki xilini ko‘rib chiqamiz.
3.15- a rasmda tasvirlangan sun’iy kommutatsiya sxemasi bir ishchi tirisstorning ulanishi bilan ikkinchi ishchi tirisstorning o‘chirilishini ta’minlaydi.

3.15- rasm. Avtomom inverter kuch sxemalaridagi ishchi tirisstorning sig‘imli (a) va tebranma konturli (b) sun’iy kommutatsiya sxemalar longʼa ularning kuchlanish diagrammalari (d).

Tirisst V1 orqali tok o‘tayotganda kondensator C ning sxemada ko‘rsatilgan chap qobig‘i ‘—’ o‘ng qobig‘i ‘+’ ishora bilan manbaning kuchlanish qiymati E gacha qarshilik R_{yuk} orqali zaryadlanadi. Tirisst V2 ga ilk boshqarish signalini ochilishi uchun elektrodlariga berilganida kondensator-dagi kuchlanish tirisst V1ga teskari, ya’ni katodiga ‘+’ anodiga ‘—’ ishorali kuchlanish bilan to‘sadi, natijada V1 ning o‘chishiga olib keladi. So‘ng ra ulangan tirisst V2 va qarshilik R_{yuk} orqali kondensator C qayta zaryadlanadi. Kondensator-dagi kuchlanishning E dan 0 gacha tushish vaqtini oralig‘ida (3.15- d rasm) tirisst V1 ga teskari ishorali kuchlanish bilan to‘siladi va u o‘chadi. Kondensator C ning sig‘imini shunday tanlash lozim-ki, sxema bo‘yicha tirisstorning o‘chish vaqtini t_o tirisstorning pasportida ko‘rsatilgan t_o dan kam bo‘imaligi kerak, ya’ni

\[
C = \frac{t_o}{R_{yuk} \ln 2}. \tag{3.2}
\]

3.15- b rasmda ishchi tirisstorni o‘chirish uchun unga parallel oldindan zaryadlanib qo‘yilgan kondensator ulanadigan sun’iy kommutatsiya sxemasi tasvirlangan. Aytaylik, tirisst V1 ishlab turibdi, kondensator qobig‘laridagi
zaryad ishoralari sxemada ko’rsatilgandek bo‘lishin. Tiristor V1 ni o‘chirish uchun yordamchi tiristor V2 ga boshqaruv signali yuboriladi. Kondensator C tiristor V2 va qarshilik R_{yuk} orqali qayta zaryadlanadi, keyin tiristor V2 yoqiladi. Tiristor V1 ga ulanish uchun signal berilgandan keyin kondensator C ning tiristor V1, inductivlik L va diod D dan iborat tebranma kontur bo’yicha qayta zaryadlanish yuzaga keladi va natijada sxema yana yangi ulanish uchun tayyor holatga keladi (3.15- b rasm). Kondensator C ning sig’imi (3.1) ifoda bilan aniqlanadi. Induktivlik L ning vazifasi kondensator C ning kerakli darajada tez qayta zaryadlanishida tok amplitude si qiymatini chegaralashni ta’minlashdir. Bu sxemaning afzalligi shundaki, invertordagi har bir tiristorni boshqa tiristorlarning ish rejimidan qat’iy nazaro o‘chirish imkonini beradi, bu esa tiristorlarga deyarlari to‘liq boshqariluvchanlik xususiyatini beradi.

Hozirda kichik va o‘rtacha quvvali kuch tiristorlarning to‘liq boshqariluvchi turlari yaratilganligi sababli ularni ochish hamda yopish amallarini avtonom invertorlarning boshqaruv tizimlarida bajariladi va bu esa ularning kuch sxemalarini yanada soddashtirishga hamda avтонom invertorlarning ishonchli ishlash darajasini orttiradi.

3.16- rasmda tasvirlangan avtonom invertorning uch fazali ko‘prik sxemali eng sodda sxemalaridan biri bo‘lib, parallel tok avtonom invertori deb yuritiladi.

![Parallel tok avtonom invertorning sxemasi](image)

3.16- rasm. Parallel tok avtonom invertorning sxemasi.

Kondensator C_1, C_2, C_3 lar asinxron motor fazalariga parallel ulanib, kommutatsiya funksiyasini bajarish bilan bir qatorda motor iste’mol qilayotgan reaktiv quvvat o‘rnini to‘ldirish vazifasini ham bajaradi. Bunday invertorlarning yuklanish momenti deyarlari o‘zgarmaydigan va chastota rostlash diapazoni uncha katta bo‘lmagan asinxron elektr yuritmalarda qo‘llaniladi. Bu invertoring eng katta kamchiligini chastotaning kichik qiymatlarida (10 Hz va undan kichik) kondensatorlarning sig‘imi juda katta qiymatga ega bo‘lishi zarurligidir. Bundan tashqari asinxron motorga kon-

www.ziyouz.com kutubxonasi
densatorlarning parallel ulanishi elektr yuritmada yo‘qotishi qiyyin bo‘ladigan avtotebranishlarning paydo bo‘lishiga olib keladi. Bu sxema-
ning takomillashgan varianti kondensatorlar asinxron motor stator
chulg‘amidan D1–D6 diodlar orqali ajratilgan (3.17- rasm).

3.17- rasm. Kondensatorlar diodlar yordamida ajratilgan tok avtonom
invertorining sxemasi.

Kondensatorlar orqali kommutatsiya vaqtidagina tok o‘tib, boshqa paytda
ulardan tok o‘tmaydi. Bu esa kondensator sig‘imlarining chastota o‘zgarishidan
qat‘iy nazari anchagina kamaytirish imkonini beradi. Ammo kommutatsiya
jarayonida asinxron motoring stator chulq‘amida yig‘ilgan energiyaning
kondesatorlariga uzatilishi, kondensatorlarda kuchlanishning o‘sishiga olib
keladi. Shuning uchun kondensatorlarning sig‘imini shunday tanlashi kerakki,
bir tomondan bu kuchlanish o‘sishini ruxsat etilgan qiymatidan ortmasli-
gi, ikkinchidan esa kondensatorlarning qayta zaryadlash jarayoni uzayib
etmasligi kerak.

3.18- rasmdagi kuchlanish avtonom invertorining 3.17- rasmdagi tok
invertoridan farqi shundaki, bu sxemaga teskari ulangan D7–D12 diodlar-
ing ko‘priq sxemasi va kompensatsiyalovchi kondensator C ulangan.

Bu sxemadagi kondensatorlar faqt kommutatsiya jarayonida ishlaydi.
Shuning uchun ularning sig‘imlari yanada ham kam bo‘лади. L₁ va L₂ reak-
torlarning vazifasi kondensatorlarning teskari ulangan diodlari orqali tez
qayta zaryadlanishiga yo‘l qo‘ymaslikdir.

57
3.18-rasm. Fazalararo kommutatsiyali kuchlanish avtomon inverterining sxemasi.

3.17- va 3.18- rasmlarda keltirilgan inverterlarda bir fazadagi tiristorlarning o‘chirilishi ikkinchi fazadagi tiristorlarning esa yoqilishi bilan xarakterlangani uchun bunday inverterlarni fazalararo kommutatsiyali inverterlar deb ataladi.

3.19- rasmda tasvirlangan inverter sxemasida har bir tiristor uchun alohida o‘zing kommutatsiya zanjiri mavjudligi bilan oldingi qaralangan inverterlarning sxemalaridan farq qiladi.

D1–D6 diodlar 3.18- sxemadagidek asinxron motorning inverter sxemasiidan ajratish uchun xizmat qiladi, D7–D12 diodlar esa teskari ko‘priq sxemasi bo‘yicha o‘zgarmas kuchlanish manbayiga ulanadi. Bunday sxemali kuchlanish avtonom inverterlarda har bir tiristorlarning ochilishi va yopilishi boshqa tiristorlarning holatlaridan qat’iy nazar individual ravishda bo‘ladi hamda bu esa yuklanishdagi kuchlanish qiymatini rostlash imkonini beradi.

Bundan tashqari avtonom inverterlarda anod va katod zanjirlardagi tiristolar uchun umumiy bo‘lgan kommutatsiya kondensatorlari qo‘llanilgan sxemalar, inverter tiristorlari uchun umumiy yagona bo‘lgan kommutatsiya qurilmasiga ega bo‘lgan sxemalar va boshqa xilma-xil kommutatsiya qurilmali sxemalar ham amaliyotda keng qo‘llaniladi.

3.4. BEVOSITA CHASTOTA O’ZGARTKICHLAR

Tiristorli bevosita chastota o’zgartikchilarda tarmoqdan kelayotgan o’zgarmas chastotali va kuchlanishning haqiqiy qiymati o’zgarmas bo’lgan o’zgaruvchan tok kuchlanishi bevosita oraliq o’zgartikchlar siz chastota hamda kuchlanishning haqiqiy qiymati rostlanuvchan o’zgaruvchan tok kuchlanishiga o’zgartiriladi.

Bevosita TChO'ning ishlash prinsipi shu o’zgartikching bir fazali sxemasi asosida ko’rib chiqamiz (3.20- rasm).

Bu sxema o’zgarmas tok tiristorli o’zgartikching reversiv nol sxemasidan iboratdir. Agar chap guruh tiristorlariga oechilishi uchun signal berilganida, yuksa- nish Z_{yuk} dan kuchlanish nol nuqtaga nisbatan musbat ishorali bo'ldi va uning

3.20- rasm. Bir fazali bevosita TChO'ning sxemasi.
o‘rtacha qiymati \(U_{yuk} = U_{yuk0} \cos \alpha \) bo‘lib, bunda: \(\alpha \) – tiristorlarning boshqarish burchagi; \(U_{yuk0} \) – boshqarish burchagi \(\alpha = 0 \) bo‘lgandagi yuқlanish \(Z_{yuk} \) dagi kuchlanish.

Endi o‘ng guruh tiristorlariga boshqaruv signallari berilginda, chap guruh tiristorlari yopilganda \(Z_{yuk} \) dagi kuchlanishning ishorasi manfiy bo‘ladi. Agar boshqaruv impulslar goh u, goh bu guruh tiristorlariga davriy ravishda yuborib turilganda, yuқlanishdagi kuchlanishning ishorasi ham mos ravishda o‘zgarib turadi. Shunday qilib, yuқlanishda chastotasi tarmoq chastotasidan farqli (unga teng yoki undan kam) chastotali o‘zgaruvchan kuchlanish hosil qilamiz. Boshqaruv impulslarning ketma-ketlik davrini o‘zgartirib \(U_{yuk} \) ning chastotasi boshqariladi, agar \(\alpha \) boshqaruv burchagini o‘zgartirsak, \(U_{yuk} \) ning o‘rtacha qiymati rostlanadi.

Sanoat qurilmalarini elektr yuritmalarida bevosita TCHO‘larning uch fazali nol sxemalari ko‘proq qo‘llaniladi va uning prinsipiال sxemasi 3.21- rasmda tasvirlangan.

![3.21- rasm. Uch fazali nol sxemali bilvosita TCHO‘ning sxemasi.](image)

FSQlarni boshqarish uchun chastotasi hamda kuchlanish amplitudasi rostlanuvchan bo‘lgan olti fazali simmetrik tizim bo‘lishi kerak.

Bevosita TChO' chiqish kuchlanishning formasi to‘g‘ri burchakli — pog‘onal bo‘lsa, u holda boshqariluvchi kuchlanish manbayi sifatida to‘g‘ri burchakli impuls ishlab chiqaruvchi olti fazali «generator»dan foydalaniladi. Bunday «generator» bir fazali generator va impulslar tarqatgich bloklaridan tashkil topgan bo‘ldi.

Bevosita TChO‘larning asosiy afsalliklari:
1. Tiristorlar quvvatlarining kichikligi va o‘zgartkich foydali ish koefitsiyenti yuqori.
3. Formasini o‘zgartirmagan holda past chastotalarda chiqish kuchlanishlarini olish mumkinligi.
4. Asinxron motorning rekuperativ tormoz rejimini osonlik bilan hosil qilish mumkinligi.

Bevosita TChO‘ ning asosiy kamchiliklari:
1. Chiqish kuchlanishi chastota qiymatining chegaralanganligi (tarmoq kuchlanish chastotasiga yaqin va undan katta qiymatli chastotaga ega bo‘lgan kuchlanish hosil qilish mumkin emasligi).
2. Tarmoq quvvat koeffitsiyentining past bo‘lishi.

3.5. INDUKTIV-SIG‘IMLI PARAMETRIK O‘ZGARTKICHLAR

O‘zgarmas tok tiristorli o‘zgartkichlar kuchlanish manbayi sifatida ishtiladigan bo‘lsa, yuklanishning tok qiymati o‘zgargan paytda ham kuchlanishning qiymati deyarlari o‘zgarmay qolib, uning o‘zgarishi esa faqat vazifa-lovchi boshqaruv kuchlanishning qiymatigagina bog‘liq bo‘lishi. Ammo bunday TO‘ ma’lum sxemalar asosida, masalan, tok bo‘yicha kritik musbat teskari bog‘lanishli sxema asosida yig‘iladi, kuchlanishning qiymati o‘zgargan holda yuklanishdagi tokning qiymati o‘zgarmay qolib, o‘zgartkich tok manbayi vazifasini bajaradi. Sanoatda tok manbayi o‘zgartkichlari, misol uchun elektr yoy pechlarida yoy tokining qiymatini bir xil ushlab turishda, kabel va sim o‘rovchi quirilmalarining motorlarida bir xil mexanik kuchlanish hosil qilishda, tajriba-sinov stendlarida o‘zgarmas qiymatli moment hosil qiluvchi yuklanish quirilmalarda keng qo‘llaniladi.

Sodda va ishonchli tok manbayi (TB) kuchlanish rezonansi bo‘yicha sozlangan inductive-sig‘imli TM ning (3.23- a rasminga qarang) ish rejimi quiydagi Kirxgof tenglamalari tizimi bilan ifodalangan:

\[
\begin{align*}
I_L Z_L + I_{yuk} Z_{yuk} &= U_c; \\
I_{yuk} Z_{yuk} - I_c Z_c &= 0; \\
I_L - I_c &= I_{yuk}.
\end{align*}
\]

(3.3)
(3.3) tenglamalar tizimi I_{yuk} ga nisbatan yechilganda quyidagi ifoda hosil bo'ldi:

$$I_{yuk} \left[1 + Z_{yuk} \left(\frac{1}{Z_c} + \frac{1}{Z_L} \right) \right] = \frac{U_c}{Z_L}.$$

(Bunda $Z_L = jX_L$, $Z_c = -jX_c$ va $X_L = X_c = X_R$ ekanligi hisobga olinganda (3.4) tenglama soddalashtirilgan ko'rinishga keladi):

$$I_{yuk} = \frac{U_T}{jX_R}.$$

(Bunda X_R – kondensator va reaktoring reaktiv qarshiliklarining rezonans qiymatlari, U_T – manba tarmog'ning kuchlanishi.

Shunday qilib, yuklanishdagi tokning qiymati o'zgarmas bo'lib, Z_{yuk} va $U_{yuk} = I_{yuk} Z_{yuk}$ larga bo'lib. U_{yuk} ning ichtiyoriy qiymati uchun induktiv-sig'imli tok manbyaning vektor diagrammasi 3.23- b rasmda tasvirlangandek ko'rinishga ega bo'ldi. Bunday TMning afzalligi soddaligida. Kamchiliqi esa yuklagich sifatida TMga to'g'rilagich orqali o'zgarmas tok motori ulanganida o'zgarmas tok qiymatining doimiyligi sharti buziladi. Bir fazali TMning kamchiliklaridan biri uzlukli tok rejimining mavjudligi va uning yuklanishga ta'siri sezilarli bo'ilishidadir. Bu kamchilikni yo'qotish uchun TMning ko'p fazali sxemalari qo'ilaniladi (3.24- a rasm).

3.24- rasm. Uch fazali induktiv-sig'imli TMning sxemasi (a) va uning kuchlanishlar diagrammasi (b).
Uch fazali TMning ish rejimlarini aniqlash uchun biron-bir fazasi uchun Kirxgof tenglamasini tuzish kifoyadir va bu tenglamalar tizimi (3.3) ko‘rinishda bo‘ładi. I_{yuk} ga nisbatan yechimi ifodasini soddalashitib va mos o‘zgartirishlardan so‘ng $R_L = 0$ bo‘lgan hol uchun quyidagi ifodani hosil qilamiz:

$$I_{yuk} = \frac{U_I}{X_R} = \text{const.} \quad (3.6)$$

Bunda: U_I— tarmoqning liniya kuchlanishi; $X_L = X_e = X_R$ — sig‘im va reaktorlarning reaktiv qarshiliklarining rezonans qiymatlari. 3.24- b rasm-dagi vektor diagrammadagi ON yuklanish kuchlanishi vektori godografi ($U_{yuk} = I_{yuk} R_{yuk}$) va U_{AB} kuchlanishga perpendikular bo‘лади. Yuklanishning qisqa tutashishi, ya’ni $R_{yuk} = 0$ rejimi tarmoq uchun eng yengil rejim bo‘лади va liniya toki

$$I_L = \frac{1}{\sqrt{3}} \frac{U_L}{Z_L + Z_c} = \begin{cases} 0, & \text{agarda } R_L = 0 \\ \frac{U_L}{\sqrt{3}X_R D_L}, & \text{agarda } R_L \neq 0 \end{cases} \quad (3.7)$$

qiymatga teng bo‘лади.

Yuklanishning salt yurish rejimi, ya’ni $R_{yuk} = \infty$ favqulodda (avariya) rejimi bo‘лади, ta’minlovchi tarmoqning qisqa tutashuv rejimiga mos keladi:

$$I_L = \sqrt{3} \frac{U_L}{Z_L + Z_c} = \begin{cases} 0, & \text{agarda } R_L = 0 \\ \frac{\sqrt{3}U_L}{R}, & \text{agarda } R_L \neq 0. \end{cases} \quad (3.8)$$

TMning tashqi tavsifini ifodalovchi tenglamada yuklanishning toki chi-qish ko‘rsatkichi bo‘лади, g’alayonlovchi ta’nsir esa yuklanishning kuchlanishi bo‘лади:

$$I_{yuk} + U_{yuk} \frac{1}{X_P D_L} = \frac{U_I}{X_P} \left(1 + \frac{1}{2\sqrt{3}D_L} \right), \quad (3.9)$$

bunda: $D_L = \frac{X_L}{R_L}$ — reaktorning aslligi.

Bu tenglamada $U_{yuk} = 0$ bo‘lishi TM tashqi tavsifining salt yurish rejimi-dagi $I_{yuk} = I_0$ qiymatini beradi (3.25- rasm).
3.25- rasm. TMning tashqi tavsifi.

Tavsifning nishabligi \(U_{yuk} = U_l \) bo'lgandagi holat uchun statizm orqali aniqlanadi:

\[
\delta_I = \frac{\Delta I}{I_0} = \frac{1}{D_L}.
\] (3.10)

Reaktorning asligi qancha katta bo'lsa, TMning tashqi tafsifi shuncha bikr bo'лади. TMlar uchun qo'llaniladigan reaktorlarning asligi, odatda, \(D_L > 100 \) bo'lib, \(\delta_I < 1\% \) qiymatga ega bo'лади.

Kuchlanish rezonansi hodisasi TMlarda qo'llanilib, yuklanish qarshiligining o'sishi bilan reaktor va sig'imda ham kuchlanishning o'sishi kuzatiladi. Shuning uchun TMning reaktoridan kuchlanishning maksimal qiymatini aniqlash asosiy amallardan biridir. 3.2.4- b rasmdagi vektor diagrammadi \(U_l \) teng yonli \(ANB \) uchburchakning AN tomoni deb qaraladi va bu vektorning qiymati quyidagi ifoda yordamida aniqlanadi:

\[
AN = \sqrt{AM^2 + MN^2}
\]

va shuningdek, liniya kuchlanishi qiymatining analitik ifodasi esa quyidagi ko'rinishga ega bo'лади:

\[
U_l = \sqrt{\left(\frac{U_{AB}}{2}\right)^2 + \left(U_{yuk} - \frac{U_A}{2}\right)^2} = \sqrt{\left(\frac{U_l}{2}\right)^2 + \left(U_{yuk} - \frac{U_l}{2\sqrt{3}}\right)^2}. \] (3.11)

Ushbu ifoda asosida yuklanish kuchlanishi 0 dan to \(U_l \) gacha o'zgar-ganda ham \(U_L \) ning qiymati \(U \) dan kichik bo'lishini va \(U_{yuk} \) qiymatining ushbu diapazon oralig'ida reaktor tokining maksimal qiymati yuklanish toki bilan quyidagicha bog'langanligi aniqlaniladi:
(3.12)

va uning qiymati yuklanish tokidan kam bo‘ladi. Shunday qilib, reaktorning o‘ichamlarini belgilovchi quvvati $U_{L_{\text{max}}}/X_p < U_{yuk}/Y_{yuk}$ tengsizlikdan iborat bo‘ladi.

Induktiv-sig‘imli tok manbalari uchun tipik yuklanish sifatida yakor zanjiri TMdan to‘g‘rilagich ko‘prik sxemasi orqali ta’minlanuvchi mustaqil qo‘zg‘aluvchan o‘zgarmas tok motorlari keng qo‘llaniladi (3.26- a rasm).

3.26- rasm. TM li o‘zgarmas tok elektr yuritmasining sxemasi (a) va uning elektromexanik (b) va mexanik (d) tavsiflari.

Agar reaktorning aktiv qarshiligini $R_L = 0$ deb qarasak, to‘g‘rilagich nochiziqligining TMga ta’sirini hisobga olmaganimizda yuklanish toki liniya kuchlanishi va reaktorning induktivligiga bog‘liq bo‘lib qoladi:

$$I_{ya} = k\frac{U_l}{X_p} \approx 1,23I_{yuk} = \text{const}$$

va bu esa yakor zanjiridagi tokning kuchlanishga hamda motorning tezligi ω ga bog‘liq bo‘lmaydi (3.26- b rasm). Motorning momenti ifodasi
$M = k\Phi I_{ya}$ dan ko‘rinib turibdiki, yagon tokining $I_{ya} = \text{const bo‘lishi, momen}
\text{tning magnit oqimiga to‘g‘ri proporshional bo‘lishining ta’mi
lanishi va inductiv-sig‘imli tok o‘zgartkichi va o‘zgarma
sand tok motori tizimining me
\text{xanik tavsiflari } \Phi \text{ ning turli qiymatlar uchun vertikal to‘g‘ri chiziqlardan
iborat tavsiflari majmuasidan iborat bo‘ladi (3.26- d rasm). Shunday qilib,
bu elektr yuritma tizimi magnit oqimini rostlovchi o‘zgarmas momen
tanbayi xususiyatiga ega bo‘ladi.

Asinxron motorlarning o‘zgarmas tok motorlariga nisbatan ishlatilishi
ning osonligi, massa-oq‘irlik ko‘rsatkichlari kichikligi va ishonchlikli
darajasing yuqoriligiga bilan ajralib turadi. Shuning uchun ham asinxron motor-
lar asosida «tok manbayi — motor» elektr yuritma tizimlarini yaratish maqsadga
muvofiqdir. Bunday tizimning negizini inductiv-sig‘imli parametrlik o‘zgartkich
hosil qilib, u faza rotorli asinxron motor fazonida tokni stabillashga xizmat
qiladi. Asinxron motor hosil qiladigan aylantirish momenti stator chulg‘ami
magnit oqimi maydonining o‘zgarmas qiymatida rotor tokining haqiqiy
qiymatiga to‘g‘ri proporshional bo‘lib, stabillashgan rotor tokini o‘zgartirib,
unga mos keluvchi $M = \text{const tavsiflar to‘plamini hosil qilish mumkin.
Agar elektr yuritma tizimida tezlik bo‘yicha manfiy teskari bog‘lanish
qo‘llanilsa, u holda } \omega = \text{const bo‘lgan tavsiflar to‘plamini hosil qilishi
mumkin bo‘ladi.}

3.27- rasm. «Tok manbayi — asinxron motor» elektr yuritma tizimining
funktsional sxemasi.

Sirpanishing ortishi bilan asinxron motor rotoridan Řₙ ga uzatilib so‘nayotgan energiyaning qiymati ham ortadi va shu vaqtda ISO‘ dan uzatilayotgan energiya kamayadi. Bunday energiya taqsimi asinxron motor rotor tomonidan qo‘shimcha qarshilik ulangan qabul qilinadi. Řₙ qarshilikning qiymati quydagicha aniqlanadi:

\[
Řₙ = r₂ \frac{s_{\text{max}} - s_{\text{min}}}{s_{\text{min}}} \frac{K₂U}{K₂I},
\]

bunda: \(s_{\text{max}}, s_{\text{min}} \) — sirpanishing maksimal va minimal qiymatlari, \(r₂ \) — rotor fazasi chulq‘aming aktiv qarshiligini, \(K₂U \) va \(K₂I \) — T₂ to‘g‘rilagichning kuchlanish va to‘g‘rilagichning kuchlanish va toq bo‘yicha o‘zgartirish koefitsiyentlari.

Agar elektr yuritma tizimidagi ISO‘, TKR, IFBT va K — qurilmalarni inersiyasiz zvenolar deb qaraksiz, tezlik bo‘yicha teskari bog‘lanish yo‘q bo‘lishan hol uchun elektr yuritma tizimining holati quyidagi tenglamalar tizimi orqali ifodalani:

\[
\begin{align*}
M - M_c &= J_S \frac{d\omega}{dt}; \\
M &= C_M Φ₁I₂; \\
K₁I₁CU₂ &= I₁r₂ + L₂ \frac{dI₂}{dt}; \\
I₁SU &= K₂U_{vaz},
\end{align*}
\]

bunda: \(M \) — motorning hosil qilayotgan aylantrirish momenti; \(M_c \) — yuklanish momenti; \(J_S \) — elektr yuritmaning inersiya momenti; \(ω \) — motorning burchak tezligi; \(K₁ = \frac{K₁I}{K₂I} \) — T₁ va T₂ to‘g‘rilagichlarning tok bo‘yicha o‘zgartirish koefitsiyentlarining nisbatli; \(K₂ = KₙKₜₐ₅K₉ₜₘₚₚₙₙₐₑₙₐ \) — tizimning umumi uzatish koefitsiyenti, \(U_{vaz} \) — tizimning kirish qismiga beriladigan vazifalovchi kuchlanish.
Tenglama tizimlarnini umumiy ko‘rinishga keltirish uchun bar-cha kattaliklar o‘ichovisz nisbiy kattaliklarga keltiriladi. Negizaviy kattaliklar deb, M_N va ω_N larni qabul qilamiz va ular asosida boshqa negizaviy kattaliklar hisoblanadi:

$$I_{2n} = \frac{M_N}{C_mQ_1}, \quad I_{ISU} = \frac{I_{2n}}{K_1}, \quad U_B = \frac{I_{ISO}^*}{K_2}.$$ \hfill (3.16)

(3.15) tenglamani (3.16)ni hisobga olgan holda qaytadan yoziladi:

$$\begin{align*}
M^* - M_c^* &= T_{MN} \frac{d\omega^*}{dt}; \\
M^* &= I_2^*; \\
I_{ISO}^* &= I_2^* + T_p \frac{dI_2^*}{dt}; \\
I_{ISO}^* &= U_3^*,
\end{align*}$$ \hfill (3.17)

bunda: $T_{MN} = \frac{\omega_n}{M_N}$ — elektromexanik vaqt doimiyligi, $T_p = \frac{L_2}{r_2}$ — asinxron motor rotorining elektromagnit vaqt doimiyligi, L — rotor fazasining induktivligi.

3.28- rasm. «Tok manbayi — asinxron motor» elektr yuritmaning ochiq holatining tizim sxemasi.

(3.17) tenglamalar tizimini yechib, elektr yuritmaning ochiq holati uchun (3.28- rasm) quiyidagi tenglamalar hosil bo‘ladi:

$$M^* - M_c^* = T_{MN} \frac{d\omega}{dt}; \quad U_{vaz}^* = M^* - T_p \frac{dM^*}{dt}.$$ \hfill (3.18)
3.29- rasm. «Tok manbayi — asinxron motor» elektr yuritmaning mehanik tavsiflari.

M^* va U_B^* larni o‘zaro bog‘lanishi

$$M^*(P) = \frac{U_B^*(P)}{T_p P + 1}, \quad (3.19)$$

turg‘un holat uchun esa

$$M^* = U_B^* \quad (3.20)$$

go‘rinishda bo‘ladi.

Shunday qilib, (3.20) tenglama asosida aytish mumkin, agar asinxron elektr yuritma tizimi o‘qiq holatda va rotor zanjiri stabillashgan tok bilan ta’minlanadigan bo‘lsa, u holda stabillashgan toklar qiymatiga mos stabillashgan momentlar hosil qilinib, tizim boshqariluvchi moment manbayi tizimga aylanadi. Bunday tizimning mehanik tavsiflari vertikal tavsiflar to‘plamidan iborat bo‘ladi (3.29- rasmning vertikal tavsiflari).

3.30- rasm. «Tok manbayi — asinxron motor» elektr yuritmaning yopiq holatining tizim sxemasi.
(2.43) tenglamalar tizimini tizimning yopiq holati uchun quydagi ko‘rinishda yozamiz (3.30- rasm):

\[
\begin{align*}
M^* - M^*_c &= T_{MN} \frac{d\omega^*}{dt}; \\
U^*_{kir} &= M^* + T_p \frac{dM^*}{dt}; \\
U^*_{kir} &= U^*_B - K_0 \omega^*,
\end{align*}
\] (3.21)

bunda: \(K_0 = \frac{K_0}{K_{on}} \) — tezlik bo‘yicha teskari bog‘lanishning o‘ichovsziz kat-
taligi; \(K_0 = \frac{U_{TG}}{\omega} \) — taxogeneratorning uzatish koeffitsiyenti, \(K_{on} = \frac{U_{B.N}}{\omega_n} \).

Agar chiqish ko‘rsatkichi qilib tezlikni olsak, u holda

\[
\omega^* (p) = \frac{U^*_B}{(T_p p + 1)T_m p + K_0} - \frac{M^*_c (p)(T_p p + 1)}{(T_p p + 1)T_{mn} p + K_0}
\] (3.22)

ko‘rinishda bo‘lib, turg‘un rejim uchun esa quydagi ko‘rinishda bo‘ladi:

\[
\omega^* = \frac{U^*_B - M^*}{K_0^*}.
\] (3.23)

(3.23) dan ko‘rinib turibdiki, elektr yuritma yopiq boshqaruv tizimli bo‘lsa, u holda elektr yuritmaning mehanik tavsiflari gorizontal mehanik tavsiflar to‘plamidan iborat bo‘ladi (3.29- rasmning gorizontal tavsiflari).

Tavsiflar soni \(U_B^* \) ga to‘g‘ri proporsional bo‘lib, statik tavsifning bikrliги bir xil bo‘ladi va uning qiymati \(\frac{dM^*}{d\omega} = -K_0^* \) ga tengdir. Tavsiflarning boshlang‘ich qismidagi nochiziqlikning bo‘lishi asinxron motorlarning noan’anaviy rejimda ishlashi va konstruktiv alohidaligidan kelib chiqadigan xususiyatidir.
NAZORAT UCHUN SAVOLLAR

1. Boshqariluvchi o‘zgaruvchan tok o‘zgartirgichlariga qanday o‘zgartkichlar kiradi?
2. O‘zgaruvchan tok kuchlanish rostlagichi qanday asosda ishlaydi?
3. Elektromashina chastota o‘zgartikchi qanday elektr mashinalardan tashkil topgan?
4. Yarimo‘kazgichli chastota o‘zgartikchlar necha turga bo‘linadi?
5. Bilvosita chastota o‘zgartikch qanday kuch elementlaridan tashkil topgan?
6. Avtonom invertorlar qanday vazifani bajarárdi?
7. Avtonom invertorlarni boshqarish tizimlar qanday asosda shakllanadi?
8. Bevosita chastota o‘zgartikchi qanday asosda ishlaydi?
9. Induktiv-sig‘im parametrik o‘zgartikchlarining ishlashi qanday fizik hodisaga asoslangan?
10. Induktivlik-sig‘im o‘zgartikchi va o‘zgarmas tok motori tizimining mexanik tavsiflari nima uchun vertikal ko‘rishishga ega?
11. Nima uchun inductivlik-sig‘im o‘zgartikchi va asinxron motor tizimi mexanik tavsiflarining boshlang‘ich qismi noxchiziqli xarakterga ega?
4-bob. ELEKTROMASHINA KUCHAYTIRGICHLAR

4.1. UMUMIY MA’LUMOTLAR

Elektromashina kuchaytirgichlar (EMK) kollektorli o‘zgartmas tok elektromashina turlariga kiradi.

EMKLar qo‘llanilgan qo‘zg‘atish usuliga qarab bo‘ylama magnit maydonini kuchaytiruvchi va ko‘ndalang magnit maydonini kuchatiruvchi turlarga bo‘linadi.

Qo‘zg‘atish magnit oqimining yo‘nalishi mashinaning bo‘ylama o‘qi bo‘yicha yo‘nalirilgan bo‘ylama magnit maydonini kuchaytiruvchilarga quyidagi EMKLar kiradi:

1) mustaqil qo‘zg‘aluvchan EMK;
2) o‘zi qo‘zg‘aluvchan EMK;
3) ikki mashinali kuchaytirgichlar;
4) ikki kollektorli EMK;
5) ikki va uch pog‘onali bo‘ylama maydonli EMK.

Qo‘zg‘atish magnit oqimining yo‘nalishi mashinaning ko‘ndalang o‘qi bo‘yicha yo‘nalirilgan ko‘ndalang magnit maydonini kuchaytiruvchilarga quyidagi EMKLar kiradi:

1) yakor chulg‘ami dimentral qadamli bo‘lgan EMK;
2) yakor chulg‘ami yarim dimentral qadamli bo‘lgan EMK;
3) magnit tizimi ajratilgan EMK.

EMKni boshqarish quvvatining katta yoki kichikligiga qarab mos ravishda uning massasi va og‘irligi ham o‘zgaradi. Shuning uchun ham ularning kuchaytirish koeffitsiyentlari EMKLar uchun asosiy ko‘rsatkichdir. EMKLarning kuchaytirish koeffitsiyentlari quvvat, kuchlanish va tok bo‘yicha koeffitsiyentlaridan tashkil topgan bo‘ladi.

EMKNing quvvat bo‘yicha kuchaytirish koeffitsiyenti kuchaytirgichning chiqishidagi quvvatning boshqarish quvvatiga bo‘lgan nisbatiga teng:

$$k_p = \frac{P_{ch}}{P_k}.$$ (4.1)

EMKNing kuchlanish bo‘yicha kuchaytirish koeffitsiyenti kuchaytirgichning chiqishi zanjiridagi kuchlanishning boshqarish zanjiridagi kuchlanishga bo‘lgan nisbatiga teng:
\[k_U = \frac{U_{ch}}{U_k}. \] (4.2)

EMKning tok bo'yxicha kuchaytirish koefitsiyenti kuchaytirgichning chiqishi zanjiridagi tokning boshqarish zanjiridagi tokka bo'lgan nisbatiga teng:
\[k_I = \frac{I_{ch}}{I_k}. \] (4.3)

Kuchaytirgichning quvvat bo'yxicha kuchaytirish koefitsiyenti esa ikkinchi tomondan kuchlanish va tok bo'yxicha kuchaytirish koefitsiyentlarining ko'paytmasiga teng:
\[k_P = k_U \cdot k_I. \] (4.4)

EMKLarning quvvat bo'yxicha kuchaytirish koefitsiyentlari
\[k_P = (10^3 \div 10^5) \] salmoqli qiymatlarga ega bo'лади.

Elektr zanjirlarining vaqt doimiyliklari bilan xarakterlanadigan EMKning tezkorligi ham uni ishlatish jarayonida katta rol o'ynnaydi.

Vaqt doimiyliga rostlash jarayonida o'zgarib turadigan magnit maydoni energiyasi qiymati orqali aniqlanadi. Elektr zanjirning vaqt doimiyligi
\[T = \frac{L}{R}, \]
manda: L — zanjirning inductivligi; R — zanjirning aktiv qarshiligini.

EMKLar uchun vaqt doimiyligi o'rtacha \(T = 0,02 - 0,2 \) s ni tashkil etadi.

EMKLar elektr yuritmalarning avtomatik boshqarish va rostlash tizimlarida asosan quvvat kuchaytirgichchi sifatida qo'ilanilib kelmoqda. EMKLarga qo'yiladigan talablardan asosiy ishonchli ishlashi va tavsiflarining stabil bo'lishi.

Kichik quvvatli elektr yuritmalarda ko'ndalang maydonli EMKLar qo'ilaniladi va ba'zi alohida elektr yuritmalarda o'zi qo'zg'aluvchan EMK lardan foydalaniladi.

Mustaqil qo'zg'aluvchan EMK larning konstruktiv tuzilishi va elektr sxemasi mustaqil qo'zg'aluvchan o'zgarmas tok generatoridan farq qilmaydi. Mustaqil qo'zg'aluvchan EMKLarning kuchaytirish koefitsiyentlarini nisbatan past bo'lgani uchun amaliyotda kam qo'ilaniladi. Ammo motor tezligini keng diapazonda rostlash talab etiladigan «generator — motor» tizimida generator mustaqil qo'zg'aluvchan EMK sifatida ishlatiladi. Ko'p pog'onali bo'ylama maydonli EMKLar kichik quvvatli elektr yuritmalarda deyarli qo'ilanilmaydi.
4.2. KO'NDALANG MAYDONLI ELEKTROMASHINA KUCHAYTIRGICHINING ISHLASH ASOSI

Ko'ndalang maydonli EMKning yagonida hosil qilinadigan ko'ndalang magnet oqimi asosiy qo'zg'atish magnet oqimi bo'lishadi.

4.1- a rasmda ko'ndalang maydonli EMKning sxemasi keltirilgan. Ko'ndalang maydonli EMK konstruktiv jihatdan o'zgarmas tok generatori tarzida tayyorlangan bo'lib, farqi esa mashinaning ko'ndalang qq o'qi bo'yicha qo'shimcha komplekt cho'tkalar o'ringatilgan va ularning uchlar qisqa tutashtirilgan. EMKning statorida bir qancha chulg'amlar joylashtirilgan. Qutblarning bo'yilama dd o'qi bo'yicha boshqarish chulg'amlari BCh joylashgan (odatda bu chulg'amlarning soni ikki yoki to'rtga teng bo'lishadi). Xuddi shu o'qida kompensatsiyalovchi chulg'am KCh ham joylashtiriladi. Kuchaytirgichning kompensatsiyalash darajasini rostlash maqsadida bu chulg'amga parallel o'zgaruvchanch qarshilik \(R_{sh} \) ulangan.

Kommutatsiya jarayonini yaxshilash uchun shu zanjirga qo'shimcha qutblarning chulg'ami QQCh ulangan. Ba'zi hollarda kommutatsiya jarayonini yaxshilash maqsadida kichik qarshilikka ega bo'ilgan ko'ndalang zanjirga yakor bilan ketma-ket ko'ndalang qo'shimcha magnetlovchi chulg'am QMCh ulanadi.

![Diagram](https://example.com/diagram.png)

4.1- rasm. Ko'ndalang maydonli EMKning sxemasi (a), yakordagi ko'ndalang maydon hosil qiluvchi tokning yo'nalishi (b) va bo'yilama maydon hosil qiluvchi tokning yo'nalishlari (d).
EMKning ishlash asosini ko‘rib chiqamiz. Harakatga keltiruvchi motor \(\omega = \omega_H \) tezlik bilan uning yakorini aylantirmoqda va BCh lardan biriga \(U_i \)
o‘zgarmas tok kuchlanishi berilgan. Shunda uncha katta bo‘lmagan qo‘zing‘atish
magnit oqimi \(\Phi_1 \) ta’sirida yakorning ko‘ndalang zanjiri \(qq \) da EYuK
\[E_2 = k_M \omega \Phi_1 \] hosil bo‘ladi va uning qiymati ham mos ravishda kichik
bo‘ladi (\(k_M \) — mashingan konstruktiv koefitsiyenti). Yakorning ko‘ndalang
zanjiri kichik qarshi likka ega bo‘lgani uchun ham undan o‘tayotgan tok \(I_2 \)
ing qiymati katta bo‘ladi.

4.1- b rasmda ko‘ndalang magnit oqim \(\Phi_q \) ni hosil qiluvchi tok \(I_2 \) ning
yakor o‘tkazgichlaridan o‘tish yo‘li ko‘rsatilgan. Bu magnit oqim ta’sirida
yakorning bo‘ylama zanjiri \(dd \) da \(E_3 = k_M \omega \Phi_q \) hosil bo‘ladi va bu EYuK
bo‘ylama cho‘tkalarning uchlariga uzatiladi. EYuK \(E_3 \) ta’sirida \(I_3 \) toki yuzaga
keladi va natijada yuklanish \(R_{syk} \) da kuchlanish pasayishi \(U_3 \) sodir bo‘ladi.

4.1- d rasmda boshqaruv magnit oqimi \(\Phi_1 \) ga qarama-qarshi yo‘nalgan
bo‘ylama magnit oqimi \(\Phi_d \) ni hosil qiluvchi tok \(I_3 \) ning yakor o‘tkazgich-
laridan o‘tish yo‘li ko‘rsatilgan. Agar o‘z vaqtida chora ko‘rilmasa katta qiy-
matdagi \(\Phi_d \) magnit oqimi kuchaytirgichni magnitsizlashtirishi va hech
qanday kuchaytirish sodir bo‘lmasligi mumkin. Bo‘ylama magnit oqimini
kompensatsiyalash (muvozanatlashtirish) uchun statorda kompensatsiya
chulg‘ami KCh joylashtirilgan.

Yakorning bo‘ylama magnit oqimi \(\Phi_d \) magnit yurituvchi kuch (MYuK)ga
proporsional

\[F_d = I_3 \omega_{ya} \], \hspace{1cm} (4.5) \]
bunda: \(\omega_{ya} \) — yakor chulg‘ami parallel shoxobchalaridagi o‘ramlar soni.

Bo‘ylama MDS \(F_d \) va unga proporsional bo‘lgan magnit oqimi \(\Phi_d \) ning
o‘zgarishi tok \(I_3 \) ga bog‘liq ekanligi (4.5)dan ko‘rinib turibdi, ya’ni uning
qiymati yuklanish \(R_{syk} \) ning qiymatiga bog‘liq. Agar kompensatsiyalovchi
chulg‘am (KCh)ning MYuK \(F_k \) ham tok \(I_3 \) ga bog‘liq bo‘lgandagina bu
chulg‘amning kompensatsiyalash xususiyati samarali bo‘ladi. Shuning uchun
KCh chulg‘ami mashingan bo‘ylama zanjiriga yakor chulg‘amiga ketma-
ket ulanadi. Shunda kompensatsiyalovchi chulg‘am hosil qilayotgan MYuK

\[F_K = I_3 \omega_K \], \hspace{1cm} (4.6) \]
bunda: \(\omega_K \) — kompensatsiyalovchi chulg‘amning o‘ramlari soni.
Kuchaytirgichning kompensatsiyalanganlik darajasi quyidagi kompensatsiyalash koefffisiyenti bilan aniqlanadi:

\[
k = \frac{F_k}{F_d}.
\] (4.7)

EMKning ish rejimlari:
1) \(k = 1 \), mashina to'liq kompensatsiyalangan, ya'ni yakoring bo'ylama va kompensatsiya chulg'ami MYuKlar o'zaro teng;
2) \(k > 1 \), mashina to'liq kompensatsiyalanganmagan, ya'ni yakoring bo'ylama MYuK kompensatsiya chulg'ami MYuKidan katta;
3) \(k < 1 \), mashina to'liq o'ta kompensatsiyalangan, ya'ni yakoring bo'ylama MYuK kompensatsiya chulg'ami MYuKidan kichik.

Odatda, EMKlar ozgina o'ta kompensatsiyalangan holda ishlab chiqariladi, ya'ni kompensatsiyalash koefffisiyenti \(k = 1,05 \) bo'лади.

4.3. KO'NDALANG MAYDONLI ELEKTROMASHINA KUCHAYTIRGICHNING ASOSIY TAVSIYLARI

EMKning asosiy ko'rsatkichi uning quvrat bo'yicha kuchaytirish koefffisiyentidir. Ko'ndalang maydonli EMKlar ikki bosqichli kuchaytirgich bo'lgani uchun ham ularning quvrat bo'yicha kuchaytirish koefffisiyenti ning qiymati yuqori bo'лади. Birinchi kuchaytirish bosqichi bu boshqarish chulg'ami — ko'ndalang cho'tkalarning qisqa tutashtirilgan zanjiri bo'lsa, ikkinchi kuchaytirish bosqichi esa ko'ndalang cho'tkalarning qisqa tutashtirilgan zanjiri — bo'ylama cho'tkalarning chiqish zanjiri bo'лади. Shuning uchun ham kuchaytirgichning quvrat bo'yicha umumiy kuchaytirish koefffisiyenti har ikkala kuchaytirish bosqichlari kuchaytirish koefffisiyentlarining ko'paytmasidan iborat bo'лади:

\[
k_p = k_p_1 k_p_2 = \frac{U_3 I_3}{U_1 I_1} = \frac{I_3^2 R_{yuk}}{I_1^2 R_1},
\] (4.8)

bunda: \(R_1 \) — boshqarish chulg'aming aktiv qarshiligini.

Har bir bosqichdagi quvrat bo'yicha kuchaytirish koefffisiyentlarini mashining asosiy ko'rsatkichlari va yuqlanishning qiymatlar asosida aniqlanishi mumkin.

Shuni alohida qayd qilish kerakki, ko'ndalang maydonli EMKlarning quvrat bo'yicha kuchaytirish koefffisiyentning qiymati magnit tizimining to'yinmaganlik darajasi qancha past bo'lsa va aylanish tezligi qancha yuqori bo'lsa shuncha katta bo'лади. Tezlikni haddan tashqari orttirib yuborish kommutatsiya sharoitini yomonlashishiga olib keladi. Shuningdek, quvrat bo'yicha

www.ziyouz.com kutubxonasi
kuchaytirish koeffitsiyenti boshqarish chulg‘ami va ko‘ndalang zanjirlarning vaqt doimiyliklariga to‘g‘ri propsionaldir.

Ko‘ndalang maydonli EMKlarning quvvat bo‘yicha kuchaytirish koeffitsiyentining qiymatiga kuchaytirgichning kompensatsiyalanganlik darajasi va yuklanish qarshiligining ta’siri kattadir (4.2- rasm).

4.2- rasm. Ko‘ndalang maydonli EMK quvvat bo‘yicha kuchaytirish koeffitsiyentining yuklanish qarshiligiga bog‘liqlik tavsifi.

Ko‘ndalang maydonli EMKnинг tashqi va boshqaruv tavsiflari uning asosiy statik tavsiflaridir. Kuchaytirgichning tashqi tavsiflari deb, boshqaruv chulg‘amidagi kuchlanishning hamda aylanish tezligining o‘zgarmas qiymatlarida, ya’ni \(U_1 = \text{const} \) va \(\omega = \text{const} \) qiymatlaridagi quriladigan \(I_2 = f(I_3) \) va \(U_3 = f(I_3) \) tavsiflarga aytildi (4.3- rasm).

4.3- rasm. Ko‘ndalang maydonli EMKnинг tashqi tavsiflari.

4.3- a rasmda ko‘ndalang zanjirdagi tok \(I_2 \) ning bo‘ylama zanjir toki \(I_3 \), ya’ni yuklanish toki ta’sirida o‘zgarishi tavsiflari berilgan. Bu tavsiflar kompensatsiyalashning har uchala holatlari uchun qurilgan bo‘lib, \(k = 1 \) bo‘lganida
mashinaning bo‘ylama o‘qi bo‘ylab faqat boshqaruv chug‘amining MYuK ta’sir etgani uchun tok \(I_2 \) ning qiymati \(I_3 \) ga bog‘liq bo‘lmay o‘zgarmasligicha qoladi. \(k > 1 \) bo‘lganida mashinaning bo‘ylama o‘qi bo‘ylab boshqaruv chug‘ami MYuK dan tashqari kompensatsion chug‘am MYuK ning bir qismi ham ta’sir etgani uchun o‘zgartkichning tashqi tavsifi \(I_3 \) ortgani sari chiziqli ortib boradi. \(k < 1 \) bo‘lganida esa mashinaning bo‘ylama o‘qi bo‘ylab yakor bo‘ylama maydonining bir qismi va kompensatsion chug‘am kom-

pensatsiyalanmagan MYuK ta’sir etgani uchun o‘zgartkichning tashqi tavsifi \(I_3 \) ortgani sari chiziqli kamayib boradi.

Keltirilgan tashqi tavsiflar asosida kuchaytirgichni kerakli darajadagi kompensatsiyaga rostlash mumkin bo‘ladi.

4.3- \(b \) rasmda kuchaytirgichning uchala kompensatsiyalash holatlarini uchun tashqi tavsiflar \(U_3 = f(I_3) \) keltirilgan.

Chiqish kuchlanishi yuklanish qarshiligida to‘liq kompensatsiyalang-

ganida

\[U_3 = E_3 - I_3 R_3, \quad (4.9) \]

bunda: \(E_3 \) — salt yurish EYuK.

\(k = 1 \) holati uchun kuchaytirgichning kuchlanishi tok \(I_3 \) ortishi bilan kamayib boradi va uning qiymati EYuK \(E_3 \) dan EMKning bo‘ylama zanjiri ichki qarshilig \(R_3 \) dagi kuchlanish pasayishi qiymatiga farq qiladi.

\(k > 1 \) holati uchun kuchaytirgichning kuchlanishi tok \(I_3 \) ortishi bilan o‘zgarmasdan qolishi yoki oshishi mumkin.

\(k < 1 \) holati uchun kuchaytirgichning kuchlanishi tok \(I_3 \) ortishi bilan \(k = 1 \) holatidagi nisbatan kamayish shiddati tezroq bo‘ladi.

EMKning boshqaruv tavsiflari burchak tezligi \(\omega = \text{const} \) va \(R_{yuk} = \text{const} \) bo‘lganidagi chiqish kuchlan-

ishni va tokining boshqaruv tokiga bog‘liq ravishda o‘z-

garadigan tavsiflariga aytiladi (4.4- rasm).

Bu tavsiflarning ko‘rinishi mashinaning magnetlanish tavsifining shakliga bog‘liqdir. Kichik boshqaruv toklarida tavsiflarning nochiziqli bo‘lishi va mos ravishda kuchaytirish

\[u_3 \]

\[k > 1 \]

\[k = 1 \]

\[k < 1 \]

4.4- rasm. Ko‘ndalang maydonli EMKning boshqaruv tavsiflari.
koefitsiyentlarining o'zgaruvchan bo'lishi mavjud qoldiq EYuK bilan izohlanadi. Katta qiymatli boshqaruv toklarida tavsiflarning shuningdek, ko'rsatkichlarga ega bo'lishi esa magnet tizimining to'yinishi bilan bog'liqdir.

EMKlarning tezkorligi elementlarining vaqt doimiyliklar orqali aniqlanadi:

1) boshqaruv chulg'ami uchun \(T_1 = \frac{L_1}{R_1} \);

2) ko'ndalang zanjir uchun \(T_2 = \frac{L_2}{R_2} \);

3) bo'ylama zanjir uchun \(T_3 = \frac{L_3}{R_3 + R_{yuk}} \);

4) kompensatsiyalash konturi uchun \(T_K = \frac{L_K}{R_K} \).

Agar amalda \(R_{yuk} \gg R_3 \) ekanligini va vaqt doimiyligi \(T_3 \) qiymatining qolgan uch vaqt doimiyliklar qiymatlaridan ancha kichikligidan kelib chiqqan holda uning qiymatini hisobga olmaslik mumkin. Kuchaytirgichning tezkorligiga statorida joylashgan chulg'amlarning o'zaro ta'siri hamda ularning yakorda joylashgan chulg'am bilan ta'sirlari katta rol o'ynaydi.

O'tkinchi jarayonlarni hisoblashda chulg'amlarning barcha o'zaro ta'sirlarini hisobga olishga hojat yo'q, chunki ko'pgina hollarda ularning ta'sirlari sezilardi bo'lmaydi.

Agar boshqaruv chulg'ami bilan kompensatsion chulg'amlarning o'zaro magnetli bog'lanishi koefitsiyentini birga teng deb qarasak, u holda EMK ning kirishdagi kuchlanishning vaqt bo'yicha o'zgarishi diferensial tenglamasini operator ko'rinishda quyidagicha yozish mumkin:

\[
k_U U_1 = (T_1 + T_K)T_2 p^2 e_3 + (T_1 + T_2 + T_K)pe_3 + e_3. \tag{4.10}
\]

Ko'ndalang maydonli EMK ning uzatish funksiyasi (4.10) tenglama asosida quyidagi ko'rinishda yoziladi:

\[
W(p) = \frac{e_3}{U_1} = \frac{k_U}{1 + (T_1 + T_2 + T_K) p + (T_1 + T_K)T_2 p^2}. \tag{4.11}
\]

Ko'ndalang maydonli EMK larning asosiy afzalliklari:
1) quvvat bo'yicha kuchaytirish koefitsiyenti yuqori;
2) kirish zanjiri quvvati kichik;

80
3) tezkorligi yotarli darajada, ekvivalent elektromagnit vaqt doimiyligi $0,1 - 0,2$ s ni tashkil etadi;
4) ishonchli va uzoq muddat ishlashi yotarli darajada hamda quvvati keng oraliqda o‘zgaradi;
5) kompensatsiyalash darajasini rostlab tavsiflarini o‘zgartirish imkoni bor.

Ko‘ndalang maydonli EMK larning asosiy kamchiliklari:
1) quvvatlar bir xil bo‘lgan holda uning og‘irligi va o‘lcham ko‘rsatkichlari o‘zgarmas tok generatorlarnikiga nisbatan kattaroq;
2) gisterezis hisobiga qoldiq kuchlanishning bo‘lishi.

NAZORAT UCHUN SAVOLLAR

1. O‘zgarmas tok mashinasi qanday holda generator bo‘lib ishlaydi?
2. Elektromashina kuchaytirgichining o‘zgarmas tok generatoridan farqi nimada?
3. Elektromashina kuchaytirgichlari necha turga bo‘linadi?
4. Ko‘ndalang maydonli elektromashina kuchaytirgichidagi hosil qilinadigan ko‘ndalang magnit maydon nima uchun kerak?
5. Ko‘ndalang maydonli elektromashina kuchaytirgichining qaysi ko‘rsatkichlari bo‘yicha kuchaytirish koeffitsiyentlari hisoblanadi?
6. Ko‘ndalang maydonli elektromashina kuchaytirgichining boshqaruv tavsifi qanday quriladi?
7. Ko‘ndalang maydonli elektromashina kuchaytirgichining tezkorligi qanday vaqt doimiyliklarig’ bo‘lq?
8. Ko‘ndalang maydonli elektromashina kuchaytirgichi tashqi tavsifining nishabligi qanday ko‘rsatkichlarga bo‘g’liq?
9. Ko‘ndalang maydonli elektromashina kuchaytirgichining quvvat bo‘yicha kuchaytirish koeffitsiyenti tavsifi yuqlanish qarshiligini bilan qanday bog‘langan?
10. Ko‘ndalang maydonli elektromashina kuchaytirgichining asosiy afzal-liklari va kamchiliklari nimlардан iborat?
5-bob. TAXOGENERATORLAR

5.1. UMUMIY MA’LUMOTLAR

Generator rejimida ishlaydigan va aylanish tezligini proporsional elektr signaliga o’zgartiruvchi mikromashinalar taxogeneratorlar deb ataladi. Bunda taxogeneratorning kirish kattaligi — valning aylanish tezligi ω chiqish kattaligi — kuchlanish U_{chiq} ga o’zgartiriladi.

Ideal taxogeneratorning chiqish tavsifi tenglamasi quyidagi umumiy ko’rinishga ega

$$U_{chiq} = k_{KC} \omega = k_{KC} \frac{d\Theta}{dt}. \quad (5.1)$$

Bunda: Θ — taxogenerator rotorining burilish burchagi; k_{KC} — statik kuchaytirish koeffitsiyenti.

(5.1) tenglamadan ko’rinib turibdiki, agar funksiyani rotorning burilish burchagi ko’rinishida berilsa, u holda taxogeneratordan elektromexanik differensiallovchi qurilma sifatida ham foydalanish mumkin.

Konstruksiyasi va ishlash asosiga ko’ra taxogeneratorlar o’zgarmas tok va asinxron (sinxron taxogeneratorlar esa deyarlari qo’ilanilmaydi) guruylarga bo’linadi.

Taxogeneratorlarga qo’iladigan asosiy talablar:
1) ampliduda bo’yicha minimal xatolik, ya’ni chiqish tavsifining chiiziqli bog‘liqlikdan farqlanishi;
2) minimal faza xatoligi, ya’ni taxogenerator ish rejimi o’zgargandagi chiqish kuchlanishi fazasining minimal o’zgarishi;
3) kuchaytirish koeffitsiyentining Yuqori bo’lishi;
4) rotorini inersiya momentining kichik bo’lishi;
5) elektromagnit vaqt doimiyligining kichik bo’lishi.

Amplituda bo’yicha xatolik ΔU ning qiymati ideal chiqish tavsifidagi aylanish tezligiga mos keluvchi chiqish kuchlanishi bilan haqiqiy chiqish kuchlanishi farqini bildiradi.

Faza bo’yicha xatolik $\Delta \phi$ ning qiymati qo’zg’atish kuchlanishi vektori va ideal taxogeneratorning chiqish kuchlanishi vektori orasidagi aylanish tez-
ligiga bog‘liq bo‘lmagan burchak \(\beta \) bilan haqiqiy burchak qiymati orasidagi farqni bildiradi.

5.2. O‘ZGARMAS TOK TAXOGENERATORLARI

O‘zgarmas tok taxogeneratorining ishlashi asosi va konstruktiv tuzilishi jihatidan mustaqil qo‘zg‘aluvchan yoki o‘zgarmas magnitli qo‘zg‘aluvchan o‘zgarmas tok kollektorli mashinalardan farq qilmaydi (5.1- a rasm).

5.1- rasm. O‘zgarmas tok generatorining sxemasi va chiqish tavsiflari.

Qo‘zg‘atish magnit oqimi \(\Phi \) ning va yuklanish \(R_{yuk} \) larning o‘zgarmas qiymatlarida yakor uchidagi kuchlanish \(U \) ning yakor aylanish tezligi \(\omega \) ga bog‘liq o‘zgarishi tavsifi o‘zgarmas tok generatorining chiqish tavsifi deyiladi. Taxogenerator yakorida hosil qilinadigan EYuK quyidagi formula bilan aniqlanadi:

\[
E_{ya} = k_E \omega = k_E \frac{d\Theta}{dt},
\]

bunda: \(k_E = k\Phi \) — mashina doimiyligi; \(k \) — mashinaning konstruktiv koefitsiyenti.

(5.2) ifoda taxogeneratorning yakor zanjiri uziq holdagi salt yurishdagi chiqish tavsifidir. Bu chiziqli tavsif \((R_{yuk} = \infty) \) 5.1- b rasmga tasvirlanlangan.

Qo‘zg‘atish magnit oqimining o‘zgarmas qiymatida taxogenerator yakori uchlarini ma’lum ichki qarashlikka ega bo‘lgan elektr o‘lchov asbobi yoki qurilmaga ulanganida chiqish kuchlanishi yakor EYuKdan yakor zanjiridagi kuchlanish pasayishi qiymatiga kam bo‘ladi:
$$U_{ya} = E_{ya} - I_{ya} R_{ya,z},$$

(5.3) bunda: I_{ya} — yakor toki; $R_{ya,z}$ — yakor zanjirining aktiv qarshiliq.

5.1- b rasmda yuklanish qarshiligining ikki $R_{yuk1} > R_{yuk2}$ qiymatlari va cheksiz bo'lgan hollari uchun taxogeneratorning tashqi tavsiflari keltirilgan. $\Delta \omega_{n,z}$ — kuchaytirish koefitsiyenti va cho'tkalarning qanday metalldan yasalganligiga bog'liq bo'lgan taxogeneratorning nosezgirlik zonasi.

O‘zgarmas tok taxogeneratorlarning asosiy afzalliklari:
1) chiqish tavsifining yuqori darajada chiziqliligi;
2) faza bo'yicha xatolikning yo'qligi.

O‘zgarmas tok taxogeneratorlarning asosiy kamchiliklari:
1) kolлектор — cho'ptka tizimida sirpanuvchi kontaktning hosil bo'lishi;
2) radjoto'siqlardan himoyalash va chiqish kuchlanishi pulsatsiyalarini silliqlash uchun filtrlardan foydalanishning zarurligi;
3) konstruksiyasining murakkabligi va tannarxining yuqorilig'i.

5.3. ASINXRON TAXOGENERATORLAR

Avtomatika va hisoblash-yechish qurilmalarida konstruktiv tuzilishi nomagnit ichi bo'sh rotorli ijrochi asinxron mashinadan farq qilmaydigan asinxron generatorlar ishlatiladi.

5.2- rasm. Asinxron taxogeneratorning sxemalar.

5.2- a rasmda asinxron taxogeneratorning sxemasi tasvirlangan. Asinxron taxogeneratorning statorida joylashgan qo'zg'atish chulg'ami (QCh)ga
amplitudasi va chastotasi o‘zgarmas bo‘lgan qo‘zg‘atish kuchlanishi U_Q beriladi. Taxogenerator statorida joylashgan ikkinchi chulg‘am generator chulg‘ami (GCh) deb ataladi va uning uchlaridan chiqish signali U_G olinadi. Umuman olganda bu chulg‘am tashqi yuqanlash qarshiligini R_{yal} bilan tutashgan bo‘ladi.

Taxogenerator rotori ω_2 burchak tezlik bilan harakatga keltiriladi. Taxogenerator rotori simmetrik bo‘lgani uchun transformator EYuK qiymati o‘zgarmasdan golidi. Qo‘zg‘atish o‘qi rotori to‘xtatilgan holdagidek rotor tezligiga bog‘liq bo‘lmagan magnit oqimi ta’sirida bo‘ladi. Rotor o‘ramlari bu magnit oqimida aylanadi va natijada bu o‘ramlarda aylanish EYuK hosil bo‘ladi:

$$\dot{E}_{ayl} = k\omega_2 \Phi_Q, \quad \text{(5.4)}$$

bunda: k — mashinaning konstruktiv ko‘rsatkichlariga bog‘liq bo‘lgan koefitsiyent.

(5.4) ifodadan ko‘rinib turibdiki, $\Phi_Q = \text{const}$ bo‘lganida E_{ayl} ning qiymati rotorning aylanish tezligi bilan chiziqli bog‘langan va uning chastotasi qo‘zg‘atish kuchlanishi chastotasiga tengdir. EYuK E_{ayl} ta’sirida rotor chulg‘amidan \dot{i}_{ayl} oqadi va u generator chulg‘ami o‘qi bo‘ylab $\dot{\Phi}_G$ oqimini yuzaga keltiradi. \dot{i}_{ayl} tokining qiymati to‘g‘ridan-to‘g‘ri \dot{E}_{ayl} ga bog‘liq
bo‘lgani uchun ham bu tok hosil qilgan magnet Φ_G ning qiymati rotorning aylanish tezligi ω_2 ga to‘g‘ri proporsional bo‘ladi. Magnit oqimi Φ_G generator GCh da transformator EYuK. \hat{E}_G ni hosil qiladi va uning haqiqiy qiymati quyidagi tenglama bilan aniqlanadi:

$$E_G = 4,44k_{chul,g}w_Gf(\Phi_G),$$

(5.5) bunda: w_G — generator chulg‘ami (GCh)ning o‘ramlar soni; $k_{chul,g}$ — generator chulg‘ami (GCh)ning chulg‘am koefitsiyenti.

Φ_G ning qiymati rotor aylanish tezligiga to‘g‘ri proporsional bo‘lgani uchun

$$\Phi_G = k_1\omega_2,$$

(5.5) tenglamani o‘zgartirilib, quyidagi ko‘rinishda yoziladi:

$$E_G = k_G\omega_2 = k_G\frac{d\Theta}{dt},$$

(5.6) bunda: $k_G = 4,44k_{chul,g}w_Gf/k_1$; k_1 — taxogeneratorning konstruktiv ko‘rsat-kichiklar va qo‘zg‘atish kuchlanishiga bog‘liq bo‘lgan koefitsiyent.

(5.6) tenglamaning tahlili shuni ko‘rsatadiki, taxogeneratorning EYuK E_g ning qiymati taxogenerator rotori aylanishi tezligiga to‘g‘ri proporsional ekanligini bildiradi.

Asinxron taxogeneratorning tashqi tavsifini nisbiy kattaliklarda, ya‘ni generator chulg‘ami chiqishidagi kuchlanishning qo‘zg‘atish chulg‘amiga berilayotgan qo‘zg‘atish kuchlanishiga nisbat U_G/U_Q ning rotor tezligining nisbiy o‘zgarishi ω_2/ω_1 (bunda: ω_1 — sinxron tezlik) ga bog‘liq tavsifi 5.3- a rasmda keltirilgan.

5.3- b rasmda asinxron taxogeneratorning statik kuchaytirish koefitsiyenti $k_k = dU_G / d\omega_2$ ning rotor aylanish tezligi ω_2 / ω_1 ga bog‘liq o‘zgarish tavsifi berilgan. Tavsifdan ko‘rinib turibdiki, rotor tezligining ortishi bilan real statik kuchaytish koefitsiyentining kamayishi chiqish zanjiridagi aktiv va reaktiv qarshiliklar ta’sirida hamda qoldiq EYuK ning mavjudligi natijasida ro‘y beradi.

Asinxron taxogeneratorlarning o‘zgarmas tok taxogeneratorlariga nisbatan asosiy afzalliklari: sirpanuvchi kontaktlarning yo‘qligi sabablisi ishonch-lilik darajasi yuqori; ish jarayonida radioto‘siqu elektromagnet to‘lqinlar yuzaga kelmaydi; konstruktiv tuzilishi sodda.

Asinxron taxogeneratorlarni o‘zgarmas tok generatorlari bilan taqqoslaydigan bo‘lsak, ular quyidagi kamchiliklarga ega: chiqish tavsifining chiziq-
5.3- rasm. Asinxron generatororning chiqish (a) va kuchaytirish koefitsiyentining statik (b) tavsiflari (punktir bilan ideal chiziqli tavsiflari tasvirlangan).

ilik darajasi birmuncha past; kuchaytirish koefitsiyenti kichikroq; faza xatoliigi mavjud; chiqish kuchlanishining yuklanish xarakteriga bog‘liqligi.

NAZORAT UCHUN SAVOLLAR

1. Taxogeneratorlar qanday vazifalarni bajaradi?
2. O‘zgarmas tok taxogeneratorlar qanday asosda ishlaydi?
3. O‘zgarmas tok taxogeneratorlar qanday konstruktiv qismlardan tashkilot topgan?
4. Nima uchun o‘zgarmas tok taxogeneratori tashqi tavsifining nishabligi yuklanish qarshiligiga bog‘liq?
5. O‘zgarmas tok taxogeneratorlarining asosiy afzalliklari va kamchiliklari nimalaridan iborat?
6. Asinxron taxogeneratorlar qanday asosda ishlaydi?
7. Asinxron taxogeneratorlar qanday konstruktiv qismlardan tashkilot topgan?
8. Nima uchun asinxron taxogeneratorning chiqish tavsifida nochiziqli qismi mavjud?
9. Nima uchun asinxron taxogeneratorning kuchaytirish koefitsiyenti tavsifida nochiziqli qismi mavjud?
10. Taxogeneratorlarning asosiy afzalliklari va kamchiliklari nimalaridan iborat?
11. Taxogeneratorlar elektr yuritmalarning avtomatik boshqarish tizimlaridagi qanday teskari bo‘llanish zanjirlarida qo‘llaniladi?
12. Nima uchun amaliyotda sinxron taxogeneratorlar qo‘llanilmaydi?
6-bob. SELSINLAR

6.1. SELSINLAR HAQIDA UMUMIY MA’LUMOTLAR

Induksion sinxronlash tizimlarida o‘lchov o‘zgartkichlari va qabul qiluvchi sifatida o‘z—o‘zini sinxronlashtirish xususiyatiga ega bo‘lgan mikromashinalar selsinlar deb ataladi.

Induksion tizimlarda qo‘llaniladigan sinxron aloqalaridagi selsinlar va shuningdek, tizimlarning o‘zi ham uch fazali va bir fazali guruhlarga bo‘linadi.

Elektr val sxemalarida — bir-biridan ma’lum masofada joylashgan ikki elektr motor tezligini bir paytda katta aniqlikda sinxron va fazasi bo‘yicha ham sinxron boshqarish talab etilgan hollarda uch fazali selsinlar qo‘llaniladi.

Bir fazali selsinlar ikki asosiy ish rejimida ishlashi mumkin:

- **Indikator rejimi**, o‘lchov o‘zgartkich ma’jburiy aylantiriladi, qabul qilib olovchi qurilma esa holat o‘lchov o‘zgartkich bo‘yicha holatini o‘zing sinxronlovchi momenti ta’sirida o‘rnatadi;

- **Transformator rejimi**, o‘lchov o‘zgartkich ma’jburiy aylantiriladi, qabul qilib olovchi qurilma esa burchak nomuvofiqligi funksiyasi bo‘lgan kuchlanishni ishlab chiqaradi.

Har ikki ish rejimlari uchun ham quyidagi sxemalardan biri qo‘llanilishi mumkin:

a) juftlik: o‘lchov o‘zgartkich — qabul qiluvchi;
b) ko‘p karrali: o‘lchov o‘zgartkich — bir necha qabul qiluvchi;
c) differential: ikki o‘lchov o‘zgartkich — qabul qiluvchi.

Bir fazali sekin indikator va transformator rejimlarida o‘lchov o‘zgartkich hamda qabul qiluvchi sifatida ishlash mumkin.

Bir fazali selsinlarga qo‘yladigan asosiy talablar:

1) statik va dinamik aniqliklari yuqori bo‘lishi kerak. Statik xatolik sekin
burilish rejimida uzatilayotgan burchakning uzatish xatoligi qiymati, dinamik xatolik esa uzuksiz aylanishdagi berilayotgan burchakning uzatilish xatoligi;

2) bir aylanish oralig‘ida o‘zini-o‘zi sinxronlash xususiyati, ya‘ni sel-sinli tizimning bir aylanish oralig‘ida faqat bitta turg‘un mos holatda bo‘lish;
3) tezlikning katta qiymatlariida o‘z-o‘zini sinxronlash xususiyatini saqlab qolishi.

Bu talablarni ta’minlash uchun indikator selsinlari katta solishtirma va maksimal sinxronlash momentlarini yuzaga keltira olishi hamda qabul qiluvchi rotorining tinchlanishi esa eng kam vaqtga bo‘lishi kerak bo‘ladi. Transformator selsinlarining solishtirma chiqish uchun, berilgan yuklanish qarshiligida iloji boricha katta bo‘lishi va qabul qiluvchining chiqish qarshiligini minimal bo‘lishi lozim.

6.2. BIR FAZALI SELSINLAR

Bir fazali selsinlar konstruktiv tuzilish va sirpanuvchi kontaklari borligi bo‘yicha kontaktli va kontaktsiz turliarga bo‘linadi.

6.1- rasm. Kontaktli selsinning elektr (a) va konstruktiv sxemasi (b):

1 – stator; 2 – sinxronizatsiyalash chulg‘ami; 3 – rotor; 4 – qo‘zg‘atish chulg‘ami; 5 – dempferlash chulg‘ami; 6 – kontakt halqachalari.
Бир fazali selsinlarda sinxronizatsiya chulg‘ami uch fazali chulg‘am kabi, ya’ni alohida uchta chulg‘am fazoda o‘zaro bir-biridan 120° burchakka sizilitilgan holda yulduzcha usulida ulanib joylashtiriladi va har bir chulg‘amda hosil bo‘ladigan EYuk va uchala chulg‘amdan vaqt bo‘yicha fazasi bir xil toklar o‘tadi. Shuning uchun sinxronizatsiya chulg‘amini uch nurli sinxronizatsiya chulg‘ami deb atalas to‘g‘riroq bo‘ladi.
Sinxronizatsiya chulg‘ami har doim yoyilgan usulda tayyorlanadi. Qo‘zg‘atish chulg‘amini ham yoyilgan, ham jamlangan usullarda tayyorlash mumkin.
Selsinlarning qutblar juftligi sonini birga teng qilib tanlanadi, shunda bir aylanish chegarasida sinxronizatsiyalash imkon bo‘ladi.
Ba’zi selsinlarda qo‘zg‘atish chulg‘amiga perpendikular holda joylashtirilgan dempferlash chulg‘ami (DCh) ham bo‘ladi.
Sirpanuvchi kontaktlarning bo‘lishi kontaktli selsinlarning ishonchli ishashiga salbiy ta’sir qiladi. Shuning uchun ham hozirda kontakttsiz selsinlar keng qo‘llanilmoqda.
Kontakttsiz selsinlar konstruktiv ijrosi bo‘yicha stator tomonidan rotor qo‘zg‘atiladigan va o‘tkinchi halqachali transformatordi turlarga bo‘linadi.
Differensial selsinlar bir fazali kontaktli selsinlardan rotori va statori-dagi chulg‘amlarining uch nurli bo‘lishi bilangina farq qiladi.
6.3. Selsinlarning Indikator Ish Rejimi

Uzoz masofada joylashgan qandaydir mexanik rostplanuvchi organlar (masalan, suv taqsimlagich klapan)ning holati to‘g‘risidagi informatsiyani **indikator rejimida ishlaydigan** selsinlar yordamida uzatish qulaydir.

Odatda, indikator rejimida ikkita bir xil rusumdagi selsinlar: uzatuvchi SU va qabl qiluvchi SQ lar ishlaydi. 6.2- rasmda indikator rejimida ishlaydigan bir fazali selsinlarning sxemasi keltirilgan.

6.2- rasm. Indikator rejimida ishlaydigan bir fazali selsinlarning sxemasi.

Ikkala selsinning qo‘zg‘atish chulq‘amliari bir fazali o‘zgaruvchan tok tarmog‘iga ulangan. Ularning sinxronizatsiyalash chulq‘amliari o‘zaro mos ravishda aloqa liniyalari bilan ulangan.

$$
\begin{align*}
\dot{E}_{U1} &= \dot{E}_{max} \cos \Theta_U; \\
\dot{E}_{U2} &= \dot{E}_{max} \cos(\Theta_U - 120^\circ); \\
\dot{E}_{U3} &= \dot{E}_{max} \cos(\Theta_U - 240^\circ),
\end{align*}
$$

bunda: Θ_U — muvozanat holatidan keyin yuzaga kelgan selsin — uzatuvchi rotorining burilish burchagi (muvozanat holati deb, selsin — uzatuvchining

91
E_{U_1} EYuK hosil bo‘ladigan sinxonizatsiyalash chulg‘aming o‘qi yo‘qoz‘g‘atish chulg‘ami o‘qi bilan bir o‘qda yotgan holatni tushuniladi); E_{\max} sinxonizatsiyalash chulg‘ami bilan yo‘qoz‘g‘atish chulg‘ami bir o‘qda yotgan holatiga to‘g‘ri keladigan sinxonizatsiyalash chulg‘aming maksimal EYuK qiymati; \dot{E}_{U_1}, \dot{E}_{U_2}, \dot{E}_{U_3} — selsin — uzatuvchi sinxonizatsiyalash chulg‘amlarining mos EYuK.

Selsin — qabul qiluvchi EYuKning ifodalarini ham xuddi (6.2) ko‘rinishga ega bo‘ladi

\[
\begin{align*}
\dot{E}_{K1} &= \dot{E}_{\max} \cos \Theta_K; \\
\dot{E}_{K2} &= \dot{E}_{\max} \cos(\Theta_K - 120^\circ); \\
\dot{E}_{K3} &= \dot{E}_{\max} \cos(\Theta_K - 240^\circ).
\end{align*}
\] (6.2)

(6.1) va (6.2) tenglamalardagi EYuKlar vaqt bo‘yicha fazalari bir xil, ya’ni bir fazali tizimli bo‘lgani uchun tenglamalardan kelib chiqadigan ifodalarda vektor belgisini yo‘qish shart emas.

Burchak nomutanosibligi uzatuvchi selsin rotorining burilish burchagi bilan qabul qilib oluvchi selsin rotorining burilish burchagi ayirmasiga teng:

$$\Theta = \Theta_U - \Theta_K.$$ (6.3)

Agar $\Theta = 0$ bo‘lsa, u holda $\Theta_U = \Theta_K$ bo‘ladi va shunda

$$E_{U_1} = \dot{E}_{K1}; \ E_{U_2} = \dot{E}_{K2}; \ E_{U_3} = \dot{E}_{K3}.$$ Aloqa liniyasidagi tok ham nolga teng bo‘ladi

$$I = \frac{E_{E} - E_{K}}{2Z} = 0,$$ (6.4)
bunda: Z — bir selsin sinxonizatsiyalash chulg‘aming to‘liq qarshiligi.

Bu holda selsin statori magnit oqimi bilan rotori o‘rtasida o‘zaro ta’sir bo‘lmaydi va selsinlar tinch holatda bo‘ladi.

$$\Theta \neq 0$$ bo‘lganida, ya’ni $\Theta_U \neq \Theta_K$ holat yuzaga keladi va selsin — uzatuvchi va selsin — qabul qiluvchi EYuKlarining ayirmasi noldan farqli qiymatga ega bo‘ladi:

$$E_1 = E_{U_1} - E_{K1}; \ E_2 = E_{U_2} - E_{K2}; \ E_{U_3} - E_{K3}.$$ (6.5)

Aloqa liniyasining qarshiligini hisobga olmaganda sinxonizatsiyalash chulg‘amlaridagi va aloqa liniyasidagi quyidagi ifodalar yordamida aniqlaymiz:

92
\[I_1 = \frac{E_1}{2Z}; \quad I_2 = \frac{E_2}{2Z}; \quad I_3 = \frac{E_3}{2Z}. \] \hspace{1cm} (6.6)

Синхронизациялш моментини аниqlash uchun uch fazali MYuKni bo’ylama d o‘qi va ko‘ndalang q o‘qlar bo‘yicha tashkil etish usuli qo’llaniladi.

Uzatuvchi va qabul qiluvchi selsinlarning sinhronizatsiyalash chulg‘amlaridan o‘tayotgan I_1, I_2, I_3 toklar shu chulg‘amlarning o‘qlar yo‘nalishiga mos bo‘lgan F_1, F_2, F_3 yo‘nalishdagi MYuKlarni yuzaga keltiradi.

Oraliqdogi o‘zgartirish amallaridan so‘ng uzatuvchi selsinning bo‘ylama va ko‘ndalang o‘q’lardagi MYuK:

\[F_{Ud} = -\frac{3}{4} F_{\text{max}} (1 - \cos \Theta); \] \hspace{1cm} (6.7)

\[F_{Uq} = -\frac{3}{4} F_{\text{max}} (\cos \Theta), \] \hspace{1cm} (6.8)

bunda: \(F_{\text{max}} = 1.8 \omega k_{chul} I_{\text{max}} \); \(I_{\text{max}} = \frac{E_{\text{max}}}{Z} \) tokning maksimal haqiqiy qiymati; \(\omega \) — sinhronizatsiyalash chulg‘aming soni; \(k_{chul} \) — chulg‘am koeffitsiyenti.

Qabul qiluvchi selsin uchun ham bo‘ylama va ko‘ndalang o‘q’lardagi MYuKni hisoblash (6.7) va (6.8) ifodalar ko‘rinishida bo‘ladi:

\[F_{Kd} = -\frac{3}{4} F_{\text{max}} (1 - \cos \Theta); \] \hspace{1cm} (6.9)

\[F_{Kq} = -\frac{3}{4} F_{\text{max}} (\cos \Theta). \] \hspace{1cm} (6.10)

Selsinning bo‘ylama o‘qi bo‘yicha to‘liq MYuK qiymati qo‘zg‘atish chulg‘ami va sinhronizatsiya chulg‘amlaring shu o‘qi MYuKlari yig‘indisidan iborat bo‘ladi:

\[F_{\Sigma d} = F_K + F_d. \] \hspace{1cm} (6.11)

Bo‘ylama o‘q bo‘yicha hosil qilingan magnit oqimi,

\[\Phi_d = F_{\Sigma d} \Delta_d, \] \hspace{1cm} (6.12)

bunda: \(\Delta_d \) — bo‘ylama o‘q bo‘yicha magnit o‘tkazuvchanlik.
Uzatuvchi va qabul qiluvchi selsinlarning sinxronizatsiyalash chul-g'amlarining MYuKlarini ko'ndalang magnit maydonini hosil qiladi:

$$\Phi_q = F_q \Delta_q,$$ \hfill (6.13)

bunda: Δ_q – ko'ndalang o'q bo'yicha magnit o'tkazuvchanlik.

Sinxronizatsiyalash momenti asosan magnit oqimi Φ_d bilan sinxronizatsiyalash chulg'amlarining ko'ndalang tashkil etuvchisi toklarining o'zaro ta'siri natijasida hosil bo'лади.

Sinxronizatsiyalash momentining oniy qiymati

$$m_C = \frac{1}{2} c \Phi_d F_{max} \cos \psi \sin \Theta - \frac{1}{2} c \Phi_d F_{max} \cos(2\omega t - \psi) \sin \Theta,$$ \hfill (6.14)

bunda: ψ – magnit oqimi Φ_d bilan MYuK F_{max} vektorlari orasidagi vaqt bo'yicha siljish burchagi; c – konstruktiv koefitsiyent.

Bir davr ichida (6.14) ikkinchi qismning o'rtacha qiymati nolga teng bo'lgani uchun sinxronizatsiyalash momentining o'rtacha qiymati M_C tenglama o'ng qismning birinchi hadida teng bo'лади va uning ifodasi quyidagi ko'rinishda yoziladi:

$$M_C = M_{C_{max}} \sin \Theta,$$ \hfill (6.15)

bunda:

$$M_{C_{max}} = \frac{1}{2} c \Phi_d F_{max} \cos \psi.$$ \hfill (6.16)

6.3-rasmda sinxronizatsiyalash momenti M_C ning $p = 1$ holati uchun nomutanosiblik burchagi Θ ga bog'liq o'zgarishi funksiyasi keltirilgan.

![6.3-rasm. Sinxronizatsiyalash momentining tavsifi.](image)

Real selsinlarda sinxronizatsiyalash momentining tavsifi sinusoidaldan farqliroq bo'лади, chunki Φ_d va ψ kattaliklarning qiymatlari Θ ning qiymatiga bog'liq ravishda o'zgaradi.
Ba’zi hollarda indikator rejimida ishlaydigan selsinlar uzluksiz aylanish rejimida ishlaydi. Bu holda sinxronizatsiyalash momenti aylanish tezligining funksiyasi bo‘ladi va u dinamik sinxronizatsiyalash momenti deb ataladi. Dinamik sinxronizatsiyalash momenti quydagi empirik formula bilan ifodalanadi:

$$M_{C_{\text{din}}} = M_{C_{\text{max}}} \sin \Theta \cos \frac{\omega p}{4f},$$ \hspace{1cm} (6.17)

bunda: \(\omega\) — qabul qiluvchi selsin rotorining aylanish tezligi; \(M_{C_{\text{max}}}\) — maksimal statik sinxronizatsiyalash momenti.

Ba’zi hollarda masofaga bir emas bir nechta joyga burchak kattaligini uzatishga to‘g‘ri keladi. Bitta uzatuvchi selsinga bir nechta qabul qiluvchi selsinlar ulanadigan sxemalar selsinlarning ko‘p karrali indikator rejimi sxemaları deyiladi.

6.4. SELSINLARNING TRANSFORMATOR ISH REJIMLARI

Bu ish rejimida kichik quvvatli signal aloqa liniyasidan uzatiladi, so‘nga bu signal kuchaytiriladi, ijrochi motorni ishga tushiradi, motor esa boshqaruv obyektini siljitishi bilan bir paytda uzatuvchi selsin bilan qabul qiluvchi selsinlar orasidagi nomutanosiblik burchagini kamaytiradi.

6.4- rasmda selsinlarning transformer ish rejimida ishlash sxemasi keltirilgan.
Uzatuvchi selsinning qo'zg'atish chulg'ami ta'minlovchi tarmoqqa utanib mashinaning magnit tizimida ma'lum chastotali magnit oqimini hosil qiladi. Uzatuvchi va qabul qiluvchi sinxronizatsiyalash chulg'amlar o'zaro aloqa liniyalar bo'yicha ulangan.

Qabul qiluvchi selsinning qo'zg'atish chulg'aming vazifasi nomutanosiblik burchagi $\Theta = \Theta_U - \Theta_K$ ga mos bo'lgan signal (kuchlanish)ni hosil qilishdan iborat.

Qabul qiluvchi selsinning qo'zg'atish chulg'ami uzatuvchi selsinning qo'zg'atish chulg'amidan avvaldan 90°ga burilgan bo'lsa, u holda selsinlarning transformer rejimi schemasi mos deyiladi. Qabul qiluvchi selsin rostoring burilish burchagi Θ_K ning qiymati shu holatga nisbatan hisoblanadi.

Uzatuvchi selsinning qo'zg'atish chulg'amida hosil qilangan ma'lum chastotali magnit oqimi Φ_K sinxronizatsiyalash chulg'amlarida mos ravishda E_1, E_2, E_3 EYuKlarni yuzaga keltiradi va ularning qiymatlarini (6.1) tenglamalar asosida hisobilash mumkin. Agar aloqa liniyalarining qarshiliklari hisobga olmasak va har ikkala selsinlarning qarshiliklari o'zaro teng, ya'ni $Z_U = Z_K = Z$ deb qabul qilsak, u holda EYuK ta'sirida chulg'amlar va liniyaldan o'tayotgan toklar quyidagi ifodalar bilan aniqlanadi:

$$I_1 = \frac{E_{\text{max}}}{2Z} \cos \Theta_U;$$
$$I_2 = \frac{E_{\text{max}}}{2Z} \cos(\Theta_U - 120^{\circ});$$
$$I_3 = \frac{E_{\text{max}}}{2Z} \cos(\Theta_U + 120^{\circ}).$$

Bu toklar qabul qiluvchi selsinning sinxronizatsiyalash chulg'amlarida F_{k1}, F_{k2}, F_{k3} MYuKlarni hosil qiladi.

MYuKlarning natijaviy qiymati bo'ylama va ko'nda lang tashkil etuvchi lar yordamida hisoblanadi:

$$F = \sqrt{F_d^2 + F_q^2} = \frac{3}{2} F_{\text{max}},$$

bunda: $F_{\text{max}} = 1,8 \omega k_{chut} I_{\text{max}}$ - qutqlar juftligiga to'g'ri keladigan MYuK.

Natijaviy MYuK magnit oqimi Φni hosil qiladi va bu magnit oqimi esa qabul qiluvchi selsinning qo'zg'atish chulg'ami bilan o'zaro ta'siri natijasida qo'zg'atish chulg'amida chiqish EYuKni yuzaga keltiradi:

96
\[E_{chul} = E_{chiq.\ max} \sin \Theta, \quad (6.20) \]

bunda: \(E_{chiq.\ max} \) — natijavi MYuK vektorining qabul qiluvchi selsin qo‘zg‘atish chulg‘ami o‘qi bilan mos kelgan holdagi chiqish EYuK qiymati.

6.5- rasmlarda transformator rejimi sxemasida ishlayotgandagi qabul qiluvchi selsinning chiqish EYuK va kuchlanishning nomutanosiblik burchagi \(\Theta \) ga bog‘liq o‘zgarishi tavsiflari keltirilgan.

6.5- rasm. Qabul qiluvchi selsinning chiqish EYuK (1) va kuchlanish (2) tavsiflari.

NAZORAT UCHUN SAVOLLAR

1. Selsinlar qanday vazifani bajaradi?
2. Selsinlar necha turga bo‘linadi?
3. Uzatuvchi selsin bilan qabul qiluvchi selsinlarning funksiyalari nimalardan iborat?
4. Bir fozali kontaktli selsin qanday konstruktiv qismlardan tashkilot topgan?
5. Qaysi hollarda bitta uzatuvchi va bir necha qabul qiluvchi selsinaridan foydalaniladi?
6. Selsinlarning qanday ish rejimlari mavjud?
7. Selsinlarning indikatorli ish rejimi qanday rejim?
8. Selsinning transformator ish rejimi qanday rejim?
9. Sinxronizatsiya momentli qanday hosil qilinadi?
10. Qabul qiluvchi selsinning chiqish elektr EYuK va kuchlanish tavsiflari qanday hosil qilinadi?

7 — A.T. Imomnazarov

97

www.ziyouz.com kutubxonasi
7-bob. BURILUVCHI TRANSFORMATORLAR

7.1. BURILUVCHI TRANSFORMATORLAR HAQIDA UMUMIY MA’LUMOTLAR

Rotorning burilish burchagi Θ ni $\sin \Theta$ yoki $\cos \Theta$ funksiyalarga proporsional bo’lgan yoki burchak Θ ning o’ziga proporsional bo’lgan kuchlanishga o’zgartiruvchi mikromashinalar buriluvchi transformatorlar deb ataladi. Bu transformatorlar hisoblash qurilmalarida matematik amallarni bajarishda ishlatiladi. Buriluvchi transformatorlar ayniqsa avtomatik boshqarish quril- malarida koordinatalar vektorlarini o’zgartirish, ajratish va natijada vektorlar uchburchagini qurish asosida geometrik hamda trigonometrik masalalarni yechishda keng qo’llaniladi. Avtomatik boshqarish tizimlarida buriluvchi transformatorlardan tiziminning ma’lum holatidagi qayd qilingan farqli nomu- tanosiblikni o’lchovchi sifatida foydalaniladi.

Buriluvchi transformatorlar chulg‘amlarining ulanish sxemalari turlariga qarab bir necha rejimlarda ishlash mumkin:

1) sinus-kosinusli, bir chulg‘aming kuchlanishi rotori burilishi burchagining sinusiga proporsional, ikkinchi chulg‘aming kuchlanishi esa rotori burilishi burchagining kosinusuga proporsional bo‘ladi;

2) grafik chizg‘ich, to‘g‘ri burchakli koordinatalar tizimdagi (to‘g‘ri burchakli uchburchakning katetlari) vektorlar diagrammasining tashkil etuv-chilariga proporsional bo‘lgan kuchlanishlarini stator chulg‘amlarining har ikkalasiga berilganida, chiqish kuchlanishning vektor moduliga proporsional bo‘ladi (gipotenuzaga), rotor burilishi burchagi esa uning argumenti (katet bilan gipotenuza orasidagi burchak) bo‘ladi;

3) chiziqli, chiqish kuchlanishi rotor burilishi burchagiga proporsional. Bunday mikromashinalar sifatida asosan sinus-kosinusli burilish transformatorlari ishlatiladi;

4) masshtabl, chiqish kuchlanishi kirish kuchlanishiga proporsional bo‘ladi va proporsionallik koefitsiyenti (masshtab) rotorning burilish burchagi qiymati bilan aniqlanadi.

Burilish transformatorlariga qo‘ydijadigan asosiy talablar:

1) berilgan funksiyani qayd qilinishda amplituda bo‘yicha minimal xatolikka ega bo‘lishi;

2) burilish burchagi yoki yuklanishga bog‘liq bo‘lgan, ya’ni faza bo‘yicha chiqish kuchlanishining xatoligi minimal bo‘lishi;
3) roturning aylanish tezligi yuqori bo‘lishi.
Bundan tashqari, buriluvchi transformerlarga qo‘yladigan talablar-
ning ko‘lami aniq qo‘llanilishi shart-sharoitidan kelib chiqqan holda mik-
romashinalarga qo‘yladigan talablar asosida kengayishi ham mumkin.
Konstruktiv jihatdan buriluvchi transformatorlar kontaktli va kon-
taktsiz turlarga bo‘linadi.
Buriluvchi transformatorlar qo‘zg‘afmas stator va qo‘zg‘aluvchan rotor-
dan iborat bo‘ladi. Stator va roturning o‘zaklari elektrotexnik po‘lat listlardan
yoki magnet qarshiligiga kichik bo‘lgan permoloydan yasaladi. Listlar bir-
biridan lak bilan izolatsiyalanadi.
Stator va rotor ariqchalarida ikkitadan chulg‘amlar joylashtirilgan bo‘ladi
va ular orasidagi burchak 90°ni tashkil etadi. 7.1- rasmda bu chulg‘amlarning
joylashishi ko‘rsatilgan: \(C_1C_2 \) — storning bosh chulg‘ami; \(C_3C_4 \) — sta-
toring yordamchi (kvadratur) chulg‘ami; \(P_1P_2 \) va \(P_3P_4 \) — roturning sinus va
kosinus chulg‘amlari.
Odatda, stator chulg‘amlarning o‘ramlari soni,
qo‘llanilgan simning turi va ko‘ndalang kesim yuzasi hamda
ulanish sxemalari bir xil tayyorlanadi. Rotor chulg‘amlari
ham bir xil qilib tayyorlanadi. Rotor burilishi burchagi
Qining qiymatini hisoblash sinus chulg‘ami o‘qidan
boshlanib to stator yordamchi chulg‘ami o‘qigacha or-
liqda amalga oshiriladi.
Stator chulg‘amlarning uchlar to‘g‘ridan-to‘g‘ri
ulagichlarga chiqarilib borilgan bo‘ladi. Kontaktli buriluv-
chi transformerlari rotor chulg‘amlarning uchlar to‘rt
kontaktli halqacha — cho‘tka tizimi orqali tashqi elektr
sxemaga ulanadi.
Kontaktsiz buriluvchi transformerlari rotor
chulg‘amlarning uchlar spiral prujina yoki oraliq halqali
transformator yordamida tashqi elektr sxemaga ulanadi.
Buriluvchi transformerlarn asosan ikki qutbli elek-
tr mashinalardir. Ammo distansion boshqarish tizim-
larida uzatlayotgan burchak qiymati aniqligini oshirish
maqsadida ko‘p qutbli buriluvchi transformerlarni ham ishlatiladi. Barcha
turdagi buriluvchi transformerlarning nominal chastotasi 400 Hz dan
kam emas.
7.2. SINUS-KOSINUSLI BURILUVCHI TRANSFORMATORLAR

Buriluvchi transformatorlarning ishlash asosini rotor burilish burchagi sinusi funksiyasini olish misolida ko'rib chiqamiz (sinusli buriluvchi transformer). Bu rejimda statorning bosh chulg'ami C_1C_2 qiymati o'zgarmas bo'lgan o'zgaruvchan tok kuchlanishi manbayi U_1 ga ulangan (7.2- a rasm).

Rotor chulg'ami P_1P_2 tashqi yuklanish $Z_{yuk1} = R_{yuk1} + jX_{yuk1}$ ga ulangan. C_3C_4 va P_3P_4 chulg'amlar uzilgan bo'lib, buriluvchi transformatorning bu rejimida ishtirok etmayotganligi sababli rasmda ko'rsatilmagan.

![Diagram](image)

7.2- rasm. Sinusli buriluvchi transformatorning prinsipial elektr (a) va ekvivalent (b) sxemalari.

C_3C_4 va P_3P_4 chulg'amlar orasidagi o'zaroiinduktivlik rotor burilish burchagiga bog'liq ravishda o'zgarishini quydagi tenglama bilan ifodalanganadi:

$$M = \Lambda w_c w_p \sin \Theta,$$

(7.1)

bunda: Λ - magnit o'tkazuvchanlik; havoli tirqichning bir tekisligi tufayli uning qiymati rotorning burilish burchagiga bog'liq emas; w_c, w_p - stator va rotor chulg'amlarining effektiv o'ramlari soni.

Buriluvchi transformatorning ikki holatdagi ish rejimini ko'rib chiqamiz.

1. Buriluvchi transformatorning salt ish rejimi ($Z_{yuk1} = \infty$; $I_{pl} = 0$). Rotori chulg'ami EYuKning stator chulg'ami EYuKga nisbati
\[
\frac{E_{p1}}{E_{c1}} = \frac{w_p \sin \Theta}{w_c} = k_{tr} \sin \Theta,
\]
(7.2)

bunda: \(E_{c1}\) — bosh stator chulg’amining EYuK (\(E_{c1} \approx U_i\)); \(k_{tr} = \frac{w_p}{w_c}\) transformatsiya koeffitsiyenti.

Shunday qilib,

\[
\dot{E}_{p1} = k_{tr} \dot{E}_{c1} \sin \Theta,
\]
(7.3)

ya’ni buriluvchi transformatorning salt ish rejimidagi rotorining EYuK rotor burilishi burchagining sinusoidal funksiyasi bo‘ladi.

2. Buriluvchi transformatorning yuklanishli ish rejimi (\(Z_{yuk1} \neq \infty\), \(I_{p1} \neq 0\)). Bu ish rejimida buriluvchi transformator rotorining qiymati salt yurishdagidan \((1 + \dot{b} \cos^2 \Theta)\) martaga kam bo‘ladi, ya’ni

\[
\dot{E}_{p1} = \frac{k_{tr} \dot{E}_{c1} \sin \Theta}{1 + \dot{b} \cos^2 \Theta},
\]
(7.4)

bunda:

\[
\dot{b} = j \frac{\omega_p w_p^2 \Lambda}{(Z_{yuk1} + Z_{p1})},
\]
(7.5)

\(\omega_p\) — tarmoq kuchlanishining burchak chastotasi; \(Z_{p1} = R_{p1} + jX_{p1}\) — rotor chulg’ami \(P_1P_2\) ning kompleks qarshiligii.

Shuningdek, rotorning \(P_1P_4\) chulg’ami ishchi chulg’am bo‘lib, \(P_1P_2\) chulg’ami uzilgan holda \(C_1C_2\) va \(P_1P_2\) chulg’amlar orasidagi o‘zaro inductivlik kosinusoidal qonuniyatga bo‘ysunadi. Shunda buriluvchi transformator kosinusli buriluvchi transformatornga aylanadi va uning salt yurish rejimidagi rotorning EYuK ifodasi:

\[
\dot{E}_{p1} = k_{tr} \dot{E}_{c1} \cos \Theta,
\]
(7.6)

yuklanishli rejim uchun esa

\[
\dot{E}_{p1} = \frac{k_{tr} \dot{E}_{c1} \cos \Theta}{1 + \dot{b} \sin^2 \Theta},
\]
(7.7)
7.3. CHIZIQLI, MASSHTABLIGA VA GRAFIK CHIZGICH BURILUVCHI TRANSFORMATORLAR

Chiziqli buriluvchi transformatorlarda chiqish kuchlanishining qiymati rotori burilish burchagining quyidagi funksiyasiga proporsional bo‘lishi kerak

\[f(\Theta) = \frac{\sin \Theta}{1 + c \cos \Theta}, \]

(7.8)

bunda: \(c \) — rotor burilishi burchagiga bog‘liq bo‘lmagan koefitsiyent.

(7.8) ifodani amalga oshirish uchun buriluvchi transformatori 7.3- rasmda keltirilgan sxema bo‘yicha ulanishi lozim. Bu sxemada statorning bosh chulg‘ami \(C_1C_2 \) va rotorning kosinus chulg‘ami \(P_3P_4 \) ketma-ket ulanadi. Statorning yordamchi chulg‘ami \(C_1C_4 \) ga parallel \(Z_2 \) qarshilik ulangan. Rotorning sinus chulg‘ami \(P_1P_2 \) uchlaridagi kuchlanish chiqish kuchlanishi bo‘ladi. Birlamchi simmetriyalashning sharti bajarlanganida (odatda, \(Z_2 = 0 \)), \(P_1P_2 \) va \(P_3P_4 \) rotor chulg‘amlari hamda \(C_3C_4 \) stator chulg‘ami ko‘ndalang o‘ramlari hosil qilgan natijaviy ko‘ndalang magnet oqimi nolga teng bo‘ladi. Natijada, \(P_1P_2 \) rotor chulg‘aming ko‘ndalang o‘ramlariida o‘zinduxiya EYuK hosil bo‘lmaydi. \(C_1C_2 \) stator chulg‘aming \(w_c \) o‘ramidan hamda \(P_3P_4 \) rotor chulg‘aming \(w_p \cos \Theta \) bo‘ylama o‘ramidan o‘t-yotgan tok \(I_{el} \) bo‘ylama (asosiy) magnet oqimi \(\phi_d \) ni hosil qiladi, ya’ni natijaviy qo‘zg‘atish chulg‘ami \(w_c + w_p \cos \Theta \) o‘ramlardan iborat bo‘ladi va shunda chiqish EYuK quyidagi ifoda bilan aniqlanadi:

\[\dot{E}_{r1} = k_tr \dot{E}_1 \frac{\sin \Theta}{1 + k_tr \cos \Theta}, \]

(7.9)

bunda: \(\dot{E}_1 \) — natijaviy qo‘zg‘atish chulg‘aming EYuK (\(\dot{E}_1 \approx \dot{U}_1 \)); \(k_tr = \frac{w_p}{w_c} \) transformatsiya koefitsiyenti.
(7.9) ifoda ko'rinishi bilan (7.8)ga monand. Demak, buriluvchi transformatorning chiqish tavsifi berilgan rotor burilishi burchagi oralg'ida chiziqli bo'lishadi. Chiziqli buriluvchi transformatoqlar $k_{tr} = 0.565$ qilib ishlab chiqariladi.

Ko'p bosqichli sxemada ishlaydigan chiziqli buriluvchi transformatoqlar chiqish tavsiflarining yuklanishga bog'liqligini yo'qotish maqsadida ikkilamchi simmetriyalash usuli qo'ilganidagi (7.4- rasm).

Qo'zg'atish kuchlanishi bosh stator chug'ami C_1C_2 uchaliga beriladi. Statorning yordamchisi chug'ami C_3C_4 va rotorning sinus chug'ami P_1P_2 ketma-ket ulanib umumiy zanjirma tashkil etadagi va ularning uchlariga yuklanish qarshiligi Z_{yuk1} ulangan. Bu qarshilik uchidan olinayotgan kuchlanish chiziqli buriluvchi transformatorning chiqish kuchlanishi bo'lishadi. Rotorning P_3P_4 ikkinchi chug'amiga o'zgaruvchan yuklanish qarshiliqni ulanadi.

Ikkilamchi simmetriyalanuvchi chiziqli buriluvchi transformatorning chiqish EYuK qiymati quyidagi formula yordamida aniqlanadi:

$$\dot{E}_{p1} = k_{tr} \dot{E}_1 \frac{\sin \Theta}{1 + \dot{a} \cos \Theta},$$ \hspace{1cm} (7.10)

bunda: $$\dot{a} = j \frac{\omega_1 w_c w_p \Lambda}{Z_{yuk1} + Z_{p1} + Z_{cl}}$$ rotorning burilish burchagiga bog'liq bo'lgan kompleks ko'phad.

Bunday chiziqli buriluvchi transformatoqlarning asosiy kamchiligi yuklanish qarshiligi Z_{yuk1} qiymati o'zgaruvchan bo'lganida simmetriya sharti va chiqish kuchlanishning chiziqliq buziladi.

Elektro sxemaning ba'zi qismlarida, kuchlanishning o'zgarish qonuniyatlarini o'zgaritmagan holda, kuchlanishlarning mashtablarini o'zaro moslashtiris va maqsadida mashtablgi buriluvchi transformatoqlar ishlatiladi. Ummum olganda barcha mashtablarni moslashtirish usullari asosan ikki turga bo'linadi: signal kuchlanishini hosil qilish va surish kuchlanishini hosil qilish.

Birinchi holda mashtablgi buriluvchi transformatoq oddiy birlamchi simmetriyalanuvchi sinusli buriluvchi transformatoq sxemasi bo'yicha ulamda.
nadi (7.2- a rasm). Bosh stator chulg‘ami \(C_1 C_2 \) uchlariga oldingi pog‘ona sxemasidagi chiqish kuchlanishi \(\hat{U}_1 \) beriladi. Chulg‘am \(P_1 P_2 \) uchlaridan olinadigan buriluvchi transformatorning chiqish kuchlanishi \(\hat{U}_{pl} \) sxemaning keyingi pog‘onası uchun kirish signali bo‘ladi.

Chiqish kuchlanishi

\[
\hat{U}_{pl} = k_U \sin \Theta \hat{U}_1,
\]

(7.11)

bunda: \(k_U \) sin \(\Theta \) masxtab koeffitsiyenti.

Siljituvchi kuchlanishlarni hosil qilish, asosan, kirish kattaligi bir xil ishoralari o‘zgarganida chiqiqli buriluvchi transformatorning ishlash oralig‘ini kengaytirish maqsadida qo‘llaniladi (7.5- a rasm).

7.5- rasm. Siljitish kuchlanishini hosil qilish (a) va chiqiqli siljuvchi buriluvchi transformatorning sxemasi (b).

Natijaviy chiqish kuchlanishi \(\hat{U}_{nat} \) chiqiqli buriluvchi transformatorning chiqish kuchlanishi \(\hat{U}_{chiq} \) bilan o‘zgarmas qiyamatli siljitish kuchlanishi \(\hat{U}_{sil} = \hat{U}_{chiq, max} \) yig’indisidan iborat bo‘ladi.

7.5- b rasmda chiqiqli siljuvchi buriluvchi transformatorning sxemasi berilgan. Siljitish kuchlanishi \(\hat{U}_{sil} \) masxtablari buriluvchi transformat MBTdan olinadi; MPTning rotori chiqish kuchlanishi talab etilgan kuchlanishta teng bo‘lishini ta‘minlovchi holatgacha buriladi. Har ikkala buriluvchi transformatorlar birlamchi chulg‘amları tomonidan simmetriyalangan bo‘ladi.

104
To'g'ri burchakli uchburchakning berilgan ikki katetlari asosida gipotenuzasini aniqlovchi grafik chizg'ich buriluvchi transformatorning sxemasi 7.6- rasmda keltirilgan.

Statorning $C_1 C_2$ va $C_3 C_4$ chulg'amlari bir fazali tarmoqqa kuchlanish taqsimlovchi R orqali ulangan. Rni qo'llashdan maqsad stator chul-

g'amlarining uchlariga kerakli qiymatli U_{c1} va U_{c2} kuchlanishlarni o'r-

natischdan iborat. Rotor chulg'amlari birining uchlariga kerakli o'lcham

birliklaridagi shkalaga ega bo'lgan voltmetr ulangan. Ikkinchi rotor chul-

g'ami ijrochi asinxron motor (IM)ning boshqaruv chulg'ami (BCh)ni ta'minlaydi. IMning qo'zg'atish chulg'ami (QCh) kondensator C orqali

bir fazali tarmoqqa ulangan. Ijrochi motor va buriluvchi transformatorning

rotorlari reduktor orqali mexanik birlashgan.

7.6- rasmda keltirilgan sxema quyidagi tartibda ishlaydi. To'g'ri bur-

chakli uchburchakning C_1 va C_2 katetlari berilgan va uning a gipotenu-

zasi aniqlanishi talab etiladi. Bu katetlar U_{c1} va U_{c2} kuchlanishlar ko'rinishida

buriluvchi transformatorning stator chulg'amlariga beriladi. $C_1 C_2$ va $C_3 C_4$

chulg'amlarning MYuKlari fazoda chulg'amlarning o'qi bo'ylab harakatlan-

105
maydigan ma’lum chastotaga ega bo‘lgan Φ_{c1} va Φ_{c2} magnit oqimlarini hosil qiladi va ularining modullari ularni hosil qilgan U_{c1} va U_{c2} kuchlanishlarga proporsional bo‘ladi. Bu magnit oqimlarning geometrik qo‘shilishi natijasida C_1C_2 va C_3C_4 chulg‘amlar joylashgan fazoviya oraliqda natijaviy magnit oqimi Φ_a yuzaga keladi. Magnit oqimi Φ_a rotorning chulg‘amlarida E_{p1} va E_{p2} EYuK larni hosil qiladi.

P_3P_4 chulg‘amning EYuK E_{p2} ijrochi motorning boshqaruv chulg‘ami (BCh)ning uchlarida kuchlanish U_{p2} hosil qiladi. Motor rotori harakatga keladi va reduktor yordamida buriluvchi transformatorming rotorini buradi. P_3P_4 chulg‘amining o‘qi Φ_a magnit oqimi o‘qiga perpendikular holatga kelganida bu chulg‘amning EYuK nolga teng bo‘ladi va IM rotori harakatdan to‘xtaydi. Bu holda P_3P_4 chulg‘amning o‘qi Φ_a magnit oqimining o‘qi bilan yo‘nalishi mos keladi va voltmetr U_{p1} kuchlanishning eng katta qiymatini ko‘rsatadi va bu qiymat gipotenuza a ning uzunligiga proporsional bo‘ladi. Rotorning burilish burchagi esa gipotenuzaning katetlariga nisbatan qanday burchakdaligi holatini bildiradi. Buriluvchi transformator bajargan amal, tashkil etuvchilar oldindan berilgan, dekart koordinatlar tizimidagi vektorning qiymati va uning argumentini aniqlashni anglatadi.

NAZORAT UCHUN SAVOLLAR

1. Buriluvchi transformatorming ishlash prinsipi qanday?
2. Buriluvchi transformatortlar konstruktiv jihatdan necha turga bo‘linadi?
3. Sinusli buriluvchi transformatorda chiqish kuchlanishi qanday hosil qilinadi?
4. Birlamchi simetriyalash sharti nimadan iborat?
5. Chiziqli birlamchi simetriyalli buriluvchi transformatorda chiqish kuchlanishi qanday hosil qilinadi?
6. Masshtabli buriluvchi transformatorda siljitish kuchlanishi qanday hosil qilinadi?
7. Masshtabli buriluvchi transformatorda chiqish kuchlanishi qanday hosil qilinadi?
8. Grafik chiziq‘ich buriluvchi transformatorida ijrochi motor qanday harakatga keltiriladi?

106
8-bob. ELEKTROMEXANIK TIZIMLARNING BOSHQARISH TIZIMLARI ELEMENTLARI

8.1. ELEKTROMEXANIK TIZIMLARNING ANALOG ELEMENTLARI VA QURILMALARI

Elektromexanik tizimlarning analog elementlari tranzistorli o‘zgarmas tok kuchaytirgich, boshqaruvchi va vazifalovchi qurilmalar, funksional o‘zgartikchilar, boshqarishuvchi koordinatalarning o‘ichov o‘zgartikchilari va ta’minot bloklaridan tashkil topgan bo‘ladi. Tizimda umumlashgan quyidagi \((0 \pm 24) V, (0 \pm 10) mA\) ko‘rsatkichli signallardan foydalanish, umum-maqsadlar uchun ishlitiladigan tranzistorlarni keng qo‘llash imkonini beradi.

Bu rostlash tizimlariда mikrosxemalarning qo‘llanilishi, boshqarish sxemalarining texnik tavsiflarini yaxshilashga va ularning funksional imkoniyatlarini kengaytirishga olib keldi. Rostlash tizimi bloklari almashtiruvchi shtepseli yacheykalarga joylashtiriladi. Tizimda qo‘llaniladigan signalning ko‘rsatkichlari \(\pm 10V\) va \(\pm 5\) mA ekanligi sababli ham uning elementlari boshqa diskret elementlar va texnologik jarayonni avtomatlashdirish qurilmalari bilan ham uyg‘un ishlash imkonini beradi.

Operation kuchaytirgich. Analog tizimning asosiy elementi bu operations kuchaytirgichdir (OK). U kuchaytirish koeffitsiyenti juda katta bo‘lgan (5 dan 100 minggacha) va manfiy teskari bog‘lanishi o‘zgarmas tok kuchaytirgichdir. 8.1- rasmda OKning sxemasi keltirilgan bo‘lib, bunda: \(Z_{kir1}, ..., Z_{kir,i}\) orqali belgilangan kompleks aktiv-sig‘imli kirish qarshiliklari va \(Z_{ib}\) — teskari bog‘lanish zanjirining kompleks qarshiligi.

\[Z_{rb} \]
\[Z_{Kir} \]
\[U_{Kir} \]
\[U_{Kir1} \]
\[U_{Kir2} \]

8.1- rasm. Operatsion kuchaytirgichning sxemasi.
OK kirish signali \(U_{k_i,1} \) ni quyidagi ifoda yordamida chiqish signali
\(U_{ch_i} \) ga o‘zgar tiradi:

\[
U_{ch_i} = -Z_{tb} \sum_{1}^{n} \frac{U_{k_i,i}}{Z_{k_i,i}}.
\] (8.1)

Eng oddiy holatda OKning kirish qismiga bitta \(U_{k_i} \) signali berilsa va
\(Z_{tb} = R_{tb} \) hamda \(Z_{k_i,1} = R_{l} \) bo‘lganida (8.1) tenglama quyidagi sodda ko‘rishiga ega bo‘ladi:

\[
U_{ch_i} = -R_{tb} \frac{U_{k_i}}{R_{l}} = -k U_{k_i}.
\] (8.2)

Agar \(R_{tb} = R_{l} \) bo‘lsa, u holda \(k = 1 \) ga teng bo‘ladi va OK kirish signali ishorasining o‘zgar tiradi, ya’ni inversiyalaydi.

Agar \(Z_{tb} = R_{tb} \) va \(Z_{k_i,i} = R_{k,i} \) bo‘lsa, u holda OK kirish qismidagi signallarni qo‘shish bilan bir paytda mos kuchaytirish koefitsiyentlariga ko‘pay tiradi ham

\[
U_{ch_i} = -\sum_{1}^{n} U_{k,i} \times k_i,
\] (8.3)

bunda:

\[
k_i = \frac{R_{tb}}{R_{k_i,i}}.
\]

Bu rostlagich yuqorida ko‘rib chiqilgan kirish signalini masshtabli (pro-

\[
k = R_{tb} / R_{l} \neq 0 \ chiqish \ signaliga \ o‘zgar tiradi. 8.1 - jadvalning 5 ustunida P rostlagich vaqtning \ i_0 \ momentida pog‘onali kirish signallari berilganida chiqish signalining vaqt bo‘yicha o‘zgarish tavsiflari keltirilgan.

108
Tavsiflardan ko’rinib turibdiki, rostlagichning chiqish signali kirish signalning k koefitsiyentiga ko’paytirilgan qiymatini aynan qaytariladi va o’tish vaqti qiymati nolga teng bo’ladi.

8.1- jadval

<table>
<thead>
<tr>
<th>Rostlagichlar</th>
<th>Sxema</th>
<th>O‘zgartirish usuli</th>
<th>Rostlagich ko‘rsat-kichlari</th>
<th>O’tlish tavsiyi</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td></td>
<td>$U_{chiq} = kU_{kir}$</td>
<td>$k = R_d/R_1$</td>
<td>$U_{cha} = kU_{kir}$</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td>$U_{chiq} = \frac{1}{T}\int U_{kir}dt$</td>
<td>$T = R_iC_{th}$</td>
<td>U_{cha}</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>$U_{chiq} = \frac{kU_{kir}}{T} + \frac{1}{T}\int U_{kir}dt$</td>
<td>$k = R_d/R_1$</td>
<td>U_{cha}</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>$U_{chiq} = k(U_{kir} + \frac{1}{T}\int U_{kir}dt)$</td>
<td>$k = R_d/R_1$</td>
<td>U_{cha}</td>
</tr>
<tr>
<td>PI</td>
<td></td>
<td>$U_{chiq} = kU_{kir}$</td>
<td>$T = R_dC_{th}$</td>
<td>U_{cha}</td>
</tr>
</tbody>
</table>
8.1- jadvalning davomi

<table>
<thead>
<tr>
<th>Rostlagichlar</th>
<th>Sxema</th>
<th>O'zgartirish usuli</th>
<th>Rostlagich ko'rsatkichlari</th>
<th>O'tish tavsiisi</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD</td>
<td></td>
<td>$U_{chiq} = k(U_{kr} + \frac{T}{dU_{kr}}dt)$</td>
<td>$k = R_{d1}/R_1$; $T = R_1C_1$</td>
<td></td>
</tr>
<tr>
<td>PID</td>
<td></td>
<td>$U_{chiq} = kU_{kr} \times \left(1 + \frac{T_2}{T_1}\right) + \frac{T}{dU_{kr}dt} + \frac{1}{T} \int U_{kr} dt$</td>
<td>$k = R_{d1}/R_1$; $T_1 = R_{d1}C_1$; $T_2 = R_1C_1$</td>
<td></td>
</tr>
</tbody>
</table>

Integral I rostlagichning sxemasi OK teskari bog'lanish zanjiriga kondensator C_{th} va chiqish zanjiriga rezistor R_1 ulash natijasida hosil qilinadi (8.1- jadval ikkinchi qatorining birinchi ustuniga qarang). Buning natijasida rostlagich integrallovchi quirilma xususiyatiga ega bo'ldi va uning chiqishida-gi kuchlanish kirish signalining integrali bilan belgilanadi (8.1- jadval ikkinchi qatorining 3- ustuni). I rostlagichning o'tish jarayoni funksiyasi 8.1- jadval ikkinchi qatori 5- ustunida keltirilgan ko'rinishda bo'ldi.

Differensial D rostlagichning sxemasi 8.1- jadval uchinchı qatorining 1 ustunida keltirilgan. Bu sxemali OK sxemasi $T = R_{th}C_1$ koeffitsiyentli kirish signalini differensiyalash imkonini beradi. Ideal D rostlagichning o'tish jarayoni funksiyasi, cheksiz amplitudaga va juda kichik davomiyllikka ega bo'lgan elektr impulsi ko'rinishda bo'ldi.

Nodaviy A rostlagichning sxemasi 8.1- jadvalning to'rtinchı qatori ikkinchi ustunida keltirilgan. Bu rostlagichning o'tish jarayoni funksiyasi chiqish signalining vaqt bo'yicha eksponensial o'zgarishi ko'rinishiga ega bo'ldi.

Shuningdek, proporsional-integral (PI), proporsional-differensial (PD) va proporsional-integral-differensial (PID) rostlagichlarning sxemalar va tavsiflari 8.1- jadvalning mos ravishda 5-7- qatorlarida keltirilgan. Bu rostlagichlar chiqish signalarini kompleks tarzda o'zgartirishi sababli ham bu rostlagichli elektr yuritmalar murakkab qonuniyatlar asosida boshqariladi.
Funksional o‘zgartkichlar (FO*). Bu o‘zgartkichlar kirish signallarini kvadratga oshirish, ildiz ostitdan chiqarish, bo‘lish hamda signallarning modullanini ajratish va kirish hamda chiqish signallari orasidagi nochiziqli bog‘lanishlarni amalga oshirish kabi funksiyalarni bajariadi. Funksonal o‘zgartkichlar bir yoki bir necha operatsion kuchaytirgichlar negizida yaratilishi mumkin.

8.2- rasm. Selsin komandoapparatning sxemasi (a) va chiqish tavsifi hamda potensiometrik vazifalovchi qurilmalarning sxemalari (d, e, f).

Selsin komandoapparatning ishlashini ko‘rib chiqamiz (8.4- a rasm). Selsinning bir fazali stator chulg‘ami (SCh) chastotasi 50 Hz bo‘lgan kuchlanishi $U_i = 110$ V bo‘lgan o‘zgarmas tok tarmog‘iga uylanadi. Rotor chulg‘aming ikki fazasidan olinayotgan o‘zgaruvchancha tok kuchlanishi U_{chq} boshqarilmaydigan to‘g‘rilagich VD yoki fazasezgir to‘g‘rilagich FST yordamida to‘g‘irlanadi. Birinchi holatda chiqish kuchlanishi U_{chq1}
muqim qutbli bo’lsa, ikkinchi holatda esa U_{chiq} ning qutbi ishorasi stator va rotor kuchlanishlarning o’zaro faza bo’yicha siljishlariga bog’liqdir. Shunday qilib, FST chiqish signali qutbinga ishora, kirish o’zgaruvchan tok kuchlanishi fazasiga bog’liq bo’lgan to’g’rilagichdir.

Selsin rotori birilganida uning chulg’amlarida hosil bo’ladigan EYuK va mos ravishda chiqish kuchlanishi U_{chiq} nol qiymatdan (rotorning boshlang’ich holati $\varphi = 0$ da) va maksimal qiymatigacha (rotorning oxirgi holati $\varphi = 90^\circ$ da) o’zgaradi (8.2- b rasm). Komandoapparat chiqish (vazifalovchi) kuchlanishi rotorning burilish burchagiga bog’liqligining chiziqli bo’lishiga bu burchakni $-60^\circ < \varphi < +60^\circ$ oraliqda o’zgarishi asosida eriladi.

EYu larning boshqarish sxemalarida harakatlanuvchi elementli chiziqli (8.2- d, e rasm) va aylanma (8.2- f rasm) harakatlanadigan potensiometrik vazifalovchi qurilmalar ham keng qo’llaniladi. Agar vazifalovchi qurilmalar harakatlanuvchi elementlarini ijrochi motorlar harakatga keltirsa, u holda bu qurilmalar tezlanishni vazifalovchi qurilma funksiyalarini ham bajarishi mumkin.

Shuningdek, to’rt OKdan iborat statik tezlanishni vazifalovchi qurilmalar ham qo’llaniladi. Bu qurilmada pog’onali kirish signali vaqt bo’yicha chiziqli o’zgaradigan chiqish signaliga o’zgartiriladi. OKlardan biri kirish signalini cheklashning boshqarish rejimida, ikkinchisi esa integrator rejimida va qolgan ikki OK esa invertor rejimida ishlaydi.

Elektr yuritmalarni boshqarish sxemalarida rezistor va kondensatorlardan iborat passiv elementli tezlanishni vazifalovchi qurilmalar ham qo’llaniladi (8.3- a rasm).

![Diagram](attachment:diagram.png)

8.3- rasm. Tezlanishni vazifalovchi qurilmaning sxemasi (a) va chiqish kuchlanishi tavsifi (b).

$R = C$ zanjirga pog’onali kirish signali U_{kir} berilganida uning chiqish qismidagi signal U_{chiq} eksponenta bo’yicha o’zgaradi (8.3- b rasm). Chiqish

112
kuchlanishi o‘zgarishining tezlanishini uning vaqt doimiyligi \(T = RC \) ko‘rsatkichlarini o‘zgartirib boshqarish mumkin.

Tezlik o‘lchov o‘zgartikchilar. EYuning tezligi to‘g‘risidagi axborotni turli o‘lchov o‘zgartikchilar va motorning o‘zidan ham olish mumkin. O‘zgaruvchan va o‘zgarmas tok motorlarining tezligi to‘g‘ridan-to‘g‘ri ularning EYulariga bog‘liqdir. Shunday qilib, EYUK qiymatini o‘lchanuvchi o‘zgaruvchan qiymat sifatida qarasak, u holda motorning tezligi haqiqadi informatsiyaga ega bo‘lami.

Taxogeneratorlar (TG) tezlik o‘lchov o‘zgartikchisi sifatida yopiq elektr yuritma tizimlarida keng qo‘llaniladi. Elektr yuritma tizimlarida asosan o‘zgarmas qutbli magnitdan qo‘zgaraladigan o‘zgarmas tok taxogeneratorlarini ishlatiladi.

Tezlik o‘lchov o‘zgartikchi sifatida o‘zgarmas tok motorli taxometrik ko‘priq sxema ham qo‘llaniladi (8.4- rasm). \(R_1 \) va \(R_2 \) qarshiliklar va \(R_{ya} \) va \(R_{qq} \) qarshiliklardan iborat birlamchi ko‘priq sxema hosil qilinadi.

\[
U_{tez} = k_{tez} \omega
\]

8.4- rasm. O‘zgarmas tok motori sxemasini tezlik o‘lchov o‘zgartikchi sifatida ishlatis.

Birlamchi ko‘priq sxemasining muvozanan shartidan kelib chiqqan holda \(A \) va \(B \) nuqtalarning orasidagi kuchlanish quydagi ifoda bilan aniqlanadi:

\[
U_{tez} = \frac{R_1}{(R_1 + R_2)} k \Phi_{nom} \omega = k_{tez} \omega. \tag{8.4}
\]

8 — A.T. Imomnazarov
Taxometrik ko'prik sxemasi yo'piq EYu tizimlarida qo'llanilganda sxemadagi A va B nuqtalarga relening g'altagi ulanadi.

Elektr yuritma tezligini katta aniqlilikda nazorat qilish shart bo'lmagan hollarda, o'zgartmab tok motorlari yoki cho'tkalardan to'g'ridan-to'g'ri olingan kuchlanishning o'zi tezlikka proporsional signal ekanligidan foydalaniladi.

O'zgarmas tok motorli elektr yuritmalarda kuchlanish o'lichov o'zgartkichi sifatida potensiometrlardan foydalaniladi (8.5- a rasm). Potensiometr RP motor M ning yokor uchlariga ulanadi va kuchlanish bo'yicha teskari bog'lanish koefitsiyentining qiymati potensiometrning harakatlanuvchi qismining holati bilan aniqlanadi.

8.5- rasm. Potensiometrik (a) va transformerlir (b) kuchlanish o'lichov o'zgartkichlari.

O'zgaruvchan tok motorli elektr yuritmalari uchun kuchlanish bo'yicha teskari bog'lanish signallarini olishda transformerlir sxemalar qo'llaniladi (8.5- b rasm). «Boshqariluvchi to'g'rilagich — o'zgarmas tok motor» tizimlarining kuchlanish bo'yicha teskari bog'lanish signallarini olish, boshqariluvchi to'g'rilagichning o'zgaruvchan tok zanjiriga kuchlanish transformatorlari ulab amalga oshiriladi.

Ishchi mehanizm ijrochi organi yoki motor valining holatini aniqlash uchun holat o'lichov o'zgartkichlari ishlatiladi. Holat o'lichov o'zgartkichlari sifatida selsinlar, potensiometrlar va aylanuvchi transformerlarni ishlatiladi.

Selsinli holat o'zgartkichlarining o'zgarmas tokli chiqish qismi (8.2- a rasmiga qarang) ishchi mehanizm ijrochi organi yoki motor vali bilan birikkan bo'lishadi va natijada o'zgartkichning chiqish qismida holatini bikhiruvchi mos signal hosil bo'lladi.

114
Potensiometrik holat o‘zgartichlari 8.2- d, e, f sxemalar asosida yaratiladi. Ularning harakatlanuvchi qismlari motor vali bilan biriktirilib, chiqish qismidan holatiga mos signallar olinadi.
Aylanuvchi transformatordan holat o‘lchov o‘zgartichlarining ishlash asosi selsinlarnikidan farq qilmaydi. Ularning chiqish qismidagi signalning qiymati transformatorning aylanuvchi qismi holati bilan belgilanadi.

8.2. ELEKTROMEXANIK TIZIMLARNING DISKRET ELEMENTLARI VA QURILMALARI

Ishchi mashina va mehanizmlarning ishlarini kompleks avtomatlashtirishdan kelib chiqqan holda, ularning Yulariga qo‘yladigan ko‘pgina talablarni raqamli boshqarish sxemalariga bajara oladi. Raqamli boshqarish sxemalarini EYu ishining tezkor va yuksak aniqlikda bajarlishi hamda ishonchli va kam energiya iste’mol qilishi bilan xarakterlidir. EYuning raqamli boshqarish sxemasi tabiy ravishda texnologik jarayonlarni boshqarishda qo‘llaniladigan EHM bilan uyg‘unlashib, yagona avtomatlashtirilgan boshqarish tizimini tashkil ettadi.

Ko‘pgina hollarda EYularni boshqarishda aralash, raqamli-uzluksiz boshqarish sxemalarini qo‘llash maqsadga muvofiq bo‘ladi.

EYularda foydalaniladigan raqamli boshqarish vositalari quyidagi guruhlarga bo‘linadi:
- sodda mantiqiy amallarni bajaruvchi mantiqiy elementlar va triggerlar;
- mantiqiy elementlar majmuasidan iborat bo‘lgan va signallarni bir-bir muncha murakkab funksional o‘zgartiruvchi raqamli majmular;
- EYuni murakkab funksiyalar asosida boshqarishni amalga oshiruvchi raqamli qurilmalar;
- EYuni barcha boshqariluvchi koordinatalari asosida boshqarishni amalga oshiruvchi yuqori ko‘rinishdagi jamlangan raqamli qurilmalar majmuasi.

Asosiy diskret elementlar va ular asosidagi qurilmalarning ishlash asoslarini ko‘rib chiqamiz.

Trigger. Bu qurilma raqamli qurilmalar ichida eng ko‘p tarqalgan qurilma bo‘lib, ikkita turg‘un holatga ega va uning bir holatdan ikkinchi holatga sakrab o‘tishi tashqi boshqaruv signali ta’sirida amalga oshadi. Triggerlardan foydalanilgan holda turli mantiqiy va hisoblash qurilmalar, generatorlar va xotira qurilmalar yaratish mumkin.

Trigger ikkita HAM – YoKI mantiqiy elementlaridan iborat bo‘lib (8.6- a rasm), quyidagicha ishlaydi. Uning kirish qismiga $X_1 = 1$ signalini berilishi va $X_2 = 0$ signalning bo‘Imasligi elementning yuqori chiqishida
\(\bar{Y} = 0 \) holat hosil bo'ladi, pastki chiqishida esa \(Y = 1 \) holat yuzaga keladi. (O'zgaruvchanchal talaktal ustidagi chiziqcha kattalikning inversiya holatini anglatadi). Sxemaning bu holati \(X_1 (X_1 = 0) \) signalni o'chirishgacha saqlanib turadi. Endi \(X_2 \) signalni beranigmizda trigger boshqa turg'un holat \(Y = 0 \) ga o'tadi va shuningdek \(\bar{Y} = 1 \) bo'ladi.

8.6- rasm. Triggerlarning sxemalari.

8.6- b rasmda \(R - S \) triggering sxemasi keltirilgan va uni ishlashi statik asinxron trigger deb ataluvchi triggering ishlashiga mos keladi. Ingliz tilida Set – o'rnatishni anglatuvchi so'zning bosh harfi bilan belgilangan \(S \) kirishga kirish signali \(X_1 = X_S = 1 \) beriladi va shundan so'ng triggering to'g'ridan-to'g'ri chiqish qismida birlik signal \(Y = 1 \) paydo bo'ladi (o'rnatiladi), inversorli chiqish qismida esa \(\bar{Y} = 0 \) hosil bo'ladi. Ingliz tilida Reset – ag'darishni anglatuvchi so'zning bosh harfi bilan belgilangan \(R \) kirishga birlik signali \(X_2 = X_R \) berilganida triggering \(Y \) chiqishida nol signal, ya'ni \(Y = 0 \) paydo bo'ladi inversorli chiqish qismida esa \(\bar{Y} = 1 \) hosil bo'ladi.

Agar triggering har ikkala kirishda signal bo'lmasa, ya'ni \(X_S = X_R = 0 \) bo'lsa, u holda trigger bundan oldingi holatini «esda saqlab» qoladi va bu uning asosiy xususiyatidir. \(X_S = X_R = 1 \) bo'lishi taqqlanadi, chunki bunday holatda triggering chiqishdagi signallar noaniq holatga tushib qoladi.

«Statik» tushunchasi kirish signallari manbalari triggering chiqishisi bilan to'g'ridan-to'g'ri kuchlanish bo'yricha bog'lanan va ularning qiymatlari darajasi ta'sirida bo'lishini bildiradi. Agar triggering kirish signallar manbalari bilan to'g'ridan-to'g'ri bog'lanmasdan, balki impuls transformerlari, \(RC \) zanjirlari va boshqa vositalar orqali bog'langan bo'lsa, u
holda u kirish kuchlanishlari o‘zgarishi ta’sirida bo‘ladi va signalarning qiymatlari darajasini ta’sirida bo‘limaydi. Bunday boshqariladigan triggerlar dinamik boshqariladigan triggerlar deb ataladi. Agar triggeringning ishlashi kirish signalining 0 dan 1 gacha o‘zgarganda amalga oshsa, u holda triggering kirishi bevositali deb ataladi va uning sxemasi 8.6- d rasmdagi ko‘rinishiga ega bo‘ladi. Aks holda, triggeringning islab ketishi kirish signalining 1 dan 0 gacha o‘zgarganida amalga oshsa, u holda triggering kirishi inversiyali deb ataladi va uning sxemasi 8.6- e rasmdagi ko‘rinishdagidek tasvirlanadi.

«Asinxron» tushunchasi, vaqtning istalgan momentida kirish signallari majmuasi ta’sirida triggering qayta ulanish rejimiga o‘tishini bildiradi. Agar triggering qayta ulanish rejimida ishlash vaqtning ma’lum momentlarida amalga oshirilishi kerak bo‘lsa, u holda trigger qo‘shimcha yana bir kirish S bilan to’ldiriladi va bu kirishga ma’lum chastota taktiga ega X₅ signali beriladi. X₅ = 0 bo‘lishi triggering oldingi holatini saqlanganligini bildiradi va X₅ = 1 bo‘lishi esa triggering qayta ulanish rejimiga ruxsat etilganini bildiradi. 8.6- f rasmda sinxron R - S triggering shartli belgilanishi keltirilgan.

D trigger sinxron triggering turlaridan biridir. Uning kirishiga birgina signal X₆ signal beriladi. Bu trigger R - S triggering S kirishiga X₆ hamda R kirishiga inversion signal X₆ berish natijasida hosil qilinadi. 8.6- g rasmda D triggering shartli belgilanishi keltirilgan.

Ikki pog‘onali sinxron R - S trigger ikki kirish va chiqish triggerlardan iborat bo‘lganiligi sababli ham uning funksional imkoniyatlari sezilarli darajada kattadir. Tashqi chorrahali bog‘lanishlardan foydalanilgan holda JK triggerlar deb ataladigan universal triggerlarni hosil qilish mumkin va ular R - S trigger, D trigger va T trigger rejimlarida ishlay oladi.

Hisoblash qurilmalari. Bu qurilmalar turli arifmetik amallarni bajarish uchun xizmat qiladi. Hisoblash amallari hisoblash qurilmasining raqamlari elementlarida hisoblashning ikkilik tizimi asosida bajariladi.

117
Hisoblash qurilmalariga, shuningdek, hisoblagichlar, jamlagichlar va komparatorlar (taqqoslash qurilmalari) kiradi.

Hisoblagich. Bu raqamlari qurilma kirish signallarining sonini hisoblash uchun xizmat qiladi. Hisoblagichlar jamlovchi, ayiruvchi va reversiv turlarga bo‘linadi.

Ketma-ket harakatlanuvchi jamlovchi hisoblagich to‘rtta ikki pog‘onali \(T \) triggerdan iborat bo‘ladi (8.7- a rasm).

![Diagram](image)

8.7- rasm. Hisoblagichning sxemasi (a) va ishlash diagrammasi (b).

Birinchi triggeringning ulanishi va o‘chirilishi (chiqish \(Y \)) kirish signali \(X_{kir} \) ning orqa fronti bilan amalga oshiriladi (8.7- b rasm). Qolgan triggeringning ulanishi va o‘chirilishi o‘zidan oldingi triggeringning bevosita chiqish impuls orqa fronti bilan amalga oshiriladi.

Triggerlarning \(Y_1 - Y_4 \) chiqish signallari to‘plami impulslar hisoblagichiga ikkilik sanoq tizimida berilayotgan impulslar soniga to‘g‘ri keladi. Triggerning tartib nomeri ikkilik sanoq tizimi sonining razryadini bildiradi. 8.7- b rasmdagi tavsifdan ko‘rinib turibdiki, hisoblagichning kirishiga 6 impuls berilgan bo‘lsa, u holda triggerlarning chiqishida \(Y_4 = 0, Y_3 = 1, Y_2 = 1, Y_1 = 0 \) signallar hosil bo‘ladi, ya’ni impulslar soni \(m = (0110)_2 = (110)_2 = (6)_{10} \) ga teng bo‘ladi. Hisoblagichning sig’imi \(N \) triggerlar soni \(n \) bilan quyidagi formula yordamida aniqlanadi:
\[(N)_{10} = 2^4 - 1 = (15)_{10} = (1111)_{2}.

Chastota bo‘lgich. 8.7- a rasmda keltirilgan sxemani chastotani bo‘luvchisi sifatida ham qo‘llash mumkin. 8.7- b rasmdagi diagrammadan ham ko‘rinib turibdiki, har bir ketma-ketlikdagi triggering chiqishidagi impulslar soni bir donaga va shu bilan bir qatorda ikki martaga kamayadi hamda bu csa impulslar chastotasining ikki marta kamayganligini bildiradi.

Hisoblagichda nol boshlang‘ich holatini o‘rnatish barcha triggerlarning \(R\) kirishlariga birlik signal \(X_{R}\) berilishi bilan amalga oshiriladi.

Reversiv hisoblagichlarda sonlarni qo‘shish va ayirish amallari bajarilsa, ayiruvchi hisoblagichlarda faqat ayirish amali bajariladi.

8.8- rasm. Bir razryadli (a) va to‘rt razryadli jamlagich (b) sxemasi.

O‘zining tarkibiga ko‘ra bir razryadli jamlagich ikki bir razryadli \(a\) va \(b\) sonlarni ikkilik sanoq tizimi bo‘yicha quyidagicha qo‘shadi:

\[
a + b = \begin{cases}
0 + 0 = 0, & S = 0, \quad P = 0, \\
0 + 1 = 1, & S = 1, \quad P = 0, \\
1 + 0 = 1, & S = 1, \quad P = 0, \\
1 + 1 = 10, & S = 0, \quad P = 1.
\end{cases}
\]

119
Ikita birni qo‘shishdan hosil bo‘lgan natija ikki razryadli ko‘rinishga ega bo‘ldi: \(S = 0 \) o‘sha razryadli bo‘lgan holda, \(P = 1 \) keyingi yuqoriroq razryadga ko‘chirilgan. Shunday qilib, ixtiyoriy i razryadli qo‘shish amalini bajarish, oldingi razryaddan ko‘chirilgan natijalar \(a_n \), \(b_n \) va \(P \), uch qo‘shiluvchilarni hisobga olgan holda amalga oshiriladi. Misol tariqasida 8.8- \(b \) rasmda to‘rt razryadli jamlovcching sxemasi keltirilgan.

Jamlovcchilarda ayirish amallarini ham bajarish mumkin. Bunday jamlovcchilarda ayirish amali ayiriluvchiga razryad bo‘yicha kamayuvchi qo‘shimcha qo‘shish bilan almashtiriladi.

Komparator. Bu raqamlari qurilmada ikki son \(A_n \) va \(B_n \) larni taqqoslash funksiyasi bajariladi. Taqqoslash natijasida quyidagi taqqoslashlardan birining haqiqiyligi aniqlanadi: \(A_n = B_n \); \(A_n > B_n \); \(A_n < B_n \) va ularning har bir mos chiqishlarda birlik signal bilan qayd qilinadi.

Bir razryadli komparatorning ishlash asosini, ikki bir razryadli \(a \) va \(b \) sonlarni taqqoslash bo‘yicha 8.2- jadval orqali tushuntirish mumkin.

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(Y_1(a = b))</th>
<th>(Y_2(a > b))</th>
<th>(Y_3(a < b))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

8.2- jadval

\(n \) razryadli sonlarni taqqoslash ularning razryadlari bo‘yicha amalga oshiriladi, shundan so‘ng qo‘shimcha mantiqiy sxema yordamida yuqori razryadidan boshlab natijalar tahlil qilinadi.

Mantiqiy raqamlari qurilmalar. Bu qurilmalarda diskret elektr signallar bilan turli mantiqiy amallar bajariladi. Bunday qurilmalarga impulsli taqsimlovchilar, shifrorlar, deshifrorlar va multipleksorlar kiradi.

Impulsli taqsimlovchi qurilma deb, bir kanalli ketma-ketlikdagi impulsli bir necha chiqishlarga taqsimlovchichi qurilmaga aytiladi. Uning \(i \) chiqishidagi birlik \(Y_i \) signal, taqsimlovchining oldingi \((i - 1) \) chiqishidagi \(Y_{i-1} \) signal o‘chganidan keyin paydo bo‘ladi, signal \(Y_i \) esa kirish (taktli) impuls sifatida olinadi. 8.9- \(a \) rasmda to‘rtta \(D \) triggerdan tashkil topgan impuls taqsimlagichning sxemasi keltirilgan.

Boshlang‘ich holatda birinchi triggerning chiqishida birlik signal \(Y_1 = 1 \) bor deb faraz qilamiz. Birinchi kirish (taktli) signali \(X_y \) ning berilishi (8.9- \(b \) rasmaga qarang) birinchi triggerning chiqishida signal yo‘qolishiga \((Y_1 = 0) \) va ikkinchi triggerning chiqishida signalning paydo bo‘lishiga olib keladi \((Y_2 = 0) \). Keyingi impuls berilganidan so‘ng \(Y_2 \) signali nolga teng
8.9- rasm. Impuls taqsimlagichning sxemasi (a) va ishlash diagrammasi (b).
bo‘ladi, signal $Y_3 = 1$ bo‘ladi va hokazo. To‘rtinchchi triggering chiqishida signal paydo bo‘lganidan keyin bu signal teskari bog‘lanish zanjiri bo‘yicha birinchi triggering kirishiga beriladi va iskl takrorlanadi. Impuls taqsimlagichning har bir chiqishidagi $Y_1 - Y_4$ signalarning chastotasi quyidagi formula bilan aniqlanadi:

$$f = f_T / n$$ \hspace{1cm} (8.5)

bunda: n — taqsimlagich triggerlarining soni, f_T — taktli impulslarning chastotasi.

Deshifrator (dekoder). Bu raqamli qurilmada n kirishidagi signalarni birgina chiqishida 1 signalga o‘zgartirib, qolgan barcha chiqishlardagi signalarni 0 ga tengligi saqlanib qoladi. Bunga teskari bo‘lgan amalni **shifrator** amalga oshiradi, ya‘ni kirishlardan biridagi berilayotgan birlik signalni bir necha chiqishlardiradi ikkilik tizimidagi sonlarga o‘zgaradir.

Multipleksor. Bu qurilma, bir necha kirish liniyalardagi signalarni bir chiqish liniyalarga uzatishni ta’minlovchi qurilmadir. Kirish liniyasini tanlash, multipleksor kirishlarini boshqarish uchun beriladigan boshqaruvi impuls (kod) yordamida amalga oshiriladi. Multipleksor asosining sxemasini bir oz o‘zgartirilgan deshifratort tashkil etadi.

Xotira qurilmasi. Bu qurilma informatsiyalarni eslab qolish, saqlash va uzatish uchun xizmat qiladi. Registrlar, yig‘uvchi-matristsalar va eslab qolish qurilmalarini (EQ)ga: tezkor eslab qolish qurilmalarini (TEQ) va doimiy eslab qolish qurilmalarini (DEQ) kiradi.

Ikkilik tizimidagi ko‘p razryadli sonlarni yozib olish, eslab qolish va uzatish hamda ular bilan murakkab bo‘lmagan mantiqiy amallarni bajarish uchun **registrlar** qo‘llaniladi. 8.10- rasmida uch razryadli A sonini saqlashga xizmat qiluvchi registerning sxemasini keltirilgan. Sxemaning asosini uchta trigger va olti mantiqiy element HAM tashkil etadi.

Yozishdan oldin $X_R = 1$ signal beriladi va bu signal triggerlarning chiqishlarida nol signalarni yuzaga keltiradi, ya’ni $Y_0 = Y_1 = Y_2 = 0$ bo‘ladi, bu esa hozirgacha bo‘lgan registrdagi barcha sonlarning o‘chirilganini va registri yangi yozishga tayyor ekanligini bildiradi. Ikkilik tizimidagi a_0, a_1, a_2 razryadli sonlarni yozish $X_3 = 1$ signal berilganidan so‘ng, ya’ni triggerlarning kirishlari sonli informatsiyani qabul qilib olishga tayyor bo‘ladi. Yozib olingan son $X_3 = 0$ bo‘lganida ham eslab qolinish va saqlanishi. Eslab qolishing sonini sanash uchun $X_{SY} = 1$ signal beriladi va yozib olingan A ning razryadini Y_0, Y_1, Y_2 chiqishlarga uzatiladi. 8.10- rasmida registerning ishlashi, sonlarni parallel kod bo‘yicha kirishishga mos keladi, ya’ni registrdagi informatsiyaning hamma razryadlari bir paytda yoziladi. Sonlarni parallel yozish bilan bir qatorda, n takt bo‘yicha bir kirish orqali n razryadli
8.10-rasm. Uch razryadli registrning sxemasi.

saqlanishi kerak bo‘lgan sonlarni kiritshtiga mo‘ljallangan ketma-ketlik kodi ham qo‘llaniladi.

Registrga qo‘shimcha bog‘lanishlarni hamda mantiqiy elementlarni kiritsht natijasida, kodni invertirlash, sonlarning kerakli razryadli qilish uchun o‘ngga yoki chapga surish, sonlarni boshqa razryadli qilib uzatish va boshqa bir qancha shu kabi mantiqiy amallarni bajarish mumkin bo‘ladi.

Saqlanayotgan informatsiyalar alohida bit va byyt o‘lchov birliklari o‘lchanadi. Bit – bu bir razryadli ikkilik tizimidagi 1 yoki 0 qiymatli son. Bit guruhlari (razryadlar) so‘zni tashkil etadi va ular 4, 8, 12 va 16 bitdan tashkil topgan bo‘ladi. 8 bit uzunlikka ega bo‘lgan so‘z byyt deyiladi.

123
Yigʼuvchi-matritalsarning funksional imkoniyatlari nisbatan yuqori-
roq darajada boʻlgan turlardan biri bu dasturiy mantiqiy matritsadir (DMM).
Uning vazifasi EYularni boshqarishda talab etiladigan mantiqiy funk-
siyalarni shakllantirishdan iboratdir. DMMning kirish qismiga zarur boʻlgan
moslashtiruvchi bloklar vositasida elektr yuritmani boshqarish va himoya-
lash tashqi qurilmalaridan informatsiya beriladi. Talab qilinayotgan dast-
turga mos ravishda olingan informatsiyalar qayta ishlاناdi va mantiqiy
signalga oʻzgartirilib, moslashtiruvchi bloklar vositasida EYuning ijrochi
elementlariga uzatiladi. DMM kontaktsiz sxemalar asosida elektr yuritma-
larni boshqarish imkonini beradi.

Eslab qoluvchi qurilmalar (EQ) katta sigʻimdagi informatsiyalarni saqlash
imkonini beradi. Informatsiyalarni koʼp marta yozib olyuvchi va sanovchi
eslab qoluvchi qurilmalar tezkor eslab qoluvchi qurilmalar (TEQ) deb
ataladi. Bu qurilmalarning asosi yuqori kamchiligi undagi informatsiyalar
taʼminlovchi manbada kuchlanish boʻlgandagina mavjud boʻlib, kuchlanish-
ning oʻchishi esa barcha informatsiyalarning yoʻqolishiga olib keladi.

Yozilgan informatsiyalarni doimiy xotirada saqlash uchun xizmat qi-
luvchi eslab qoluvchi qurilmalar doimiy eslab qoluvchi qurilmalar (DEQ)
deb ataladi. Bu qurilmalar, utarga yozilgan informatsiyalarni taʼminlovchi
manbaning kuchlanishi oʻchib qolganida ham benuqson saqlab qolishga
qodirdir. DEQ larning informatsiyalarni saqlash sigʻimi TEQlarnikidan
katta, sxemasi nisbatan sodda va kam energiya isteʼmol qiladi.

Vaqt qurilmalar. Bu qurilmalarga chastotasi 100-500 kHz (1- ijro)
yoki 1-5 MHz (2- ijro) boʻlgan takt impulslarini hosil qilishga xizmat
qiluvchi etalon chastota generatori, shuningdek, chiqish signalni chastotasi
200 kHz gacha boʻlgan universal multivibratorlar kiradi.

Raqamlı-analog qurilmalar. Bu qurilmalar tarkibiga quyidagi
oʻzgartikchilar kiradi: kod-kuchlanish oʻzgartikchi (KKOʻ), ikkilik yoki
ikkilik-oʻnlik tizimli kodlarni oʻzgartmas tok kuchlanishiga oʻzgartiruvchi
qurilmalar; impulslar ketma-ketligi chastotasini oʻzgartmas tok kuchlani-
shiga oʻzgartiruvchi va shuningdek, teskari oʻzgartirishlarni amalga oshiruv-
chi chastota-kuchlanish oʻzgartikchilar (ChKOʻ) va kuchlanish-chastota
oʻzgartikchilar (KChOʻ).

Moslashtiruvchi qurilmalar. Bu qurilmalar, raqamlı qurilmalarning sig-
nallari EYuning boshqarish apparatulari bilan oʻzaro moslashtirish, mant-
tiqiy qurilmalarning signallarini kuchaytirish va elektr zanjirlardagi mavjud
boʻlgan galvanik (potensial) boʻlanishlarni bartaraf etish uchun xizmat
qiladi.
8.3. ELEKTROMEXANIK TIZIMLARNI BOSHQARISHNING MIKROPROTSESSORLI VOSITALARI

Mikroprotsessor (MP) deb, bir yoki bir necha katta integral sxema (KIS)lar bazasida yaratilgan va raqamli informatsiyalarni qayta ishlash hamda ular asosida boshqarish jarayonlarini amalga oshiruvchi dasturiy boshqariladigan qurilma aytiladi.

Mikroprotsessor xotirasiga joylashtirilgan dasturni o‘zgartirish mumkin bo‘lgani uchun ham moslanuvchan algoritm bo‘yicha ishlash jarayonini boshqarish mumkin. MPlarning ishlatisht jarayonida boshqaruv funksiyasining o‘zgarishini xotirasidagi boshqa dastur bilan almashtirish natijasida amalga oshiriladi.

Mikroprotsessorning tarkibiy sxemasi. Bu sxemaga (8.11- a rasm) arifmetik-mantiqiy qurilma (AMQ), boshqarish qurilmasi (BQ) va registrli xotira qurilmasi (RXQ) kiradi. MPlning bu asosiy qismlari quyidagi bosh‘lanish liniyalar – shinalar ma’lumotlar shinasi (MSh), adreslar shinasi (ASh) va boshqarish shina (BSh)si bilan o‘zar o‘qilganlangan bo‘ladi.

Arifmetik-mantiqiy qurilmaning vazifasi ikkilik hisoblash tizimida begilgan qiymatlar ustda arifmetik va mantiqiy amallarni bajarishdir. Bu amal-

8.11- rasm. Mikroprotsessorning sxemasi (a) va komandalar tarkibi (b).
lar bajariladigan qiymatlar **operandlar** deb ataladi. Amallarni bajarishda, odatda, ikkita operandlar ishtirok etadi, ulardan biri alohida registr — akkumulator **A** da, ikkinchisi esa RXQ registrlarida yoki MPning xotirasida saqlanadi. AMQ ba’zida MPning amaliy qismi deb ham nomlanadi.

MP bloklarining ishlashini ta’minlovchi boshqarish signallarini ishlab chiqarish **boshqarish qurilmasida** amalga oshiriladi. BQ tarkibiga komandalarning bajarilishi vaqtni qayd qiluvchi komandalar registri (KR) kiradi.

Mikroprotsessor xotirasiga yo'zilgan dastur asosida ishlaydi.

Dastur. Axborotlarni berilgan algoritm bo‘yicha qayta ishlashini ta’minlovchi komandalarni ketma-ketligi dasturni tashkil etadi. Ta’kidlash lozimki, dasturning komandalari aniq ketma-ketlikda yo'zilgan bo‘lib, qadam-baqadam bajariladi.

Dasturning har bir komandasi, qaysi operandlar bilan qanday amallar bajarilishi kerak va amallar natijalarini qaysi adreslarga joylashtirish kerakligi to‘g‘risida axborotlarga ega bo‘lishi lozim. Buning uchun komanda 8.11- b rasmdagi tuzilishga ega bo‘lishi kerak. Komandaning birinchi qismi amallar kodi (AK), ya’ni operandlar ustida bajariladigan amallarning xarakteri to‘g‘risida axborotlarga ega bo‘lishi kerak (masalan, qo‘shish, mantiqiy taqqoslash va hokazo). Komandaning ikkinchi qismi — amallar bajarilayotgan operandlarning joylashgan adreslari va natijalar qayd qilinish kerak bo‘lgan registrlar yoki xotira yacheikalari to‘g‘risida axborotlarga ega bo‘lishi kerak.

MPning dasturi bir necha usullar bilan yozilishi mumkin. Birinchi usul, komandalar to‘g‘ridan-to‘g‘ri mashina tilida yoziladi. Bunday usulda dastur tuzish ko‘pgina hollarda noqulay va anyqsa katla dasturlarni tuzish uchun ko‘p vaqt talab etadi.

Dasturlash tillarining yuqori darajadagi tillar: FORTRAN, PASKAL, PL/M, BEYSIK, SI, ADA va ularning dialektlaridan foydalanilish za-
monaviy MP sxemalardan foydalanganvchilarga qulay va katta imkoniyatlar beradi. Bu tillarda tuzilgan dasturlar, kross-dasturlar deb nomlanuvchi alohida dasturlar yordamida mashina uchun tushunarli bo‘lgan mashina kodi tizimiga o‘tkaziladi.

8.11- a rasmda keltirilgan MPning sxemasini to‘g‘ridan-to‘g‘ri elektronxanik tizimlarni boshqarishda qo‘llab bo‘lmaydi. MPni EMT larni boshqarishda qo‘llash uchun tarkibiga qo‘shimcha xotira qurilmasi, axborotlarni kirish va olish qurilmalar, impulslar takti generatori, EMTning boshqa bloklari bilan moslashtiruvchi qurilmalar kabi bir necha bloklari bo‘lishi zarurdir.

Mikroprotsessorli tizim. MPning qayd qilingan qo‘shimcha qurilma va bloklari mikroprotsessor tizimi (MPT) ni tashkil etadi va uning tarkibi tuzilish sxemasi quydagi 8.12- rasmda keltirilgan.

\[\text{Mikroprotsessorli tizimning tarkibi sxemasi.} \]

MPTning tarkibiga umuman olganda MP bilan bir qatorda tezkor xotira qurilmasi (TXQ) va doimiy xotira qurilmasi (DXQ); interfeyrs qurilmasi (IQ); tashqi obyektlar bilan moslashtiruvchi qurilma (MQ)lar; tashqi xotira qurilmalar (TashQX); axborotlarni kirish va olish qurilmasi (AKOQ); MSh, BSh va ASh shinalarni o‘z ichiga olgan umumiy shina (USh)lar kiradi.

127
Bundan tashqari, bu sxemada tarikibiga energiya o‘zgartkich, elektr motor va mehnik uzatmalarni o‘z ichiga olgan elektromexanik tizimning kuch sxemasi ETMKS ham keltirilgan. MPT qurilmalarining bajarradigan vazifalarini qisqacha bayon etamiz.

TXQ va DXQ xotira qurilmalar dastur bo‘yicha qayta ishlanishi kerak bo‘lgan ma’lumotlar joylashtiriladi. Dastur bo‘yicha qayta ishlashlar amalga oshiriladi va natijalari ham shu qurilmalarda saqlanadi. MPT ning imkoniyatlarini kengaytirish maqsadida TXQ va DXQlardan tashqari axborotlarni jamlovchi qo‘shimcha TashXQlar sifatida magnit disklar ham ishlatiladi.

Axborotlarni kiritish va olish qurilmasi (AKOQ) operator bilan MPT orasidagi o‘zar o muloqatni tashkil etishga xizmat qiladi. Bu qurilmalarga MPTning boshqarish pult klaviatura, printer, display va boshqa shunga o‘xshash amallarni bajaruvchi qurilmalar kiradi.

Moslashtirish qurilmalar (MQ) MPTning tashqi obyektlar bilan bog‘lanishlarni ta‘minlaydi. Ularning ijrosi va sxemalar turlacha bo‘lishi mumkin. Xususan, moslashtirish qurilmalariga EMT koordinatalarning o‘Ichov o‘zgartikchilar hamda boshqarish sxemalar bloklari bilan MPT ning o‘zar o bog‘lanishini ta‘minlashda keng qo‘llaniladigan elektr signallarni o‘zgaruvchisi uzluksiz-raqamli (URO‘) va raqamli-uzluksiz (RUO‘) o‘zgartikchalar (sxemada ular MQ1 va MQ2 bilan belgilangan) kiradi.

MQ2 va MQ3 qurilmalar MPTning ABOQ va TashXQlar bilan o‘zar o bog‘lanishlarni ta‘minlaydi. Bu qurilmalar umumiy shina (USH)dan olinayotgan axborotlarni tashqi qurilmalarga uzatish yoki olish jarayonlarida oraliq xotira registri vazifasini bajaradi. Moslashtirish qurilmalarining kons-troller (mikrokontroller) deb nomlangan turi murakkabroq funksiyalarni bajarishi va dasturlanishi mumkin.

MQ5ning vazifasi MPTning boshqa MPT va EHMLar bilan birgalikda ishlashini ta‘minlashdan iborat. Bunday turdagi qurilmalar adapterlar deb ataladi.

Taymer, xotiraga to‘g‘ridan-to‘g‘ri murojaatli bloklar, uzilishni tashkil etuvchi bloklar IQlarga misol bo‘ila oladi.

MP, xotiralar, IQ, MQ va UShlarning yig‘ilmasi mikro EHM deb ataladi.

MPT va mikro EHM bajaradigan vazifasiga ko‘ra universal va maxsus turlarga bo‘linadi.

Universal turdagi MPT va mikro EHMlar turli obyektlarni, chunonchi texnologik jaryonlarni, islab chiqarish korxonalarini va hokazolarni (shu jumladan elektr yuritmalarni ham) boshqarish bilan bir qatorda xilma-xil matematik amallarni ham bajara oladi. Buning uchun MPT 8,12- rasmda keltirilgan bir necha tashqi qurilmalariga ega.

Maxsus MPT larga dasturlangan kontroller (DK)lar misol bo‘ila oladi. DKnning tarkibiga (8,13- rasm) uning ishlashini ta’minlovchi dastur joylashtirilgan xotira qurilmasi (XQ); ketma-ket berilayotgan signallar asosida mantiqiy amallarni bajargunchi mantiqiy prosessor, yani arifmetik-mantiqiy qurilma (AMQ); kirish va chiqish signallarining kommutatorlari K1 va K2; DKnning kirish hamda chiqish signallarini moslashtiruvchi qurilmalar MQ1 va MQ2; mantiqiy amallarning natijalari kelib tushadigan xotira (X).

Texnologik jarayonning ketishi, EYu alohida qismlarining ish rejimlarini, limoyin tizimi holati va boshqa ko‘rsatikchlar bo‘yicha axborotlarga ega bo‘lgan V_{k_1}, V_{k_2}, ..., V_{k_n}, kirish signallari MQ1 ning kirishiga beriladi, u yerda bu signallar galvanik bog‘liqlilikdan xalos etiladi va DKda qo‘llaniladigan mos ko‘rishlxi va qiymatli signallarga o‘zgartiriladi.

Hosil qilingan signallar K1 ning kirishiga beriladi va u yerda XQdan berilayotgan navbatdagi komandada adresi yozilgan signal AMQga uzatiladi. XQdagi dasturda qayd etilgan o‘zgartirishlar AMQ da bajarlanganid so‘ng signallar kommutator K2 orqali xotira registri (X)ga uzatiladi va shundan keyin DKnning chiqishiga beriladi.

Amallar ketma-ketlik prinsipida bajarlgan uchun axborotlarni qayta ishlash uchun vaqt ko‘p ketayotgandek ko‘rinadi. Aslida esa har bir amalni bajargish uchun bor yo‘g‘i bir necha mikrosekund ketishini hisobga oladigan bo‘lsak, u holda DKnning tezkorligi mutloq ko‘p hollarda yetarli darajadadir.
8.13- rasm. Dasturiy kontrollerning tarkibiyo sxemasi.
8.4. ELEKTROMEXANIK TIZIMLARNI MIKROPROTSESSORLI BOSHQARISH TIZIMLARI

Elekt motorlarni mikroprotsessorli boshqarish elektr motor, rostlagichlar, rostlanuvchi ta’minot manbayi, o’lchov o‘zgartkichlar, uzatish qurilmalar moduli darajasida qo’llanilishi mumkin.

Bunda mikroprotsessordan modul darajasida boshqarishning mantiqiy va hisoblash masalalarini yechishda foydalaniladi. Ular tizimga birlashdirilganidada umumiy hisoblash qurilmasi orqali boshqariladigan mikroprotsessor tarmog‘i hosil bo‘ladi.

Boshqarishing bir qismi qat’iqligchi qurilmalar yordamida bajariadi. EMTlarni mikroprotsessorli boshqarishning tarkibi g‘urlishi turli va bo‘lishi mumkin. 8.14- rasmda elektromexanik tizimlarning asosini tashkil etuvchi elektr yuritmalarini (EYu) mikroprotsessorli boshqarish tizimining tipik tarkibi g‘urlishi keltirilgan va bu tizim quyidagi asosiy qurilma va bloklardan iborat:

1 — mikro EHM yoki operator bilan aloqa qurilmasi (AQ).
2 — apparat vositalari (AV) va dasturiy ta’minot (DT) dan iborat bo‘lgan boshqaruvchi hisobot qurilmasi (BHQ).

3 — qat’iyl mantiqiy qurilma (QMQ) boshqarish apparatlari ayni bloklari qat’iyl ulangan tizimni tashkil etadi. Bu apparatlar EHM ishdan chiqqanda boshqarish jarayonini mustaqil ravishda davom ettirishga xizmat qiladi. Ko‘p holatlarda, agar EYuni boshqarishda yuqori tezkorlik talab etilsa, u holda bu bloklar yoki ularning qismlari avtomatik ishlash rejimida ishtirok etadi. QMQning chiqish signallari ta’minot manbayi (TB) va kuch o‘zgartkich (KO‘) kirishlariga beriladi.

4 — boshqariladigan ta’minot manbayi (TM). Chastotani o‘zgartirib tezligi rostlanadigan asinxron elektr yuritmalar uchun TM sifatida tiritorstli yoki tranzistorli chastota o‘zgartkichlar qo’llaniladi. «Impuls kengligi o‘zgartkich – o‘zgarmas tok motori» tizimida boshqarilmaydigan to‘g‘rilagich TM sifatida ishlatiladi. «Boshqariluvchi to‘g‘rilagich – o‘zgarmas tok motori» tizimida esa TM va boshqariluvchi o‘zgartkich (BO‘) funksiyalariga ko‘ra birlashtirilgan bo‘ladi. TM boshqarish signalini BHQ va QMQlardan

131

www.ziyouz.com kutubxonasi
oladi, teskari bog‘lanish zanjiri bo‘yicha diagnostika va ko‘rsatkichlari holati to‘g‘risida axborotlari yuboriladi.

6 - elektr motor (M) tezlik, aktiv qismlarining haroratini nazorat qiluvchi o‘lchov o‘zgartikchilari va motorning o‘zidan iborat modulni tashkil etadi.

7 - uzatish qurilmasi (UQ): ulanish muftasi, reduktor va zarur bo‘lgan tezlik, tezlanish, moment va hokazo o‘lchov o‘zgartikchilardan iborat. Ba‘zi bir hollarda elektromagnet muftalarning qo‘llanilishi elektr yuritma tezligini rostlash imkonini beradigan murakkab uzatish qurilmalari ham ishlatiladi.

8 - texnologik mashina va mexanizmlarning ijrochi organi (IO) mos o‘lchov o‘zgartikchilari bilan birga masalan, keskich, qamragich, va hokazolar ham bo‘lishi mumkin.

qurilma sifatida displ leyga ega bo‘lgan pult, chop etuvchi qurilma va hokazolar ishlatiladi.

BHQ, TM va BO' ko‘rsatkichlarining holati hamda jarayonning kechishi to‘g‘risida o‘lichov o‘zgartikchilaridan axborot kelib turadi. Bu axborotlar ishlash qobiliyatini nazarat qilish va boshqarish signallariga tuzatish kiritish uchun ishlatiladi.

Motor, oraliq qurilma va ish organlari ham holat o‘lichov o‘zgartikchilar bilan ta‘minlangan hamda ulardan axborot doimiy ravishda yoki talab etilganda BHQga berib turiladi.

NAZORAT UCHUN SAVOLLAR

1. Operatsion o‘zgartirgan tok kuchaytirgich qanday xususiyatlarga ega?
2. Proporsional rostlajchining chiqish signali kirish signali bilan qanday bog‘lanishda bo‘ladi?
3. Elektr yuritimalarni boshqarishda asosan qanday turdagi analog rostlajchilar ishlatiladi va ularning chiqish tavisflari kirish signali bilan qanday bog‘lanishda bo‘ladi?
4. Elektr yuritimalarda qanday turdagi vazifalovchi analog qurilmalar ishlatiladi?
5. Elektr yuritimalarni boshqarishda asosan qanday turdagi raqamlari qurilmalar ishlatiladi va ularning vazifalari nimalardan iborat?
6. Mantiiqiy raqamlari qurilmalar qanday qurilmalar kiradi?
7. Triggerlar qanday vazifani bajaradi?
8. Elektr yuritimalarni mikroprosessorli boshqarish tizimi qanday qurilmalardan tashkil topgan va ularning vazifalari nimalardan iborat?
9. Arifmetik-mantiiqiy qurilma qanday funksiyani bajaradi?
10. Dasturiy kontrollerning mikroprosessorli boshqarish tizimidan farqi nimada?
9-bob. ASIXNRON MOTORLARNI EKSPLUATATSIIYA QILISHDA ENERGIYADAN FOYDALANISH SAMARADORLIGINI OSHIRISH

9.1. TARMOQ FAZALARIDAGI KUCHLANISHLARING NOSIMMETRIKLIGI VA ULARNI YO‘QOTISH

Katta quvvatdagi har xil turdagi bir fazali va uch fazali elektr yoy pechlarining ishltilishi sababli sanoat korxonalarining elektr tarmoqlaridagi fazalar orasida tok hamda kuchlanishlarning nosimmetrik taqsimlanishiga olib keladi. Elektr tarmoqdagi kuchlanish bo'yicha nosimmetriya ayniqsa asinxron motorlarning ish rejimiga salibiy ta'sir qiladi. Fazalardagi kuchlanishlarning simmetrik bo'ilmasligi asinxron motorlarning ishlash muddatiga ta'siri katta bo'ladi. Asinxron motorning teskari yo'nalishdagi tok bo'yicha qarshilik to'g'ri yo'nalishdagiqishtan 5–7 marta kam ekanligini hisobga olsak, u holda ozgina qiymatdagi teskari yo'nalishdagi kuchlanishning paydo bo'lishi teskari yo'nalishdagi tok qiymatining sezilarli ortishiga olib keladi. Bu tok to'g'ri yo'nalishdagi tok bilan qo'shilib stator va rotor chulq'amlarining qo'shimcha qizishiga olib keladi. Bu esa o'z-o'zidan chulq'am izolatsiyasini tez eskirishiga va motor quvvatining kamayishiga sabab bo'ladi. Misol uchun kuchlanish nosimmetriyası 4% ga tang bo'lsa, to'liq quvvatda islayotgan motorning ishlash muddati taxminan 2 baravarga kamayadi; nosimmetriya 5% bo'lganda motorning quvватi 5–10% ga kamayadi; nosimmetriya 10% bo'lganda esa motorning quvватi motorning turiga qarab 20–50% gacha kamayishi mumkin.

Asinxron motorlarda kuchlanish bo'yicha nosimmetriyani bo'lishi asosiy aylantiruvchi momentga qarshi tormozlovchi momentni yuzaga keltiradi va u quyidagi formula bilan aniqlanadi:

\[
\frac{M_2}{M_{NOM}} = \frac{s}{2-s} \frac{Z_1^2 U_2^2}{Z_2^2 U_{NOM}^2} = \frac{s}{2-s} \frac{Z_1^2}{Z_2^2} E_1^2, \tag{9.1}
\]

bunda: \(s \) — sirpanish; \(Z_1 \) hamda \(Z_2 \) — motorning to'g'ri va teskari yo'nalishi bo'yicha to'liq qarshiliklari.

Shunday qilib, motor momentining kamayishi kuchlanishlar nosimmetriyasining kvadratiga to'g'ri proporsional ekanligi ayon bo'ldi.

Asinxron motor va boshqa induktiv xarakterdagi iste'molchilarning reaktiv quvvatlarini kompensatsiyalovchi kondensator quirmalarining normal ishlashi uchun ham salibiy ta'sir qiladi, ya'ni tarmoqdagi nosimmetriyani
yanada ham orttirib yuboradi. Fazalar bo‘yicha reaktiv quvvatning taqsimlanishi notekis bo‘lib, umumiy reaktiv quvvat qiymati o‘zgarib ketadi. Kuchlanishning nosimmetrik holatidagi kondensatorlar batareyasining reaktiv quvvati kuchlanishning simmetrik holatidagi kondensatorlar batareyasi reaktiv quvvatiga nisbat quyi ko‘rinishga ega bo‘ladi:

\[
\frac{Q_{NSM}}{Q_{NOM}} = \frac{U_{NOM}^2 - U_1^2}{U_{NOM}^2} = \left(1 + \frac{E_2^2}{U_{NOM}^2}\right).
\] (9.2)

Kondensator batareyasining normal uzoq muddat ishlashi uchun har bir fazadagi quvvat isrofi me’yoriy nominal qiymatidan ortmasligi kerak. Bu shart kondensator batareyalarining to‘liq reaktiv quvvatidan foydalinishga yetarli bo‘lmay, balki quvvatning mumkin bo‘lgan yuqori chegara-sinigina belgilaydi:

\[
Q = \frac{Q_{NOM} U_2^2 (1 + E_2^2)}{U_{K.Yu.F.}^2},
\] (9.3)
bunda: \(U_{K.Yu.F.}\) — eng ko‘p yuklangan fazadagi kuchlanish.

Kuchlanishlarning fazalar bo‘yicha nosimmetrik bo‘lishi ko‘p fazali to‘g‘rilagichlarning ish rejimiga ham salbiy ta’sir qiladi. Agar simmetrik kuchlanishlarda ishlayotgan ko‘p fazali to‘g‘rilagichning hamma tiristorlaridagi toklarning qiymatlarini bir xil bo‘ladigan bo‘lsa, u holda fazalardagi kuchlanishlarning nosimmetriyaligi tiristorlardagi toklarning qiymatiga katta ta’sir qiladi. Natijada to‘g‘rilagichlarning ruxsat etilgan quvvati pasayadi, bir qism tiristorlardagi yuklanish toklarning qiymati katta bo‘lishiga olib keladi.

Kuchlanishlarning nosimmetriyaligi 3, 6, 12 fazali va boshqa to‘g‘rilagich sxemalarining samaradorligini pasaytiradi. Tokning ikkilangan chastotli garmonik tashkil etuvchilari paydo bo‘lib, ularning amplitudasi nosimmetriya koeffitsiyentiga to‘g‘ri proporsional bo‘ladi. Bu garmonik tashkil etuvchilar silliqlovchi filtrlar kondensatorlarini o‘ta yuklanishiga olib keladi va ularning ishdon chiqishini tezlashtiradi.

Tarmoqdagi nosimmetriyani kamaytirish uchun alohida simmetriyalovchi qurilmalar ishlatiladi. Bir fazali inductiv xarakterdagi yuklanishni uch fazaga ulashda droselli bo‘luvchi sxemadan foydalishan mumkin (9.1 - rasm). Bunday simmetriyalovchi qurilmalar yuklanish xarakteriga qarab boshqariluvchi va boshqarilmaydigan variantlarga bajariadi.

Iikki va uch fazali nosimmetrik yuklanishlarni kichik quvvat koeffitsiyentli simmetriyalovchi qurilma — nosimmetrik kondensator batareyalaridan ibo
rat sxemalar yordamida fazalARDAGI nosimmetriklikni kamaytirish mumkin (9.2- rasm).

9.1- rasm. Sig‘im va drosselli simmetriyalovchi qurilmaning yuqlanishga ulanish sxemasi.

9.2- rasm. Uch fazali sig‘imli simmetriyalovchi qurilmaning ulanish sxemasi.

Umuman olganda har bir fazaga ulangan kondensator batareyalarining quvvati bir xil bo‘lmaydi:

$$Q_{C_1CB} \neq Q_{C_2BC} \neq Q_{C_3CA}.$$ (9.4)

Har qanday holatlarda ham simmetriyalovchi qurilmalarni ishlatish yoki boshqa tadbirlar natijasida nosimmetriyani yo‘qotish yoki kamaytirish texnik-iqtisodiy hisob-kitoblar asosidagina amalga oshiriladi.

9.2. KUCHLANISHNI [U_I]–[U_L] ULANISH ASOSIDA BOSHQARISH

Uch fazali o‘zaruvchan tok tizimda kuchlanishni rostlash fazalar kuchlanishi tizimidan liniya kuchlanishlar tizimiga o‘tish yoki aksincha liniyalar kuchlanishi tizimidan fazalar kuchlanishi tizimiga o‘tish bajariladi. Bu rostlash pog‘onali bo‘lib, kontaktsiz kommutatsion apparatlar
yordamida amalga oshiriladi. Elektr energiyadan iqtisod qilish nuqtayi nazardin bu usul ancha qulaydir. Masalan, agar asinxron motorning yul- langanligi 40% dan kam bo‘lsa, u holda stator chulg‘ami «uchburchak» ulangan sxemadan «yulduzcha» sxemasiga o‘tkazilganda, har bir fazadagi kuchlanish 3 martaga kamayadi va natijada motor energiya tejamkorlik rejimida ishlay boşhlaydi. Kommutatsion apparatlar vazifasini tiristorlar yoki katta quvvatli tranzistorlar bajarib, ular kalit ish rejimida ishlaydi. Asinxron motorning yulkanish koeffitsiyenti qiymatiga qarab, u yoki bu sxema stator chulg‘amlarini avtomatik ulab, motorning butun ishlashi davomida elektr energiyadan tejamkorlik bilan foydalish imkonini beradi. 9.3-rasmda asinxron motor chulg‘amini λ / Δ sxemalar bo‘yicha ulab, kuchla-nishini rostlashga xizmat qiluvchi tiristorli qayta ulagichning anod bo‘yicha (a), neytrali izolatsiyalangan (b) va ajratilgan katod bo‘yicha boshqariladigan (d) kuch sxemalari ko‘rsatilgan.

Sanoat qurilmalaridagi reaktiv quvватни kompensatsiya qilishda kondensator batareyalaridagi kuchlanishni pog‘onali rostlash yaxshi samara beradi. Kondensator qurilmalaridagi (KQ) reaktiv quvvatning kuchlanishinga bog‘liqligi quyidagi ifoda bilan aniqlanadi:

$$Q_{KQ} = U_T^2,$$ (9.5)

bunda: U_T— tarmoqdagi kuchlanish qiymati.

9.4- rasmda seksiyalar quvвати 1 : 4 nisbatda bo‘lgan bir va ikki pog‘onali seksiyalar boshqariladigan ikki seksiyali KQning reaktiv quvvatı rostlanishi ko‘rsatilgan.
9.3- rasm. Kuchlanishni rostlashga xizmat qiluvchi tiristorli qayta ulagichlarning sxemalari.

9.6- rasmda keltirilgan sxema C_1-C_3 kondensatorlarning «uchburchak» sxemasidan «yulduzcha» sxemashiga ulanish va aksi bo‘yicha tarmoqqa ulash sxemasi ko‘rsatilgan, bunda $VS1- VS10$ tiristorlar kalit rejimida ishlaydi.

Boshqariladigan KQlarning qo‘llanilishi elektr iste’molchilarning talab qilayotgan reaktiv quvatiga bog‘liq ravishda kerakli miqdorda reaktiv quvat bilan avtomatik uzuksiz ta’minlash imkonini beradi.

9.3. TEZLIGI ROSTLANMAYDIGAN ASINXRON MOTORLARNING MINIMUM STATOR TOKI ISH REJIMI

Asinxron motor ishlayotgan vaqtida stator chulg‘ami kuchlanishining chastotasi $f = 50$ Hz = const ekanligini va yuklanish momentining nominal qiymatidan kichik, ya’ni $\mu_C \leq 1$ ekanligi uchun motor magnit tizimi to‘yinmagan bo‘ladi, motor magnitlanish tavsifining to‘g‘ri chiziqli qismi-da ishlaydi va shuning uchun $\phi = \gamma$ o‘rinli bo‘ladi (bunda $\gamma = U_1 / U_{1N}$ — stator chulg‘amiga berilayotgan kuchlanishning nisbiy qiymati). Shunda sta-
tor toki i_1 ning yuksalishga bog‘liq eng kichik qiymatda bo‘lishi sharti quyidagi tenglama orqali aniqlanadi:

$$\frac{d(i_1)}{d\gamma} = 0.$$ \hspace{1cm} (9.6)

Bu rejimni amalga oshirish 9.7- rasmda keltirilgan asinxron motorli ekstremal avtomatik boshqarish tizimida amalga oshiriladi.

Jamlovchi qurilma (4)ning birinchi kirishiga vazifalovchi signal U_ν beriladi (ushbu holda o‘zgarmas tokning rostlanadigan kuchlanishi) asinxron motor (1)ning ishga tushib ketishi vaqtida elektr yuritma tokining minimum qiymati bilan ishlash rejimi ko‘zda tutilmaganligi uchun esda saqlash qurilmasi (5) berk holatda bo‘ladi va tiristorli kuchlanish rostlagichi TRK ning kuch sxemasini (2) tiristorlarini boshqarish bloki bo‘lgan impuls-faza boshqarish tizimi IFBT (3)ning kirishiga jamlovchi qurilma (4)ning chiqishidan $U_B = U_\nu$ signali beriladi. Bu TRKnинг kuch sxemasining chiqishida U_{max} ning shakllanishiga mos keladi va bu asinxron motorning nominal kuch

Bu signal bo‘lish blokining chiqishidan jamlovchi qurilmaning ikkinchi kirishiga esda saqlovchi qurilma orqali beriladi. Esda saqlovchi qurilma
hisob-kalit rejimida ishlaydi, ya'ni uning chiqishida signal bor bo'lsa, esa saqlovchi qurilmada hozirgi va oldingi signal d_i / dU larni taqqoslash amali bajariлади va minimum sharti bajariлган vaqt momentida $d_i / dU = 0$ esa saqlovchi qurilmaning chiqishida d_i / dU ning oldingi qiymati makhkamlanib qoladi va bu esa motoring yuklanishi darajasiga qarab kuchlanishning optimal qiymatini beradi. Ma'lum vaqt o'tgandan so'ng motor valida yuklanishning o'zgarishi sodir bo'lsa $d_i / dU = 0$ shartning bajarilishi tekshiriladi va kuchlanishni rostlash sildi yana boshqatdan qaytariladi.

Davomiy ish rejimida ishlaydigan umumsanoat mehnizmlarining yuritmalarida, masalan, nasos, kompressor va ventilatorlarning asinxron elektr yuritimalari uchun 9.7- rasmda berilgan ekstremal avtomatik boshqarish tizimidan foydalanish katta iqtisodiy samara beradi.

9.4. TEZLIGI ROSTLANMAYDIGAN ASINXRON MOTORLARNING MINIMUM REAKTIV QUVVAT ISTE'MOLI ISH REJIMI

Asinxron motorlarning real yuklanish momenti nominal qiymatidan kam bo'lishi, motoring tarmoqdan iste'mol qilayotgan reaktiv quvvatning ortishiga olib keladi va natijada motoring quvvat koeffitsiyenti pasayadi. Asinxron motor reaktiv quvvat Q ni motor validagi yuklanish momenti bilan o'zaro bog'lab, minimal qiymatiga keltirib avtomatik boshqarish asinxron elektr yuritmalarda energiya tejamkorlikka erishishning asosiy yo'nalishlaridan biridir.

Motor iste'mol qilayotgan reaktiv quvvatni yuklanish qiymatiga mos ravishda boshqarish, magnet oqimini o'zgartirib amalga oshiriladi va umumiy holda uning qiymati quydagi differensial tenglama orqali aniqlanadi:

$$\frac{d}{d\Phi} \left(\frac{Q}{Q_N} \right) = \frac{d}{d\Phi} \left(\frac{Q}{Q_N} \right) = 0,$$

(9.7)

bunda: $Q = Q_0 + Q_R$ - motoring amaldagi tarmoqdan iste'mol qilayotgan reaktiv quvvatı; Q_N, Q_0 va Q_R - asinxron motoring mos ravishda nominal, amaldagi magnetlanish va sochilma reaktiv quvvatları; $\Phi = \frac{\Phi}{\Phi_N}$ - magnet

144
oqimining nisbi qiymati; Φ_N va Φ – magnit oqimining nominal va amaldagi qiymatlari.

(9.7) tenglama (9.6)ni hisobga oylan holda quyidagi ko‘ринишда yoziladi:

$$
\frac{d}{d\gamma} \left(\frac{Q}{Q_N} \right) = 0.
$$

(9.8)

Asinxron motor iste‘mol qilayotgan reaktiv quvvatining matematik ifodasining uncha murakkab bo‘Imagan ma’lum o‘zgartirishlar asosida quyidagi μ_C ga bog‘liq bo‘lgan umumlashgan ifodasi hosil bo‘ladi:

$$
\frac{Q}{Q_N} = \frac{Q_0N}{Q_N} \frac{Q_0}{Q_{0N}} + \frac{Q_{RN}}{Q_N} \frac{Q_R}{Q_{RN}} = c\gamma^2 + (1 - c)\frac{\mu_C^2}{\gamma^2},
$$

(9.9)

bunda:

$$
c = 1 - \frac{1}{(b_N + \sqrt{b_N^2 - 1}) \tan \varphi_N}; \quad \tan \varphi_N = \frac{\sin \varphi_N}{\cos \varphi_N}; \quad b_N = \frac{M_{\text{max}}}{M_N}.
$$

9.8- rasmda (9.9) tenglama asosida 4A280M4U3 rusumli ($R_N = 132$ kW; $2R = 4$; $\eta = 93\%$; $\cos \varphi = 0.9$; $b_N = 2$) asinxron motorning minimal

![Diagram](image-url)
reaktiv quvvat iste’molining yuklanish momentining turli qiymatlari uchun kuchlanish o‘zgarishiga bog‘liqlik tavsiflari keltirilgan.

Tavsiflar tahlili shuni ko‘rsatadi, yuklanish momentining har bir qiymati uchun kuchlanishning ma’lum bir qiymatida Q/Q_N ning eng kichik qiymati to‘g‘ri keladi.

(9.8) tenglamani γ bo‘yicha differensiallab, nolga tenglashtirib, motorning tarmoqdandan minimal reaktiv quvvat iste’molining real μ_C qiymati uchun qanday kuchlanish to‘g‘ri kelishini aniqlash mumkin bo‘ladigan yakhuniy ifodasini keltirib chiqaramiz:

$$\gamma = 4 \mu_C^2 \frac{1}{\sqrt{b_N^2 + (b_N^2 - 1) \tan \phi_N}} \mu_C^2.$$ \hspace{1cm} (9.10)

9.9- rasmda (9.10) ifoda bo‘yicha hisoblangan, motorning tarmoqdandan olayotgan reaktiv quvvatini minimal bo‘lishini ta’minlovchi, stator kuchlanishi optimal qiymatlarining μ_C ga bog‘liqlik tavsifi keltirilgan.

9.10- rasmda tasvirlangan asinxron motorli ekstremal avtomatik boshqarish tizimi yuklanishning barcha real qiymatlarida motor iste’mol qilayotgan reaktiv quvvat miqdorini minimal qiymatida bo‘lishini va motorning energetik ko‘rsatkichlarini nominal qiymatlariga yaqin qiymatlarda bo‘lishini ta’minlaydi.

Asinxron motorli ekstremal avtomatik boshqarish tizimi quyidagi asosiy tarkibi qismlardan iborat: asinxron motor (M), tiristorli o‘zgaruvchan tok kuchlanishi rostlagichi (TKR) kuch sxemasi (KS) orqali uch fazali elektr tarmog‘iga ulangan, TKRning boshqaruv tizimi (BT) jamlovchi qurilma (JQ) chiqish qismiga ulangan, JQning birinchi kirish qismiga esa vazifalovchi signal U_r beriladi, JQning ikkinchi kirish qismiga esa esda saqlovchi qurilma (ESQ)ning chiqish qismi ulangan, quvvat o‘ychov

146
9.10-rasm. Reaktiv quvvat iste'moli minimum bo'lgan rejimda ishlaydigan asinxron motorli ekstremal avtomatik boshqarish tizimining blok sxemasi.

O'zgartikchi (QO'O')ning kirish qismi asinxron motorning stator chulg'amiga ulangan va shu kirish qismga funksional o'zgartikch (FO')ning kirish qismi ulangan, FO'ning chiqish qismi esa ko'paytirish bloki (KB)ning ikkinchi kirish qismiga ulangan, QO'O'ning chiqish qismi ko'paytirish blokining ikkinchi kirish qismiga ulangan, KBning chiqish qismi esa birinchi differentsiyallovchi qurilma 1DQning kirish qismiga ulangan bo'lsa, chiqish qismi
esa bo'lvchi blok (BB)ning birinchi kirish qismiga ulangan, BBning ikkinchi kirish qismiga esa ikkinchi differensiallovchi qurilma 1DQning chiqish qismi ulangan, 2DQning kirish qismiga kuchlanish o'chov o'zingartkichining chiqish qismi ulangan va KO'ning kirish qismi esa asinxron motorning liniya kuchlanishiga ulangan.

Asinxron motor energetik ko'rsatkichlarining optimal qiymatlari bo'lishi, motor validagi yuklanishning qiymatiga mos ravishda stator chulgu amidiagi kuchlanishni rostlash natijasida, motorning reaktiv quvvat iste'molini minimal qiymatga keltirish asosida amalga oshiriladi. Bu avtomatik boshqarish tizimida motor validagi yuklanishning qiymati bilvosita aktiv quvvat bo'yicha hisoblaniadi.

Oxirgi qayd qilingan yuklanish uchun stator chulgu'ami kuchlanishi hal o'zgartirilmagan holda $\frac{dQ}{dU_1} \neq 0$ bo'ldi va bu signal ESQda saqlanadi, xuddi shu signal JQga yuboriladi va $U_B = U_V - \frac{dQ}{dU_1}$ boshqaruv signalini tashkil etuvchisi bo'ldi. Yangi boshqaruv signali ta'sirida TKO'ning KSining chiqish qismida kuchlanishning qiymati o'zgaradi. Stator chulgu'amiga berilayotgan kuchlanishning optimal qiymati asinxron motorni berilgan yuklanishda minimal reaktiv quvvat iste'moli rejimida ishlashini ta'minlaydi.

Yuklanish qiymatining to yangi qiymatiga o'zgargunga qadar $\frac{dQ}{dU_1}$ signal ESQda saqlanib turadi va yuklanish qiymati o'zgarganida hosil bo'ladigan keyingi tensizlik $\frac{dQ}{dU_1} \neq 0$ qiymati ESQga saqlash uchun yuboriladi. Asinxron motorning yangi yuklanish qiymati uchun minimal reaktiv quvvat iste'moli rejimi joriy qilinadi.

Yuklanish momentining o'zgarishiga bog'liq ravishda stator chulgu'ami kuchlanishini optimal boshqarish funksiyasi $\gamma(\mu_C)$ asosida (9.8- rasmdagi tavsif asosida) dasturiy boshqariladigan, tarmoqdan minimal reaktiv quvvat iste'mol qiluvchi, asinxron elektr yuritmali energiya tejamkor avtomatik boshqarish tizimlarini mikroprotsessorli tizimlarda yaratish imkonini beradi va bu esa bunday avtomatik tizimlarning tezkor rejimda ishlashini ta'minlaydi.

148
9.5. CHASTOTANI O‘ZGARTIRIB TEZLIGI ROSTLANADIGAN ASINXRON MOTORLARNING MINIMUM REAKTIV QUVVAT ISTE’MOLI ISH REJIMI

Chastotani o‘zgartirib tezligi rostlanadigan asinxron motorlarning yuqlanish momentining nisbiy qiymati \(\mu_C \leq 1 \) oraliqda o‘zaradi deb qaralganida, stator chulg‘ami kuchlanishini quyidagi proporsional qonuniyat bo‘yicha boshqarish mumkin:

\[
g = \alpha, \tag{9.11}
\]

bunda: \(g = \frac{U_{1f}}{U_{1Y}} \) – berilgan chastota qiymatiga mos keluvchi stator chulg‘ami kuchlanishning nominal qiymatiga nisbatan nisbiy qiymati; \(\alpha = \frac{f_1}{f_{1N}} \) – berilgan chastotaning nominal qiymatiga nisbatan nisbiy qiymati.

Keltirilgan (9.11) ifoda asinxron motor yuqlanish momentining o‘zgarishini hisobga olmaydi, yuqlanish momentining nominal qiymatidan kichik qiymatlarida tarmoqdan iste’mol qilayotgan reaktiv quvvatning ortishiga olib keladi va natijada asinxron motorning quvvat koeffitsienti pastaydi.

Akademik M.P.Kostenko taklif qilgan kuchlanishni rostlashning ikkinchi iqtiyodiy qonuniyati

\[
g = \alpha \sqrt{\mu_C}, \tag{9.12}
\]

yuqlanish momentining o‘zgarishini hisobga olgan holda, kuchlanishni rostlash davomida motorning moment bo‘yicha yuqlanganlik darajasini zarur va nozarur hollarda ham nominal qiymatda qolishini ta’minlaydi. Har ikkala qonuniyat bo‘yicha stator chulg‘ami kuchlanishini chastota va yuqlanish momentiga mos ravishda rostlanganida motoring reaktiv quvvatini iste’mol minimal bo‘lmaydi.

Asinxron motor iste’mol qilayotgan reaktiv quvvatning minimal bo‘lishi uchun stator chulg‘ami kuchlanishini yuqlanish momenti qiymatiga mos bo‘lgan (9.12) qonuniyatdagan ham chuqurroq rostlash kerak bo‘ladi. Kuchlanishni rostlash jaryonida chegaraaviy qiymat deb keltirilgan rotor toki qiymatining nominaldan ortmasligi mezon qilib olinadi va natijada chastotani o‘zgartirib, tezligi rostlanadigan asinxron motor yuqlanish momentining turli qiymatlarida ham minimal qiymatdagi reaktiv quvvat iste’mol qiladi. 9.11 rasmda chastotani o‘zgartirib tezligi rostlanadigan
4A100L4U3 rusumli asinxron motor stator chulg‘ami kuchlanishini yuklanish momenti qiymatlariga bog‘liq ravishda optimal rostlash tavsiflari keltirilgan.

\[\gamma \]

\[\alpha = 1,0 \]

\[0,2 \]
\[0,4 \]
\[0,6 \]
\[0,8 \]
\[1,0 \]
\[\mu_C \]

Chastotani o‘zgaritib tezligi rostlanadigan asinxron motorli elektr yuritmanning ekstremal avtomatik boshqarish tizimi (9.12- rasm) ishga tushirish va nominal ish rejimida funksional o‘zgartkich jamlovchi qurilma (JQ)dan tashqari barcha boshqaruv elementlar ishlamaydi.

Kuchlanishni rostlash tizimi (KBT)ga berilayotgan boshqaruv signali \(U_B \) chastota uchun boshqaruv signali bo‘lgan vazifalovchi signal \(U_V \) ga teng bo‘ladi va kuchlanish proporsional qonuniyat bilan boshqariladi, ya’ni (9.11) ifoda bo‘yicha rostlanadi.

Asinxron motor ishlab turgan paytda quvvat va kuchlanish o‘lchov o‘zgartkichlari (QO‘O‘) va KO‘O‘ chiqish qismlarida doimiy signal mavjud bo‘ladi. KO‘O‘dan chiqayotgan liniya kuchlanishi signali ikkinchi diffe-

rensiallovchi qurilma (2DQ)da vaqt bo‘yicha differensiallanib bo‘lish bloki (BB)ning ikkinchi kirish qismiga yuboriladi. Funktsional o‘zgartkich (FO)da faza kuchlanishi bilan toki orasidagi burchak φ ning sin φ qiymatiga mos signal olinadi va ko‘paytirish bloki (KB)ning ikkinchi kirish qismiga uzatiladi va u yerda QO‘O‘ning chiqish qismidan KBning birin-
chi'kirish qismiga yuborilgan umumiy quvvat S ga prporsional signal bilan ko'paytmasi $Q(t) = S(t)\sin \varphi$ – motorning ishlayotgan vaqtidagi reaktiv quvvat iste'moli qiymatini beradi. $Q(t)$ signal 1DQda vaqt bo'yicha differensiallanib, BBning kirish qismiga yuboriladi.

Oxirgi qayd qilingan yuklanish uchun stator chulg'ami kuchlanishi hali o'zgartirilmagan holda $\frac{dQ}{dU_1} \neq 0$ bo'lishadi va bu signal ESQda saqlanadi, xuddi shu signal jamlovchi qurilma (JQ)ga yuboriladi va u yerda berilayotgan vazifalovchi chastota signaliga mos $U_B = U_B - \frac{dQ}{dU_1}$ boshqaruv signalini tashkil etuvchisi bo'lishadi.

Yangi boshqaruv signali ta'sirida chastota o'zgartikich (ChO')ning kuch sxemasi (KS)ning chiqish qismida kuchlanishning qiymati o'zgaradi. Stator chulg'amiga berilayotgan kuchlanishning optimal qiymati asinxron motorning yuklanishi va chastota qiymatlari uchin minimal reaktiv quvvat iste'moli rejimida ishlashini ta'minlaydi. Yuklanish qiymatining to yangi qiymatiga o'tgonga qadar $\frac{dQ}{dU_1}$ signal ESQda saqlanib turadi va yuklanish qiymati o'zgarganida hosil bo'lishadi keyingi tengsizlik $\frac{dQ}{dU_1} \neq 0$ qiymati ESQga saqlash uchun yuboriladi. Asinxron motorning yangi yuklanish va chastota qiymatlari uchin minimal reaktiv quvvat iste'moli rejimi joriy qilinadi.

Shuningdek, reaktiv quvvat iste'moli minimum bo'lgan rejimda ishlaydigan chastotani o'zgartirib, tezligi rostlanadigan asinxron elektr yuritmaning blok sxemasi dagi tok o'lichov o'zgartikich (TO'O'), moment o'lichov o'zgartikich (MO'O'), hisoblash qurilmalari (HQ1) va (HQ2) va mantiqiy qurilmalar (MQ) vositasida bu elektr yuritmaning ishlashi rotor tokini nominal qiymatidan orttirmasdan boshqarish imkonini beradi.

TO'O'ning chiqish qismidan I_1 ga prporsional signal MO'O'ning kirish qismiga uzatiladi, KO'O' chiqish qismidan olingan U_1 ga prporsional signal HQ1 ning birinchi kirish qismiga uzatiladi, HQ1 ning ikkinchi kirish qismiga MO'O'ning chiqish qismidan μ_C ga prporsional signal uzatiladi, uchinchis kirish qismiga esa chastota qiymatiga prporsional vazifalovchi
signal U_V yuboriladi. HQ1 da asinxron motor nominal ko‘rsatkichi b_N va (1.6) formula asosida hisoblangan b_C ko‘rsatkich HQ2 ning kirish qismiga yuboriladi va bu hisoblash qurilmasida rotor tokining nisbiy qiymati $\frac{I_2'}{I_{2N}'}$ hisoblanyadi va signal mantiqiy qurilma MQning kirish qismiga uzatiladi, agar uning qiymati birdan katta bo‘lsa ESQning ikkinchi kirish qismiga yuboriladi va bu qurilmaning chiqish qismini yopib tiristorli kuchlanish rostlagichning boshqaruv tizimiga berilayotgan boshqaruv kuchlanishi U_b ni uzishga signal beradi va natijada asinxron elektr yurtma tarmoqdan uziladi. Agar MQning chiqish qismidagi signal birdan kichik bo‘lsa, u holda ESQga boshqaruv kuchlanishini uzish to‘g‘risida signal berilmaydi va asinxron elektr yuritma normal ish rejimida ishlashini davom ettiradi.

NAZORAT UCHUN SAVOLLAR

1. Tarmoqdagi kuchlanishlarning nosimmetrikligi asinxron motorlarning energetik ko‘rsatkichlariga qanday ta’sir qiladi?
2. Nima uchun asinxron motorlarning iste‘mol qilayotgan reaktiv quvvatini yuklanishiga mos ravishda rostlash zarur?
3. Tarmoqdagi kuchlanishlarning nosimmetrikligini yo‘qotishning qanday usullari bor?
4. Tarmoqdagi reaktiv quvvat qiymatini qanday sxemalar vositasida rostlash mumkin?
5. Asinxron motorlarning minimum stator toki ish rejimida ishlashi uchun qanday shart bajarilishi kerak va uning matematik ifodasi qanday ko‘rinishda bo‘lishi kerak?
6. Tezligi rostlanmaydigan asinxron motor iste‘mol qilayotgan reaktiv quvvatini yuklanishiga mos ravishda rostlashning optimal qonuniyati ifodasi qanday?
7. Tezligi rostlanmaydigan asinxron motor reaktiv quvvatini yuklanishga mos ravishda rostlovchi avtomatik boshqarish tizimidagi tiristorli kuchlanish rostlagich kuchlanishi qanday boshqariladi?
8. Asinxron motor tezligini chostotani o‘zgartirib rostlashda kuchlanish qanday qonuniyatlar bilan boshqarilishi mumkin?
9. Chostotani o‘zgartirib tezligi rostlanadigan asinxron motor iste‘mol qilayotgan reaktiv quvvatini yuklanishiga mos ravishda rostlashning optimal qonuniyati ifodasi qanday?
10. Nima uchun chastotani o‘zgartirib tezligi rostlanadigan asinxron motorli avtomatik boshqarish tizimlarda asosan bilvosita chastota o‘zgartikchlar qo‘llaniladi?

11. Tezligi rostlanmaydigan va chastotani o‘zgartirib tezligi rostlanadigan asinxron motorli avtomatik boshqarish tizimlaridagi differensiallovchi qurilmalar va bo‘luvchi bloklar qanday asosiy vazifani bajaradi?

12. Tezligi rostlanmaydigan va chastotani o‘zgartirib tezligi rostlanadigan asinxron motorli avtomatik boshqarish tizimlaridagi elektr o‘lchov o‘zgartikchlari sifatida qanday o‘lchov o‘zgartikchlari qo‘llaniladi?
FOYDALANILGAN ADABIYOTLAR

155
MUNDARIJA

Kirish ... 3
Tayanch so‘zlar va so‘z birikmaları .. 4

1-bob. Elektromexanik tizim elementlarining asosiy ko‘rsatkichlari va tavsiflari

1.1. Elektromexanik tizim elementlari to‘g‘risida tushuncha 7
1.2. Elektromexanik tizim elementlarining ko‘rsatkichlari va tavsiflari 10

2-bob. Boshqariluvchi o‘zgarmas tok o‘zgartkichlari

2.1. Yarim o‘tkazgichli o‘zgarmas tok o‘zgartkichlarining asosiy kuch
 sxemalari va ko‘rsatkichlari .. 15
2.2. Tiristorli o‘zgarmas tok o‘zgartkichining asosiy tavsiflari 18
2.3. Tiristorli o‘zgarmas tok o‘zgartkichlarining dinamik xususiyatlari 21
2.4. Tiristorli o‘zgarmas tok o‘zgartkichning kuch tiristorlarini
 boshqarish ... 23
2.5. Reversiv tiristorli o‘zgarmas tok o‘zgartkichlarini
 boshqarish ... 28
2.6. Impuls kengligi boshqariladigan o‘zgarmas tok
 o‘zgartkichlari .. 35

3-bob. Boshqariluvchi o‘zgaruvchan tok o‘zgartkichlari

3.1. Tiristorli kuchlanish rostlagich ... 41
3.2. Yarimo‘tkazgichli bilvosita chastota o‘zgartkichlar 45
3.3. Avtonom invertorlar .. 49
3.4. Bevosita chastota o‘zgartkichlar ... 59
3.5. Induktiv-sig‘imli parametrlik o‘zgartkichlar ... 62

156
4- bob. Elektromashina kuchaytirgichlar

4.1. Umumiy ma’lumotlar ... 73
4.2. Ko’ndalang maydonli elektromashina kuchaytirgichning
ishlash asosi ... 75
4.3. Ko’ndalang maydonli elektromashina kuchaytirgichning asosiy
tavsiflari .. 77

5-bob. Taxogeneratorlar

5.1. Umumiy ma’lumotlar ... 82
5.2. O’zgarmas tok taxogeneratorlar .. 83
5.3. Asinxron taxogeneratorlar .. 84

6-bob. Selsinlar

6.1. Selsinlar haqida umumiy ma’lumotlar 88
6.2. Bir fazali selsinlar .. 89
6.3. Selsinlarning indikator ish rejimi ... 91
6.4. Selsinlarning transformator ish rejimlari 95

7-bob. Buriluvchi transformerlar

7.1. Buriluvchi transformerlar haqida umumiy ma’lumotlar 98
7.2. Sinus-kosinusli buriluvchi transformerlar 100
7.3. Chiziqli, mashtabli va grafik chizgich buriluvchi transformerlar.. 102

8-bob. Elektromexanik tizimlarning boshqarish tizimlari elementlari

8.1. Elektromexanik tizimlarning analog elementlari va
quirilmalari ... 107
8.2. Elektromexanik tizimlarning diskret elementlari va
quirilmalari ... 115
8.3. Elektromexanik tizimlarni boshqarishning mikroprotsessorli
vositalari .. 125
8.4. Elektromexanik tizimlarni mikroprotsessorli boshqarish tizimlari ... 131
9-bob. Asinxron motorlarni ekspluatatsiya qilishda energiyadan foydalanish samaradorligini oshirish

9.1. Tarmoq fazalaridagi kuchlanishlarning nosimmetrikligi va ularni yo‘qotish .. 135
9.2. Kuchlanishni \([U_f]−[U_L]\) ulanish asosida boshqarish .. 137
9.3. Tezligi rostlanmaydigan asinxron motorlarning minimum stator toki ish rejimi ... 140
9.4. Tezligi rostlanmaydigan asinxron motorlarning minimum reaktiv quvvat iste‘moli ish rejimi ... 144
9.5. Chastotani o‘zgartirib tezligi rostlanadigan asinxron motorlarning minimum reaktiv quvvat iste‘moli ish rejimi .. 149

Foydalanilgan adabiyotlar .. 155
Abduqahhor Turapovich IMOMNAZAROV

ELEKTROMEXANIK TIZIMLARNING ELEMENTLARI

Oliy o‘quv yurtlari uchun darslik

Muharrir X. Po‘latxo‘jayev
Badiiy muharrir Sh. Xo‘jayev
Sahifalovchi A. Tilla xo‘jaev
Musahhiih B. Tuyoqov

