А. Ю. УМАРОВ

ГИДРАВЛИКА

Ўзбекистон Республикаси Олий ва ўрта максус таълим вазирлиги олий техника ўкув юртлари талабалари учун дарслик сифатида тавсия этган

ТОШКЕНТ
«ЎЗБЕКИСТОН»
2002
30.123.я73
У 47
Тақризчи: техника фанлари доктори, профессор Н. У. РИЗАЕВ — Узбекистонда хизмат кўрсатган фан ва техника арбоби, Тошкент Автомобиль йўллари институти «Гидравлика ва Гидромашиналар» кафедраси мудири

ISBN 5-640-01787-2

Устозларим: падарим Уста Умар Юнус ўғли, илмий раҳбарларим техника фанлари доктори, профессор Леви Иванович, профессор Кнороз Владимир Стефановичларининг пороқ хотиралари-га бағишланади.

МУАЛЛИФ

МУҚАДДИМА

Мустақил Республика мизнинг тараққияти, унинг узоқ ва якин ёрдамий мамлакатлар билан кенг қўлламдаги алоқаларининг риақияви, олий ўқув юртларида ҳозирги кун талабига жавоб берилган билимдон, техника усунуналари ва технологияларни биносита такомиллаштира оладиган, фан ютукларини амалий ишлаб чиқаришда биносита қўллай оладиган юкори малакали муҳаққисизлар, муҳандислар тайёрлашни такозо этади. Бундай даролар муҳаммод қал этиш учун табиий фанлар соҳасидаги энг қуйин ютукларни ўзвида акс эттирувчи янии ўқув дастурулари асосида дарсликлар, ўқув қўлланмалар, услубий кўрсатмалар яратиш зарур. Колаверс, шу кунтача ўзбек тилида жаҳон андозаси илмий берилиб жавоб берарли дарашада дарсликлар чоп этилмagan. Юкорида келтирилган мулоҳазаларга кўра, гидравлика фанидан очиқ техника ўқув юртлари учун муҳаллаланган яни дарслик ёртилди.

Бу дарслик муаллифнинг Санкт-Петербург давлат техника уни-верситети (собиқ Ленинград политехника институти)да, Тошкент давлат техника университети (собиқ политехника институти)да ҳамда Тошкент архитектура-қурилиш институтида гидравликадан ўқишган лекциналари ва шу соҳадаги қирқ йиллик педагогик ва илмий иш ёкирибалари асосида ёшилган. «Гидравлика» китобини тайёрлашда
индустриал ривожланган давлатлар АҚШ, Германия, Япония, Франция, Англия, Канада ва Россия, МДХ давлатларининг таж-рибаларидаған фойдаланилган. Дарсликда муаллифнинг собиқ Иттифок миллий қўнимсиси Гидравлика талқиқотлари бўйича Халқaro Ассоциацияси (МАГИ) орқали АҚШ нинг Форт Коллинз (Колодадо штати), Москва, Санкт-Петербург (собиқ Ленинград) шаҳарларида ўтказилган Халқaro Конгрессларда ўқишган лекцияларидан фойдаланилган. Дарслик «Гидравлика» курсининг «Гидrostатика» ва «Гидродинамика» қисмларини ўз ичиға олган 10 бобданд иборат.

Дарсликнинг «Гидrostатика» қисмидаги бобларда гидростатика бошим ва уларни ўлчаш асбоблари тўғрисида мукаммал, тўлиқ тушунча берилб, барча муҳим формуласан изчиллик билан келтирилган.

«Гидродинамика асослари»га тегишили боблардаги узлуксизлик тенгламаси, Д. Бернуlli тенгламаси ва бошқа мавзуларда механикавий энергиянинг сакланиш қоппили яққол намоён бўлишини назарда тугиб, бу бўлимга оид барча муҳим формуласан бир неча қўринишда соддалаштирилган ҳолда берилган.

Мазкур китобда назарий қисмнинг, асосан, очик ўзанлар (каналлар) гидравликаси соҳасидаги гидравлика нинг амалий татбиқлари, чуночи, суюқликнинг барбарор текис ва нотекс илгирланима ҳаракати, йўқотилган напор (энергия), ўзан тубининг микро- ва макрошакларининг оким кинематикасига таъсир мавзусига багишланган қисм билан узвий боғланганин кўрамиз.

Гидравликани ўрганувчилар ёшина ктбъий билиб олишлари керакки, тажрибадан олинган коэффициентлар ҳисобига халқ тузатилган ҳар қандай назарий хуолоса ҳақиқатта факат яқинlashиғина бўлиб, уни қўллашда эҳтиёт бўлинмаса, қатта ҳатоликка олиб келиши мумкин.

Китобда гидротехника иншоотларини ҳисоблашда гидравлика усулларини қўллаш гидродинамика соҳасида бошлангич билинга эга бўлган талабалар учун ўзлаштириш осон бўладиган қилиб баён қилинган.

Дарсликдали ҳар бир бобнинг охирида шу бобдаги мавзу-ларга тегишили масалалар келтирилган. Китобда замонавий ЭҲМ лардан фойдаланиш усуллари ва замонавий алгоритм, дастур ва блок-схемалар кенг ёритилган. Улардан услубий характерга эга бўлган-ларининг ечими ЭҲМ ёрдамида бажаарилган ва намуна тариқасида келтирилган.
Муаллиф хуолосаларнинг изчиллиги ва яққоллигини бузган ҳоила математик анализынг узундан-узок формулалар қўринг қўп ҳолларда елементар математика ҳамда дифференциал ва интегралларнинг содда формулалари билан чекдимишган. Ғидравлик жараёнларнинг ғизик талқинига катта амалий берилиши, бу эса қитобхонга келиб чиқаётган ҳар бир силлианинг моҳиятини яққол тасаввуры қилишга имкон беради, бу дарсликнинг катта ютунфидир.

Дарсликда ғидравликанинг динамика ҳушқашлик ва ғидравлик қаршиликлар нazorияси ҳақидаги таълимотга катта аҳамият берилган. Шу билан бирга амалий ғидравлика бўйича қўпгина тадқиқотлар натижалари келтирилган. Жумладан, И. И. Леви, А. П. Зеглер, В. С. Кнороз, А. Прандтль, И. Никурадзе, Ф. Форхгеймер, Кошбрук-Уайт ва бошқа муаллифларнинг напорли қувур ва очик узиларда (каналларда) ғидравлик ишқаланиш таъсирида йўқошган напорни йўқаан қўйича ўтказилган тадқиқотлари ва бошқалар ёртипилган. Мавзулар ҳалкарро ўлчам бирликлар тизими — «С–И»да баён этилган. Давлат тили атамашунослигининг ҳозирги бошқичидага «Гидравлика» фани соҳасида мукаммал атамалар лугатги яратилмаганлигин қарамай муаллиф мумкин қадар ўзбек тилиларин атамалардан фойдаланган. Шунинг учун дарсликда қўллашган баъзи бир атамалар бахсни бўлиши ҳам мумкин.

Мазкур дарслик ғидравликка фанининг ўқув дастури асосида ўзбек тилида биринчи марта ёзилган.

Муаллиф ўз устози ва раҳбари проф. И. И. Леви ва проф. В. С. Кнороздан (С. Пб ДТУ. Санкт-Петербург) умрбод миннатдор бўлган ҳолда уларнинг илм мақтабини давом этиришга ўзининг умрини бағишлайди. Муаллиф дарсликнинг сифатини яхшилаш борасидағи ўқувчиларнинг фикр ва мулоҳазаларини мамнуният билан қабул қилади.

Муаллиф дарслик қўлъэзмасини қўриб чиқиб такризида фойдади маслаҳатлар берганлиги, шунингдек ғазаки айтилган фикр-мулоҳазалари учун проф. Н. У. Ризаевга ўз миннатдорчилнинги билдирди.

Барча танқидий фикр ва мулоҳазаларингизни қуйидаги манзилга юборишингизни сўраймиز: 700129, Тошкент ш., Навоий кўчаси, 30. «Ўзбекистон» қўшғари.

Муаллиф
БИРИНЧИ БОБ
ГИДРАВЛИКАГА КИРИШ

1.1-§. ГИДРАВЛИКА ФАНИНИНГ МАЗМУНИ

Гидравлика (суюқликниинг техникавий механикаси) фани суюқликларнинг тинч ҳамда ҳаракат ҳолатидаги ўзгариши қонунларини, шунингдек, мазкур қонунларини, анъик муҳандислик масалаларни ечишда қўлланиш ucasларини ўрганиш билан шуғулланади. Гидравлика сўзи аслида юнонча бўлиб, ғдор (хюдор) — сув ва сўлоъ (аулос) — кувур сўзларидан таркиб топган. Уларни бирга ўқишанда сувнинг фақат қувурдаги ҳаракати деган маъно келиб чиқади. Кейинчалик гидравлика сўзи суюқликларнинг фақат кувурдан ҳаракати ёмас, балки ҳар қандай ўзанлардаги ҳаракатини ҳам англатадиган бўлди. Чунки гидравлика суюқликларнинг напорли (кувурда) ва напорсиз (очик ўзанда) ҳаракати қонунларини ўрганишади. Юқорида айтиб ўтилганидек, суюқликларнинг тинч ва ҳаракат ҳолатидаги қонунлари техника, саноат ва халқ ҳўжалигининг турли тармокларида, чуночи, гидротехника, гидромелиорация, гидроэнергетика, қурилиш, сув таъминоти ва канализация, қимёвий технология жараёнлари ва қурилмаҳар ҳамда бошқа соҳаларда амалий муҳандислик масалаларини ҳал қилишда кенг қўлламда қўлланилади.

Гидравлика фани икки қисмдан иборат: гидростатика ва гидродинамика. Гидростатика қисмида суюқликларнинг тинч ҳолатидаги қонунлари ўрганиллади. Бундай қонунларни ўрганишдан мақсад — суюқликнинг чукурлиги бўйича ихтиёрий нуктларда гидростатик босимнинг ўзгаришини аниқлайдан иборат. Гидростатик босим тинч ҳолатдаги суюқликларнинг турли нуктларида ҳар хил бўлади. Гидростатик босим вактга боғлик эмас, у фақат координаталарга боғлик

\[p = f(x, y, z). \] (1.1)
Гидродинамика қисмида суюқликларнинг ҳаракат пай-нияти гидродинамик элементларнинг ўзгариш қонун-ларини ҳаракатлаб, бунда суюқликнинг ҳар хил нүкталари-да u ғилиқ ва p босимларининг, вақт ўтиши билан, миқ-дорлари ҳар хил бўлади. Бундан ташқари u ва p лар бирон берилиган нүктада t вақт ичида ўзгариши қуйидагида ёзи-ylaniladi:

$$
\begin{align*}
 u_x &= f_1(x, y, z, t); \\
 u_y &= f_2(x, y, z, t); \\
 u_z &= f_3(x, y, z, t); \\
 p &= f_4(x, y, z, t).
\end{align*}
$$

(1.2)

(1.3)

Гидродинамика қисми икки бўлимдан иборат. Унинг би-ринчи бўлимда гидродинамикининг қуйидаги асосий наза-рий тенгламалари ёритилган.

I. Узлуксизлик тенгламаси (сув сарфининг баланс тенг-ламаси).

II. Д. Бернулли тенгламаси (солиштира ма энергиянинг баланс тенгламаси).

III. Ҳаракат миқдорининг гидравлик тенгламаси.

IV. Суюқлик қоҳимининг барқарор текис илгарилама ҳаракатининг асосий тенгламаси.

V. Ўзанларда суюқлик ҳаракати пайтида ишқаланиш на-тижасида йўқотилган напор (энергия) тенгламаси.

Гидродинамика қисмининг иккинчи бўлимида эса унинг бириччи бўлимдаги асосий назарий тенгламаларнинг ҳар хил гидротехник иншоотларни гидравлик ҳисоблашда амалий қўллаш усуллари берилади.

1.2-§. ГИДРАВЛИКА ФАНИНИНГ ҚИСҚАНА ТАРИХИ
ВА УНИНГ АСОСЧИЛАРИ

Сув инсоният ва умуман тирик мавжудотлар ҳаётиси асо-сий тирикчилик манбаи бўлиб келган. Ундан ичимлик сув тарзидан, экзинорларни сугориш ва механизмларни ҳаракат-га келтиришда фойдаланилган. Милоддан 4000 йил аввал Мисрда ҳамда 1000 йил бурун Хитой ва Сурияда, кейинроқ Вавilon, Юнонистон, Римда сувдан фойдаланиш учун дарё-ларда тўғонлар, чархпалакли тегирмонлар куришни билгандар.
Гидравлика фанига оид дастлабки қўлэзма милоддан аввал (287—212 й.) яшаган Юнон физиги Архимед томонидан ёзилган «Жисмининг сузиш қонунлари» асаридир. Архимеддан кейин XV асрдагача гидравлика фанига таалкул биронта қўлэзма сакланмаган, факат XV асрда италия олим Леонардо да Винчи (1452—1519) гидравликаға тегишил масалалардан янги кашфийётлар иктиро этган. Булар «Дарё ва ўзанларда сув ҳаракатини ўрганиш» ҳамда «Сиюъликнинг тешикдан оқиб чиқиш» деб аталади.

Гидравлика фаниги ривожлантиришга асос солган олимлар: Санкт-Петербург фанлар академиясининг аъзолари Михаил Васильевич Ломоносов (1711—1765), асли голландиялик, кейинчалик Санкт-Петербургда яшаб юҳод этган физик ва математик Даниил Иванович Бернулли (1700—1782), 1738 йиli ўзининг «Гидродинамика» китоби билан бутун дунёга машҳур бўлган. 1755 йиli швейцариялик математик, механик ва физик Леонард Павлович Эйлер (1707—1783) «Сиюъликларнинг тинч ҳолати ва ҳаракат пайтидаги ҳолатлари қонунларини ўрганиб, сиюълик ҳаракатининг дифференциал тенглагаларини ишлаб чиққан. Француз матема-
тинни файласуфий Ж. Д’Аламбер (1717–1783) суюқликнигин тинч ва ёракатдаги ҳолатларини ўрганганд. Ҳуддишу вафисида француз математиклари Дж. Л. Лагранж (1736–1813) ва П. С. Лаплас (1749–1827) ҳам гидравликнии ривожланishiга ўзларининг катта ҳиссаларини қўшганлар.

1883 йили Николай Павлович Петров (1836–1920) мойлашдаги ишқаланиш назариясини яратди. 1898 йили Николай Егорович Жуковский (1847–1921) гидравлик зарба назариясини яратиб, бунга онд китоб нашр этган.

1.3- §. ФИЗИК КАТТАЛИКЛАРНИНГ ЎЛЧОВ БИРЛИКЛАР ТИЗИМИ. ХАЛКАРО БИРЛИК ТИЗИМИ «СИ»

Қуйидада муханислик гидравликкасида қўлланиладиган асосий физик катталиклар учун ҳар хил бирлик тизимларини СИ тизимидағи бошқа бирликлар билан ўзаро боғланишларини ва бир физик катталиклардан иккинчи бошқа физик катталикларға ўтиш коэффициентлари келтирилган.

Куч (офирлик) ва солиширима офирлик. Халқаро бирлик тизими СИ да куч бирилиги этиб Ньютон қабул қилинган. Куч (офирлик) нинг йўлчами — LMT⁻². Куч бирилиги Ньютон СИ тизимидаги бошқа бирликлар орқали ифодаланиши:

$$1 \text{Н} = 1 \frac{\text{кг} \cdot \text{м}}{\text{с}^2} = \frac{1000 \text{г} \cdot 100 \text{см}}{\text{с}^2} = 10^5 \frac{\text{г} \cdot \text{см}}{\text{с}^2}.$$

Шундай қилиб,

$$1 \text{Н} = 10^5 \text{дин}=0,101972 \text{кгк} (\sim 0,102 \text{кгк});$$

$$1 \text{ дина} = 0,00001 \text{ Н};$$

$$1 \text{ кгк}=9,80665 \text{ Н} (\sim 9,81 \text{ Н}).$$

Халқаро бирлик тизими «СИ»да солиширима офирликнинг бирилиги ньютон таксим куб метр — $\frac{\text{Н}}{\text{м}^3}$. Солиширима офирликнинг йўлчами — $\text{L}^2\text{МТ}^{-2}$. Масалан, сувнинг солиширима офирлиги (сувилик ҳарорати 4°C)

$$\gamma_{\text{суви}(4^\circ\text{C})} = 9810 \frac{\text{Н}}{\text{м}^3} = 0,00981 \frac{\text{Н}}{\text{см}^3} = 1000 \frac{\text{ктк}}{\text{м}^3}.$$
Соингири ма аргирлри бирлиги 15\(\frac{H}{m^3}\) нинг СИ тизимида аргирлар орқали ифодаланиши

\[\gamma = \rho g = \frac{kg}{m^3} \cdot \frac{m}{s^2} = \frac{kg}{m\cdot s^2}, \]

бунда \(\rho\) — сувнинг зичлиги, \(\frac{kg}{m^3}\); \(g\) — эркин тушш тезланиши, \(\frac{m}{s^2}\).

Босим. Халкаро бирлик тизими «СИ»да босим бирлиги этиб Паскаль қабул қилинган. Босимнинг ўлчами — L\(^{-1}\)MT\(^{-2}\). Бошим бирлиги Паскаль СИ тизимида бошқа бирликлари орқали ифодаланиши:

1 Па = 1 \(\frac{kg}{m\cdot s^2}\);

1 Па = 1 \(\frac{H}{m^2}\) = 0,101972 \(\frac{kg}{m^2}\) = 10 \(\frac{dm}{cm^2}\) = 0,00001 бар =

=0,102 мм сув уст.=0,0075 мм симоб устуни.

1.1-жаадвал

<table>
<thead>
<tr>
<th>Катталик</th>
<th>Бирлик</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номи</td>
<td>Рамзин*</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Асосий бирликлар</td>
<td></td>
</tr>
<tr>
<td>Узунлик</td>
<td>L</td>
</tr>
<tr>
<td>Масса (огирлик)</td>
<td>M</td>
</tr>
<tr>
<td>Вақт</td>
<td>T</td>
</tr>
<tr>
<td>Хосиллайвий бирликлар</td>
<td></td>
</tr>
<tr>
<td>Майдон (юза)</td>
<td>L(^2)</td>
</tr>
<tr>
<td>Ҳажм</td>
<td>L(^3)</td>
</tr>
<tr>
<td>Тезлик</td>
<td>LT(^{-1})</td>
</tr>
<tr>
<td>Тезланиш</td>
<td>LT(^{-2})</td>
</tr>
<tr>
<td>Зичлик</td>
<td>L(^{-3})M</td>
</tr>
</tbody>
</table>
1.4-§. СУЮКЛИК ВА УНИНГ ФИЗИК ХОССАЛАРИ

Суюқлик окувчанлик хусусиятига эга бўлиб, у қандай накллағи илдига куйилса, ўша илдиг шаклини олади, яъни унинг барқарор шаклига эга эмас. Бунинг сабаби шунда-

<table>
<thead>
<tr>
<th>Катталик</th>
<th>Бирлиқ</th>
<th>Белги</th>
</tr>
</thead>
<tbody>
<tr>
<td>Номи</td>
<td>Рамзи</td>
<td>Ўлчам</td>
</tr>
<tr>
<td>Куч, огирлик</td>
<td>LMT<sup>1</sup></td>
<td>Ньютон</td>
</tr>
<tr>
<td>Босим, механизм кучланиш</td>
<td>L<sup>1</sup>M<sup>-1</sup>T<sup>-1</sup></td>
<td>Паскаль</td>
</tr>
<tr>
<td>Кинематик ковушоқлик коэффициенти</td>
<td>L<sup>2</sup>T<sup>-1</sup></td>
<td>Квадрат метр таксим секунд</td>
</tr>
<tr>
<td>Динамик ковушоқлик коэффициенти</td>
<td>L<sup>1</sup>M<sup>-1</sup>T<sup>-1</sup></td>
<td>паскал секунд</td>
</tr>
<tr>
<td>Иш, энергия</td>
<td>L<sup>2</sup>M<sup>-1</sup>T<sup>-1</sup></td>
<td>жоул</td>
</tr>
<tr>
<td>Кувват</td>
<td>L<sup>2</sup>M<sup>-1</sup>T<sup>-3</sup></td>
<td>Ватт</td>
</tr>
<tr>
<td>Харакат миқдори (импульс)</td>
<td>LMT<sup>-1</sup></td>
<td>килограмм метр таксим секунд</td>
</tr>
<tr>
<td>Куч импульси</td>
<td>LMT<sup>-1</sup></td>
<td>Ньютон секунд</td>
</tr>
<tr>
<td>Суюқликларнинг ҳажмий сарфи</td>
<td>L<sup>3</sup>T<sup>-1</sup></td>
<td>куб метр таксим секунд</td>
</tr>
<tr>
<td>Суюқликларнинг масалли сарфи</td>
<td>MT<sup>-1</sup></td>
<td>килограмм таксим секунд</td>
</tr>
<tr>
<td>Солиштира энергия, напор</td>
<td>L</td>
<td>метр</td>
</tr>
<tr>
<td>Суюқлик сарфи модули</td>
<td>L<sup>3</sup>T<sup>-1</sup></td>
<td>куб метр таксим секунд</td>
</tr>
<tr>
<td>Суюқлик тезлик модули</td>
<td>LT<sup>-1</sup></td>
<td>метр таксим секунд</td>
</tr>
<tr>
<td>Солиштира огирлик</td>
<td>L<sup>2</sup>M<sup>-3</sup>T<sup>-1</sup></td>
<td>Ньютон таксим куб метр</td>
</tr>
</tbody>
</table>

* Бирлари: L, M, T - куч, узунлик, вакт, массанинг тегишили рамзи қўйилган.
1.5- §. ИДЕАЛ ВА РЕАЛ СУЮКЛИКЛAR

Гидравлика фанида назарий тадқиқотларни соддалаштириш мақсадида идеал суюқликлардан фойдаланилади. Идеал суюқлик деб, босим ва ҳарорат таъсирида ўз ҳажмини мутлақо ўзгартириладиган ёки мутлақо сиқилмайдиган, ўзгармас зичликка эга бўлган ва ички ишқаланиш кучи бўлмаган, қовушоқлиги бўлмаган суюқликларга айтилади. Аслида ҳар қандай суюқлик босим ёки ҳарорат таъсирида ўз ҳажмини бир оз бўлса ҳам ўзгартиради, уларда ички ишқаланиш кучли бўлади. Демак, табиатда аслида идеал суюқлик бўлмайди, яъни табиатдagi барча суюқликлар реал суюқликлардир. Тинч ҳолатдаги суюқликларда уринма кучланиш бўлмайди. Ҳаракатдаги суюқликларда эса уринма кучланиш бўлади, бундай суюқликнинг ичида ихтиёрдий икки қатлам бир-бирига нисбатан ҳаракатда бўлганда, бу икки қатлам
сятҳлари орасида ишқаланиш кучи пайдо бўлади, натижада ички уринма кучлар мувозанатлашади.

Хуласа: 1) тинч ҳолатдағи суюқликлар ўрганилаётганда, суюқликларни идеал ва реал тўрларида ажратиш зарурати йўқ, чунки тинч ҳолатдағи ҳар қандай суюқликда уринма кучланиш бўлмайди;
2) реал суюқликларнинг ҳаракати ўрганилаётганда ички ишқаланиш кучини, яъни қовушоқлигини эътиборга олиш шарт, чунки қовушоқлик ҳаракатдаги реал суюқликнинг асосий хоссаси ҳисобланади.

1.6- §. РЕАЛ СУЮҚЛИКЛАННИНГ АСОСИЙ ФИЗИК ХОССАЛАРИ. ҚОВУШОҚЛИК

Суюқликларнинг гидравликада фойдаланилдиган асосий физик характеристикалари — зичлик, солиштирма оғирлик, қовушоқлик ва бошқалар. Улар тўғрисида қисқа ту-шунча бериб ўтамиз.

Зичлик. \(V \) хажм бирлигидағи модда массаси \(M \) нинг миқдори модданинг зичлиги дейилади ва \(\rho \) билан белгиланади.
Бир жинсли модда (суюқлик) учун

\[\rho = \frac{M}{V}, \] \hspace{1cm} (1.4)

бу ерда \(M \) — суюқликнинг массаси, кг; \(V \) — суюқликнинг хажми, м\(^3\).

Солиштирма оғирлик. \(V \) хажм бирлигидағи модда (суюқлик) нинг оғирлик миқдори, солиштирма оғирлик дейилади ва \(\gamma \) харфи билан белгиланади.
Бир жинсли модда (суюқлик) учун

\[\gamma = \frac{G}{V}, \] \hspace{1cm} (1.5)

бу ерда \(G \) — суюқликнинг оғирлиги.
Масса билан оғирлик ўзаро куйидагича боғлangan:

\[Mg = G. \] \hspace{2cm} (1.6)

(1.6) дан

\[M = \frac{G}{g}, \] \hspace{2cm} (1.7)

бу ерда \(g \) — эркин тушиш тезланиши, м/с\(^2\).
(1.7) тенгламалаги масса миқдорини (1.4) тенгламага қўймай, ихллик билан солиштирма офирликнинг ўзаро боғ-данни муносабати келиб чиқади:

\[
\gamma = \rho g, \quad (1.8)
\]

буллан ихллик

\[
\rho = \frac{\gamma}{g}. \quad (1.9)
\]

Ҳалқаро бирлик тизими СИ да \(\rho \) нинг ўлчов бирлиги кўплгангича:

\[
[\rho] = \frac{[\gamma]}{[g]} = \frac{F}{L^2} \cdot \frac{L}{T^2} = \frac{F T^2}{L^4} = \frac{M}{L^3}. \quad (1.10)
\]

Қовушоклик. Реал суюқликлар ҳаракатланган пайтда унинг ихқи қатламлари (сув билан сув қатламлари сатҳлари ва сув билан девор сатҳлари) орасидаги сатҳда ички ишқақланиш кучлари ҳосил бўлиб, бу қатламларнинг бир-бирига нисбатан силжишита қаршилик қилади. Суюқлик қатламларининг орасидаги сатҳда ишқақланиш кучини енгишга, яъни қатламларнинг ўзаро силжишита сарф бўлган куч қовушоклик (ъки ички гидравлик ишқақланиш кучи) дейилади. Ньютон қонунинг биноан, суюқлик қатламларининг ўзаро силжишита учун жана бўлган куч ички қатлам орасидаги сатҳга, қатламларнинг бир-бирига нисбатан силжиш тезлигига ва шу суюқликнинг қовушоклик коэффициентига тўғри пропорционал (1.1-рasm).

1.1-расм.

\[
\]

www.ziyouz.com kutubxonasi
бу ерда T — таъсири этаётган ички ишқаланиш кучи; dS — икки қатлам орасидаги элементар сатҳ; μ — динамиқ қовушоқлик коэффициенти; $\frac{du}{dn}$ — тезлик градиенти.

Шундай қилиб, ички ишқаланиш кучи тезлик градиентига тўғри пропорционал.

(1.11) тенгламанинг иккала томони dS юзага бўлсак, бирлик юзадаги ишқаланиш кучини топамиз:

$$
\tau = \mu \frac{du}{dn},
$$

бунда μ — гидродинамикада, динамиқ қовушоқлик коэффициенти дейилади. Ғидравликада, кўпинча кинематик қовушоқлик коэффициентидан фойдаланилади. Кинематик қовушоқлик коэффициенти динамиқ қовушоқлик коэффициентининг шу сукқлик зичлигиға нисбати бўлиб, у ν ҳарфи билан белгиланади.

Кинематик қовушоқлик коэффициенти

$$
\nu = \frac{\text{динамиқ қовушоқлик коэффициенти}, \mu}{\text{сукқлик зичлиги}, \rho}.
$$

Ҳалқаро бирлик СИ тизимида кинематик қовушоқлик коэффициенти м²/с бирлигида ўлчанади (1.2-жадвалга қаранг).

1.2-жадвал

<table>
<thead>
<tr>
<th>$\nu \cdot 10^{-5}$</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>м²/с</td>
<td>1.79</td>
<td>1.73</td>
<td>1.67</td>
<td>1.62</td>
<td>1.57</td>
<td>1.52</td>
<td>1.47</td>
<td>1.43</td>
<td>1.39</td>
<td>1.35</td>
<td>1.31</td>
<td>1.27</td>
<td>1.24</td>
<td>1.21</td>
</tr>
</tbody>
</table>

1.2-жадвал (давоми)

<table>
<thead>
<tr>
<th></th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\nu \cdot 10^{-5}$</td>
<td>1.18</td>
<td>1.15</td>
<td>1.12</td>
<td>1.09</td>
<td>1.06</td>
<td>1.01</td>
<td>0.90</td>
<td>0.81</td>
<td>0.72</td>
<td>0.66</td>
<td>0.60</td>
<td>0.55</td>
<td>0.48</td>
<td>0.41</td>
<td>0.31</td>
<td>0.28</td>
</tr>
</tbody>
</table>
1.7. §. ГИДРАВЛИКАНИНГ АМАЛДА ҚУЛЛАНІШ НАМУНАСИ

Гидродинамиканинг иккинчи бўлимида биринчи бўли-милаги назарий тенгламалар қўлланиб ҳар ҳил гидротехник иншоотларни гидравлик ҳисоблаш ишлари бахарилади. Чу- пончи қувурда ва очик ўзанларда ҳаракатланаётган суюк- чиларни, шунингдек, ер ости сувлари ҳаракатини ва су- юкчиларнинг тешиклар орқали оқиб чиқиш гидравлик апаратлар ёрдамида ўрганилади. Айтайлик, дарёда тўғон қурғилган ғўлсин, унинг дарё бўйича узунасига кесимини олсак, қуйидаги ҳолатларни қўришизмиз мумкін (1.2-расм).

Bu \(T \) тўғон дарёни туҳади, натижада юқори բєфдага (юқори томонда) сув сатуи қўтарилади. Қеракли сув канал орқали ГЭС га, суворишга ва бошқа иншоотларга олинади, ортикча сув эса тўғон устидан пастки бўєфга (пастки томонга) ўтка- зиб юборилади. 1.2- расмда келтирилганда, гидротехник узел иншоотларини лойихалашда гидравлика аппаратларини (ъяни гидродинамиканинг 1-қисмидаги назарий тенгламаларни) қўллаб қуйидаги амаллар масалалар ҳал этилади:

1. Тўғон ёрдамида қўтарилган сув юқори бўєфда дарё қир- гокларни босади. Бу қирғожларни ва дарёнинг узунлиги бўйи- чи ёр майдонларини қанчалик сув босган (сув остида қолган майдонлар, шу қаторда саноат, қишлак ҳўжалиги, қурилиш- лар ва ўрмонлар) ни билиш учун гидравлика тенгламалари ёрдамида сув сатҳининг \(AB \) эркин эгри чизигини ҳисоблаш лозим. Бу \(AB \) чизикни тузиш, тўғон қурғилганда кейин юқори бўєфда дарё узунлиги бўйича оқимнинг чуқурлигини аниқ- лаш ва бу аниқланган чуқурлик кемаларнинг сузишига етар- ли эканлигини билиш учун керак.

2. Сув ўтказувчи тўғон устидан ортикча сувни пастки бўєфга ўтказиб юбориш учун тўғоннинг узунлигини (энни) ҳамда унинг устидан босим кучини билиш керак.

3. Сув ўтказувчи тўғон устидан ўтаётган сув пастки бўєфда хавфли гидравлик ҳолатни вужудга келтириши мумкін. Бу-

2—К-24 17
нинг олдини олиш учун пастки бьёфда тўғон ортида, дарё тубида маҳаллий ювалишни бартариф этадиган гидравлик шароит яратиш керак.

4. Агар тўғоннинг асоси сув ўтказувчан катлам, масалан, қум-тошлардан ташкил топган бўлса, унда тўғон тубидан, сув ер остидан филтранция усулида, юқори бьёфдан пастки бьёфга ўтади (1.2- расмда Ф га қараб). Суёқликнинг бундай ер ости ҳаракатлари ҳам гидравлик ҳисоблаш усули билан аникланади.

5. Очик ўзанлар ва кукурларда суёқликнинг ҳаракатини аниклашда ҳам гидравлик ҳисоблаш усулларидан фойдаланилади.

Гидравлик аппаратлардан гидротехника иншоотлари, энергетика ва гидромелиорация объектларини лойихалаш, қуриш, шунингdek сув таъминоти ва канализация, гидравлик машиналар тизимларини лойихалашда ҳам кенг фойдаланилади.

Такрорлаш учун савollar

1.1. Гидравлика фани тушунчаси, унда нима ўрганилди?
1.2. Суёқликнинг асосий физик хоссалари деб нимага айтилади?
1.3. Суёқликнинг эчкилиги ва ўлчам бирлиги қандай аникланади?
1.4. Қовушоқлик нима?
1.5. Идеал ва реал суёқлик тушунчаси. Улар қаерда ва қачон ишла-тилади?
ИККИНЧИ БОБ

ГИДРОСТАТИКА

2.1-§. ГИДРОСТАТИК БОСИМ ВА УНИНГ ХОССАЛАРИ

Гидравлика фанининг гидростатика қисмида тинч ҳолатдаги суъъоқликларнинг қонунлари ўрганилади. Гидростатика деганда нуқтадаги гидростатик босим тушунилади. Буни тушунтириш учун 2.1- расмга мурожаат этамиз. Бу расмда сувнинг ихтиёрий ғир \(W \) ҳажми тинч ҳолатда турибди деб фараз қилайлик. Шу ҳажм ичида ихтиёрий бир \(m \) нуқтани оламиз ва шу нуқта оркалин \(AB \) текислик ўтказамиз. Бу текислик тинч ҳолатда турган ихтиёрий \(W \) ҳажмдаги сувни якки булақка ажратади (булақ I ва булақ II). \(AB \) текисликдаги майдонни \(S \) билан белгилаймиз. Агар булақ II га нисбатан қаралса, унда \(AB \) текислик орқали босим кучи булақ I дан булақ II га, яъни \(S \) майдонга таъсир ғўйибди. Бу босим қучини биз \(P \) билан белгилаймиз. \(P \) — гидrostатик босим кучи, яъни кишкача — гидростатик куч деб аталади. Шу \(AB \) текислик юзасидаги \(m \) нуқтада \(\Delta S \) элементар майдончани оламиз. \(\Delta S \) элементар майдончага \(\Delta P \) куч таъсир этиди. Бу \(\Delta P \) куч булақ II га нисбатан (агар булақ I ни олиб ташласак) ташқи куч бўлади, бутун \(W \) ҳажм учун (булақ I ва булақ II бир булақ) бу гидростатик куч \(\Delta P \) ички куч дейилади.

\(\Delta P \) кучининг \(\Delta S \) элементар майдончага нисбати шу майдончага таъсир этаётган \(\mathbf{r} \) тача гидростатик босимни беради:

\[
\frac{\Delta P}{\Delta S} = \bar{p}. \tag{2.1}
\]

Агар \(\Delta S \) элементар майдончага нолга интилса, у ҳолда \(\frac{\Delta P}{\Delta S} \) нисбат \(m \) нуқтадаги гидростатик босимни беради, уни \(p \) билан белгилаймиз.

2.1-расм.
Унинг математик ифодасини қуйидаги тенглик билан кўрсатиш мумкин:

\[p = \lim_{{\Delta S \to 0}} \left(\frac{\Delta P}{\Delta S} \right), \] \hspace{1cm} (2.2)

бунда \(p \) — нуктадаги гидростатик босим, уning ўлчов бирлиги, Па.

Нуктадаги гидrostатик босим икки хоссаға эга:

1. Биринчи хосса. Гидростатик босимнинг йўналishi.
Нуктадаги гидростатик босим \(\delta S \) майдончага нормал бўйича таъсир этади ва бу босим факат сизувчи бўлади. Бошқача қилиб айтганда, у, босим таъсир қилаётган сув ҳажмининг ичига йўналган бўлади. Нуктадаги гидрostaтик босимнинг биринчи хоссаси, яъни босимларнинг беришган майдонга нормал бўйича таъсир этишини исботлаймиз. Бунинг учун 2.2-рамға мураққат этамиз. Бу рамсда сувнинг икки-йўрий бирор \(W \) ҳажми тинч ҳолатда турибди леб фараз қилайлик.
Шу \(W \) ҳажмни \(AB \) текислик ёрдамида икки бўлакка бўламиз. Бўлак I маълум куч билан \(AB \) текислик орқали бўлак II га таъсир кўрсатади; ҳудди ўша микдордаги куч билан бўлак II хам \(AB \) текислик орқали бўлак I га таъсир этади. Бу ёрда иккала бўламдан истаган бирини олиб, унинг мувозанатини ўрганиши мумкин. У ҳолда бошқа бир бўлакни \(AB \) текислиги орқали иккинчи бир бўлакка кўрсатаётган таъсирини, юқорида 2.1- рамсда кўрсатилган куч деб қабул этиб, мулоҳаза юритамиз.

2.2-рамс.

2. Нуктадаги гидростатик босим таъсири. Бул нуктадаги гидростатик босим \(\delta S \) майдончалар ажратамиз ва уларга нисбатан \(N' - N'' \) нормаллар ўтказамиз. Бу \(\delta S \) майдончалар гидростатик босим таъ-
сир этувчи майдончалар деб аталади. Энди гидростатик носимнинг биринчи хоссасини исбошлаша ўтамиз. Фараз қилайлик, a нуктада p босим $N' - N^*$ нормал бўйича AB текислик орқали бўлак II га бўлак I томонидан нормал таъсир этмайти дейил. У ҳолда шу a нуктадаги босимни ички ташкил этувчига, яъни босимни таъсир этаётган майдончага нисбатан p'' нормал ва p' уринма ташкил этувчиларга ажратиш мумкин бўлади. Бизга маълумки, тинч ҳолатда-ни суюқликларда ички уринма кучланиш бўлиши мумкин эмас. Бу ҳолда p_1 нолга тенг бўлади. Бундан кўринадики, AB текисликдаги a нуктада SS майдончанинг сатҳга таъсир қилаётган p босим фақат $N' - N^*$ нормал чизик бўйича йўналан бўлади.

Фараз қилайлик, b нуктада SS майдончага p босим $N' - N^*$ нормал чизик бўйича таъсир қилиб, бўлак II нинг ички томонига эмас, балки ташки томонига йўналан бўлсин. Унда b нуктада чўзиш кучи пайдо бўлади. Маълумки, тинч ҳолатдаги суюқликлар чўзиш кучига қаршилик кўрсатиш хусусиатига эга эмас. Шундан кўриниб турибдик, гидростатик босимнинг биринчи хоссаси — босимнинг майдонга таъсири $N' - N^*$ нормал чизик бўйича ички томонга йўналиши исбот этилди. Шундай экан, гидростатик босим чўзувчи эмас, ҳар доим сикувчи бўлади (2.2-расмнинг с нуктасига қарап). 2. Иккинчи хоссаси. Гидростатик босимнинг микдори. Босимнинг микдор катталиги, берилиган нуктада, у таъсир қилаётган AB текисликдаги SS майдончанинг юзаси ва у, текислик қандай жойлашганлигига бўлган эмас. Бошқа, қандай бўлганда, AB текислигини, босим таъсир этаётган нуқта орқали, қандай бўлганда ўзгартирилиш, шу нуктада таъсир қилаётган босим микдори ўзгармайди. Босимнинг иккинчи хоссасини исбот этиш учун 2.3- расмга мураъоят этамиз. Очий A идци-да бир жинсли тинч ҳолатдаги суюқлик бор. Суюқлик ичида иктиёрий m нуктани белгилаймиз. Шу нукта орқали иктиёрий AB ва $A'B'$ текисликларни ўтказамиз. Ҳар бир текислик шу тинч ҳолатда турган суюқлик ҳажмини икки бўлакка ажратади: бўлак I ва бўлак II; шу AB ва $A'B'$ текисликлар сатҳидаги m нуктада ниҳоятда кичик (элементар) SS_1 ва SS_2 майдончалар ажратамиз. Кўриниб турибдик, SS_1 ва SS_2 майдончалар бир-бирига нисбатан ҳар хил текисликда жойлашган, аммо текисликлар бир m нукта орқали ўтказилган ва бир иккинчисидан с борчаги билан фарқ қилади.
Фараз қилайлик, бу ерда босим бўлак I томонидан бўлак II га таъсир этайти.

\[m \] нуктадаги \(p \) босим \(AB \) ва \(A'B' \) текисликлардаги ҳар хил, ниҳоятда қичик майдонча \(\delta S_1 \) ва \(\delta S_2 \) ларга таъсирини тегишлица \(p_1 \) ва \(p_2 \) лар билан белгилаймиз. Нуктаға гидростатик босимнинг биринчи хоссағи баиноан, нуктадаги босим таъсир этувчи майдон юзасиға нормал йўналаган бўлди, иккинчи хоссағи баиноан, яъни Б. Паскаль қонунига асосан, \(p_1 \) ва \(p_2 \), ..., \(p_r \), босимлар берилган нуктада (шу нуктадан ўтарилган \(AB \) ва \(A'B' \) текисликларни қандай жойлашишдан қатъи на-зар) қиймати жиҳатидан бир-бирига тенг бўлиши керак, яъни \(p_1=p_2=p_3=...=p_r \).

Маълумки, қаттиқ жисмлар учун \(p_1=p_2=p_3=...=p \), тенглик бўлиши мумкин эмас, чунки бу нуктадарга улардан ташка-ри уринма кучланиш таъсир қилади. Юқорида келтирилган \(p_1=p_2=p_3=...=p \), тенгликнинг тўғриликни исботлаймиз. Бу-нинг учун бирор ишлайди гапч ҳолатда суюқлик ичка ихтиёрий \(A \) нуктани оламиз ва \(A \) нукта атрофида тўғри уч-бурақлари призм шаклидаги элементар ҳажмлар суюқликни ажратиб оламиз.

2.4- расмдаги чизмада \(ABC \) — призманинг асоси, приз-манинг ўзи чизмага тик жойлашган, яъни ётқизиб қуйилган. Призманинг \(BC \) қирадасини горизонтал текисликка нис-батан ихтиёрий бурчагини \(\alpha \) билан белгилаймиз. Тўғри бурчакли координата ўкла-рини 2.4-расмда кўрсатилганда белгилаб, призма асосининг томонлари учун-ликларини координата ўқлари бўилаб \(dx \), \(dz \) ва \(dl \) билан ифодалаймиз; бу ҳолда \(dy \) — призманинг ба-ландлиги. Юқорида кўрса-тилган призма томонларининг учунликни чексиз қичик деб фараз қиламиз.
Эчиди A нукта орқақи ихтиёрий учта йўналишда техислик ўтказамиз: Ω_1 техислик x, ўққи бўйича йўналган бўлиб, AC киррага параллел; Ω_2 техислик z, ўққи бўйлад AB киррага параллел йўналган. Ω_n техислик BC киррага параллел бўлиб, x, ўққиға нисбатан ихтиёрий α бурчак остида жойлашган. Щу учта техислик ўзаро учрашган A нуктада ҳар бир техислик унч учун элементар майдончача ҳосил қиламиз: $d\Omega_x$, $d\Omega_z$ ва $d\Omega_n$. A нуктада элементар майдончаларга таъсир қилаётган босим-мисли p_x, p_z, p_n билан ифодалаймиз. У ҳолда AB, AC ва BC кирраларга таъсир этувчи ўртача босим мос ҳолда қуйидагича бўлади: AB кирра учун $(p_x + \epsilon_x)$; AC кирра учун $-(p_z + \epsilon_z)$; BC кирра учун $-(p_n + \epsilon_n)$. Бу ерда ϵ_x, ϵ_z, ϵ_n чекисиз кичик қийматга қўя бўлгани учун уларни ҳисобга олмаса ҳам бўлади. Чунки бу қўшимча ҳадлар призманг AB, AC, BC кирралари бўйлад таъсир этувчи p_x, p_z, p_n босимларнинг узлуксиз ўзгаришини ифодаловчи кваталар. Бу кваталар dx, dz, dl элементар узунликлар қаби чекисиз кичик бўлгани учун ҳардир ҳисобга олмаса ҳам бўлади. Бу ҳолда призманг ён қирраларига таъсир қилаётган ўртача гидростатик босимлар A нуктага таъсир этиётган босим p_x, p_z, p_n ларга тенг деб қабул қилинади.

ABC призма қуйидаги кучлар таъсирида тинч ҳолатда туроғи бўлиб дейлай, у ҳолда:

1) призманинг ён қирралариға, уни ўраб олган суюқлик томонидан, тик йўналишда таъсир қилаётган гидростатик босим кучлар:

$$P_x = p_x dz \, dy; \quad P_z = p_z dx \, dy; \quad P_n = p_n dldy; \quad (2.3)$$

2) ABC призманинг асосиға, уни ўраб олган суюқлик томонидан тик йўналишда таъсир қилаётган P_y гидростатик босим кучи. Бу куч чизма техислиги тик йўналған учун чизмада қўрсатилмagan;

3) призманинг ташқи ҳажмий оғирлиқ кучи G (қабул қилинган призманинг ўз оғирлиги).

Бу ерда 3-банддаги кучни ҳисобга олмаса ҳам бўлادي, чунки у (2.3) тенгликларда қўрсатилгана кучларга нисбатан чексиз кичик. G оғирлиқ кучи ҳисобга олинмaganда қабул қилинган ABC элементар кичик призма фақат ташқи кучлар P_y, P_z, P_n, P, таъсирида тинч ҳолатда бўлади, дейлай. У ҳолда P_x, P_z, P_n, P_y кучларнинг Ax ва Az қўлларга проекцияларининг ёйиндиси нолга тенг бўлиши керак, яъни
\[
\begin{align*}
P_x - P_n \sin \alpha &= 0; \\
P_z - P_n \cos \alpha &= 0.
\end{align*}
\] (2.4)

(2.4) ga (2.3) ni kuyisak

\[
\begin{align*}
P_x dz \, dy - P_n dl \, dy \sin \alpha &= 0; \\
P_z dx \, dy - P_n dl \, dy \cos \alpha &= 0.
\end{align*}
\] (2.5)

Buanda \(dl = \frac{dz}{\sin \alpha} = \frac{dy}{\cos \alpha} \) ni nazarda tug'agan holda (2.5) tengliklardan kuylidaginini o'lamiz

\[p_n = p_x = p_z \] (2.6)

Buandan biz \(\alpha \) burchagining quyimatlarini kanday uzgartirmaylik, bari biri \(p_n \) bosim \(p_z = p_x \) larga teng buhar ekkan. Isha birkulosa, biz \(ABC \) prizmani (2.4- remsdagi chizmada quris-tilgan koordinata yuqulari bilan) A nuxtasi orqali kanday uzgartirmaylik, uning qirralariiga ta'xisir qila'otgan hidrostatik bosimlar (2.6) tengliklagidak bire-biriga teng buhrib koladi.

2.2-. Tinch holatdagi suyuklikning asosiy differenциял tenqlamasi (L. Eyler tenqalamasi)

Tinch holatdagi suyuklikning differenциял tenqlama-sini olish uchun suyuklikka ta'xisir etuvchi kuchlarni karab chiqamiz. Suyuklik kanday holatda buhmasin (tinch eki xarakat holatida) unga moddия zarorallarnidan tarqib toplant uzluk siz muhit deb karaladi. Shu zarorallarga ta'xisir etuvchi barcha kuchlarni iikki guruhiga: ichki kuchlara vqa tashkuchlariga ajratishi mumkin.

Ichki kuchlar. Suyuklik moddия zarorallarining bir-biriga ta'xisir kuchlari ichki kuchlar dейилади.

Tashki kuchlar. Biror suyuklik xajmoning moddия zaroracakida boishka biror jismin xajmoni moddalarning ta'xisir qila'otgan kuchlari, chunochni, shu karalae'tgan suyuklik xajmoning moddия zarorallariga, shu xajmoni xar tomarondan urab oltan suyuklikning ta'xisir kuchlari tashki kuchlar dейилади.
Берилган суюқлик ҳажмига таъсир қилувчи ташқи кучлар икки гуруҳга бўлинади.

1. Массали кучлар. Бу кучлар қаралаётган суюқлик ҳажмининг барча моддий заррачаларига таъсир қилади. Массали кучларнинг қиймати суюқликнинг массасига тўғри пропорционал. Бир жинслги суюқликлар учун, яъни суюқликларнинг зичлиги унинг ҳажми бўйича ўзгармас бўлса р = const, бу ҳолда массали кучларнинг қиймати суюқликнинг ҳажмига ҳам тўғри пропорционал бўлади. Шунинг учун (суюқликнинг зичлиги р = const бўлган ҳолда) массали кучлар ҳажмий кучлар деб аталади. Суюқликнинг ўз оғирлиги ҳажмий кучлар қаторига киради; суюқликнинг инерция кучларини ҳам ташқи ҳажмий кучлар деб қарап мумкин. Суюқликнинг берилган V ҳажмига таъсир этаётган ҳажмий кучни қуйидагича ифодалаш мумкин

\[F = M \Phi \text{ ёки } F = V \phi_0, \quad (2.7) \]

бу ерда \(M \) — суюқликнинг массаси; \(\Phi \) ва \(\phi_0 \) — суюқликнинг моддий заррачалари таъсир қилаётган ҳажмий кучларнинг интенсивлиги, яъни таксимланган зичлиги, бу таксимланган суюқликнинг ҳажми бўйича ҳар хил бўлиши мумкин.

\(\phi_0 \) — суюқликнинг ҳажм бирлигин таъсир қилаётган солиштирима ҳажмий куч, \(\Phi \) — суюқликни масса бирлигин таъсир қилаётган солиштирима ҳажмий куч.

2. Суюқлик сатҳига таъсир қилаётган кучлар. Бу кучлар қўрқилаётган бирон суюқлик ҳажмининг сатҳига таъсир қилаётган кучлар. Бундай кучлар қаторига атмосферада босим кучи (у очик ўзанларда суюқликнинг эркин сув сатҳига таъсир этиди), ишқаланиш кучи ва бошқа кучлар киради.

Тинч ҳолатдаги суюқликнинг дифференциал теглимаси. Тинч ҳолатдаги суюқликни қараб чиқамиз (2.5-расм). Унга иқтиёрий ташқи ҳажмий кучлардани бирортаси таъсир қилсин, дейлик. Юқорида биз қаралаётган суюқликнинг бирлик массасига таъсир қилаётган ҳажмий кучни \(\phi \) билан белгилаган эдик. Энди бу \(\phi \) кучнинг \(Ox, Oy, Oz \) координатада ўқларига проекцияси \(\phi_x, \phi_y, \phi_z \) билан ифодалаймиз. Умуман тинч ҳолатдаги суюқликда ҳидростаттик босим ҳар хил нукталарда турлича бўлади

\[p = f(x, y, z). \quad (2.8) \]
Гидростатик босим \(p \) билан нукталарнинг координаталари ва ҳажмий кучлар орасидаги боғланиши ангилаш керак. Бунинг учун қуйида-гича иш юритамиз. Тинч ҳолатдagi суюқлик ичида (2.5-расм) \(O_x, O_z \) координаталар \(O_x, O_z \) нукларни белгилаймиз ва тўгри бурчаклар 1—2—3—4 параллелепипед шаклидаги элементар ҳажмнинг ажратамиз; параллелепипед томонларини \(d_x, d_z \) ва \(d_y \) (д.ч. чиза текис-лигига тик бўлгани учун расмда кўрсатилмagan) билан белгилаймиз ва уларни чексиз кичик деб ҳисоблаймиз. Параллелепипед ўртасида \(A \) нуктани тайинлаймиз, унинг координаталари \(x, y, z \) бўлинган. Бу \(A \) нуктаги босимни \(p \) билан белгилаймиз. \(A \) нукта орқали \(O_x \) ўқиға параллел \(MN \) чизиқчи ўtkazamiz, умуман гидростатик босим шу \(MN \) чизиқ бўйлаб тўхтормайди равишда доимий ўзгаради. \(MN \) чизиқчани бирлик узунлиги тўгри келадиган гидростатик босим қийматини ўзгаришни хусусий ҳосила \(\frac{dp}{dx} \) орқали ифодалаш мумкин. Бу ҳолда \(\frac{dp}{dx} \) ни қўллаб, \(M \) ва \(N \) нукталарда босимларни қуйида бинча \(\frac{1}{2} dx \) узунликда ўзгаришини билдиридаги (2.9) бунда (2.9) тенгламанинг ўғн томонларин чиқинчи ҳадлари \(p \) босимнинг \(\frac{1}{2} dx \) узунликда ўзгаришини билдиридаги.

Тинч ҳолатдаги суюқликни дифференциал тенгламасини келтириб чиқариш учун қуйида биночча мулоҳаза юритиш лозим;

а) элементар параллелепипедга тасиров этиётган барча кучларни ангилашмиз;

б) барча кучларни \(O_x \) ўқиға проекцияларини оламиз ва уларнинг йиғиндисини нолга тенглаштирамиз (чунки параллелепипед тинч ҳолатда туирибди), натияда биринчи дифференциал тенгламасини оламиз;
а) иккинчи ва учинчи дифференциал тенгламасини олиш учун барча кучларни Oy ва Oz ўқларига проекциялаймиз.

бу ерда факат биринчи дифференциал тенгламасини келтириб чиқарамиз.

1. Параллелепипед $1\rightarrow 2\rightarrow 3\rightarrow 4$ га таъсир қилаётган кучлар: а) ҳажмий куч

$$
\phi (dx\ dy\ dz)\ \rho, \quad (2.10)
$$

bu ерда $(dx\ dy\ dz)\rho$ — параллелепипед $1\rightarrow 2\rightarrow 3\rightarrow 4$ ни ташкил этувчи суюқлик массаси. Ҳажмий кучнинг Ox ўқиға проекцияси

$$
\phi_x(dx\ dy\ dz)\ \rho; \quad (2.11)
$$

б) юзага таъсир этувчи кучлар: параллелепипеддинг $1\rightarrow 4$ ва $2\rightarrow 3$ қирраларига таъсир этувчи босим кучларининг Ox ўқиға проекцияларининг фарқи нолга тег; $1\rightarrow 2$ ва $3\rightarrow 4$ қирраларига таъсир этувчи босим кучларининг Ox ўқиға проекцияларининг фарқи қуйидагида:

$$
P_M - P_N = p_M (dz\ dy) - p_N (dz\ dy) = \left(p - \frac{1}{2} dx\ \frac{dp}{dx}\right) dy\ dz - \\
- \left(p + \frac{1}{2} dx\ \frac{dp}{dx}\right) dy\ dz = - \frac{dp}{dx} dx\ dy\ dz. \quad (2.12)
$$

2. Барча кучларнинг Ox ўқиға проекцияларининг йигин-диси

$$
\phi_x (dx dy dz)\ \rho - \frac{dp}{dx} (dx dy dz) = 0. \quad (2.13)
$$

Бу (2.13) тенгlama tinч ҳолатдағи суюқликнинг 1-дифференциал тенгламаси дейилади. Хуҳди ҳундаи йўл билян 2- ва 3-дифференциал тенгламаларни ёзамиз.

Аникланган уччала дифференциал тенгламалар (суюқликнинг масса бирлигига нисбатан) охирги кўриниши қуйидагида ёзилади:

$$
\begin{aligned}
\phi_x - \frac{1}{\rho} \frac{dp}{dx} = 0; \\
\phi_y - \frac{1}{\rho} \frac{dp}{dy} = 0; \\
\phi_z - \frac{1}{\rho} \frac{dp}{dz} = 0.
\end{aligned} \quad (2.14)
$$

27
Бу тенглама 1755 йилда Л. Эйлер томонидан ишлаб чиқилган ва унинг номи билан аталади.

2.3-§. ГИДРОСТАТИКАНИНГ АСОСИЙ ТЕНГЛАМАСИ.
ТИНЧ ХОЛАТДАГИ СУЮКЛІКНИНГ ДИФФЕРЕНЦИАЛ
ТЕНГЛАМАСИНИ ИНТЕГРАЛЛАШ

Бунинг учун (2.14) тенгламанинг 1-дифференциал тенгламасини \(dx \) га, 2-сими \(dy \) га ва 3-сими \(dz \) га кўпайтирамиз. Қейин тенгламанинг чап ва ўнг томонларидаги ҳадларини ўзаро қўшшиб чиқамиз

\[
\phi_x dx + \phi_y dy + \phi_z dz - \frac{1}{\rho} \left(\frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz \right) = 0. \tag{2.15}
\]

'Нуктадаги гидrostатик босим, факат координаталарга боғлик бўлгани учун, яъни \(p = f(x, y, z) \), у ҳолда (2.15) тенгламада қавс ичида ғиюнди \(p \) гидrostатик босимнинг тўлиқ дифференциал ҳисобланади, яъни қавс ичида ғюнди \(dp \) деб оламиз

\[
dp = \left(\frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz \right). \tag{2.16}
\]

(2.16) тенглами (2.15) тенгламага кўйсак, у ҳолда

\[
dp = \rho \left(\phi_x dx + \phi_y dy + \phi_z dz \right). \tag{2.17}
\]
(2.17) тенгламани қараб чиқамиз. Агар (2.17) тенгламанинг чап қисмиси факат координатага боғлик бўлган биорор функциянинг тўлиқ дифференциал бўлса, у ҳолда (2.17) нинг ўнг қисмиси ҳам координатага боғлик бўлган биорор функциянинг тўлиқ дифференциал бўлиши лозим. Суюқликнинг зичлиги ўзгармаслиги \(\rho = \text{const} \) ни назарда тутиб, юқорида айтилганларга асосан, (2.17) тенгламада қавс ичидаги ғофодама ҳам координатага боғлик бўлган биорор функциянинг тўлиқ дифференциал бўлади. Бу охирги функцияни \(U \) орқали белгиласак, мавлумки \(U = f(x, y, z) \), у ҳолда (2.17) тенгламани кўйидагича ёзиш мумкин

\[
dp = \rho \ dU, \tag{2.18}
\]
бу ерда

www.ziyouz.com kutubxonasi
\[dU = \phi_x dx + \phi_y dy + \phi_z dz. \]
(2.19)

(2.18) тенгламани интеграллаймиз, натижада

\[p = \rho U + C, \]
(2.20)

бунда \(C \) — интеграллашнинг ўзгармас сони. \(C \) ўзгармас сонни аниклаш учун суюқликларнинг бирор нуктасидаги \(p \) боисим ва \(U \) тезлик маълум бўлган моддий заррачасини караб чиқамиз

\[p = p_0; U = U_0. \]
(2.21)

Бу нукта учун (2.20) тенгламани кўйидаги кўрнишда кўчириб ёзамиз

\[p_0 = \rho U_0 + C, \]
(2.22)

(2.22) тенгламадан

\[C = p_0 - \rho U_0. \]
(2.23)

(2.23) тенгламани (2.20) тенгламага қўйсак,

\[p = p_0 + \rho U - \rho U_0. \]
(2.24)

натижада

\[p = p_0 + \rho (U - U_0). \]
(2.25)

(2.25) формула зичлиги ўзгармас бўлган \(\rho = \text{const} \) суюқликнинг ихтиёрий нуктасига таъсир қилаётган боисимни ифолалайди.

2.4-§. ФАҚАТ ҲАЖМИЙ КУЧЛАРДАН БИРИ — ОФИРЛИК КУЧИ ТАЪСИРИДА БЎЛҒАН ТИНЧ ҲОЛАТДАГИ СУЮҚЛИКДАГИ ГИДРОСТАТИК БОСИМ

Тинч ҳолатдаги суюқликка фақат ҳажмиий кучлардан бири — офирлик кучи таъсир қилаётган ҳолни қараб чиқамиз. 2.6-расмда суюқлик кўйилган берк идид ва қчиритилган. Берк идид ичидағи суюқлик сатҳига ташки боисим таъсир қилади. Уни \(p_0 \) билан белгилаймиз. Бу боисимни (сув сатҳига таъсир этувчи) таъсир боисим дейил. 2.6-расмда кўрсатилганидек, \(Ox, Oy, Oz \) координата ўқларини суюқлик сатҳига нисбатан жойлаштирамиз. Суюқлик ичидага олинган ихтиёрий \(m \) нуктада суюқликнинг бирлиқ массасини ахратмиз. Бирлиқ массага \(\phi \) ҳажмиий куч таъсир қилади. Агар суюқликка таъсир этаёт-
ган ҳажмий кучлардан бири фақат оғирлик кучи бўлса, унда (2.19) тенгламадан
\[\phi_x = 0, \phi_y = 0, \phi_z = -g, \] (2.26)
бу ерда \(g \) — эркин тушиш тезла-ниши; \(\phi_x, \phi_y, \phi_z \) — ҳажмий куч \(\phi \) нинг координатан \(\{\} \) кўрсатиб қилади. \(dp \) нинг қиймати (2.18) тенгламага аниқланади, бизнинг юқорида айтилган шарт учун \(dU \) (2.19) тенгламадан
\[
dU = \phi_x dx + \phi_y dy + \phi_z dz = -gdz. \] (2.27)
(2.27) тенгламани (2.18) тенгламага қўйсак,
\[
dp = -\rho g dz. \] (2.28)
(2.28) тенгламани интеграллассак
\[
p = -\rho g dz + C, \] (2.29)
ёки
\[
p = -\gamma z + C, \] (2.30)
бу ёда \(C \) — интеграллашнинг ўзгармас сони. \(C \) нинг қийматини аниқлаш учун суояллик сатҳидаги нуктани қараймиз, бунда \(z = 0 \) ва \(p = p_0 \); (2.30) тенгламага асосан
\[
C = p_0. \] (2.31)
(2.30) тенгламани қуйидагича ёзишимиз мумкин:
\[
p = p_0 - \gamma z. \] (2.32)
Суояллик сатҳидан \(m \) нуктагача бўлган чукурликни \(h \) билан белгилаймиз:
\[
h = -z. \] (2.33)
(2.33) тенгламани назарда тутган ҳолда (2.32) ни қуйидагича кўчириб ёзамиз
\[
p = p_0 + \gamma h. \] (2.34)
бу ерда p — қаралайтган нуктага таъсир қилаётган мутлақ босим; p_0 — суюқлик сатҳиға таъсир этаётган босим, у ташқи босим дейилади.

Агар γh ни $p_{орг}$ ёки $p_{орт}$ билан белгиласак, у ҳолда (2.34) формуладан уни огирлик ёки ортикча босим деб номлаш мумкун

$$\gamma h = p_{орг}$$ (белги). (2.35)

Бу (2.35) тенглама огирлик босим ёки ортикча босим деб аталади. (2.34) формуладан (2.6- расм) кўриниб турибдики, суюқликнинг ўз огирлиги таъсирида ҳосил бўлган $p_{орг}$ босим мутлақ босимнинг бир қисмини ташкил этади.

(2.34) тенгламани қараб чиқсак, қўйилаги хулосяга келмаз:

1. Нуктадаги мутлақ босим ташқи босим билан огирлик босимнинг йўғиндисига тент.

2. Берилган нуктада ташқи босим қанчалик ортик борса, шу нуктадаги мутлақ босим ҳам шунчалик ортик боради.

Суюқлик тўлдирилган идиш очик бўлса, у ҳолда ташқи босим атмосфера босимига тент бўлади, яъни

$$p_0 = p_\alpha$$ (2.36)

бу ерда p_α — атмосфера босими.

(2.36) тенгламадан p_0 қўйилатини (2.34) тенгламага қўямиз

$$p = p_\alpha + \gamma h,$$ (2.37)

Берилган нуктада мутлақ босимнинг атмосфера босимидан фарқи $p - p_\alpha$ ортикча $p_{орт}$ босим дейилади; баъзан манометрик $p_{манометр}$ босим деб ҳам аталади.

Амалда, биз мутлақ босим билан эмас, балки ортикча босим билан иш юритамиз. Одатда, босим ўлчайдиган барча асобоблар ортикча босимни ўлчайди. Шуларни назарда тутган ҳолда бундан буён қўйилаги белгиларни қабул қиламиз: 1) ортикча босим учун p; 2) мутлақ босим учун p_κ. Бундан келиб чиқкан ҳолда ортикча босим (сув тўлдирилган очик идиш учун)

$$p = p_\kappa - p_\alpha$$ (2.38)

у ҳолда мутлақ босимни (2.37) тенгламага асосан қўйилаги-ча ёзамиз:

а) суюқлик тўлдирилган идиш очик бўлганда

31

www.ziyouz.com kutubxonasi
\[p = p_\text{опт} = \gamma h, \]
(2.41)

берк идиш учун эса \(p_\text{опт} \) ва \(p_\text{орт} \) босимлар ҳар хил қийматга эга, шунинг учун

\[p = p_\text{опт} + (p_0 - p_a). \]
(2.42)

Шундай қириб, ҳаммаси бўлиб биз беш хил босимни; мутлақ \(P_m \), оғирлик \(p_\text{опт} \) ортикча \(p_\text{орт} \), ташки \(p_0 \) ва атмосфера \(p_a \) босимларнинг аниқлайдик. Ғидростатик босим кучи тўгрисизда сўз юритиладиган бўлса, ular:

1) мутлақ ғидростатик босим кучи \(P_m \) ва 2) ортикча ғидростатик босим кучи \(P_\text{орт} \) га ажралади. Одатда «ортикча» деган сўз тушириб қолдирилади ва қисқача ғидростатик босим кучи деб аталади.

Ғидростатик босим. Вакуум. Манометрик (ғидростатик) босим симболи, сувли пьезометр ва механик асбоблар (манометр) ёрдамида ўлчанади. Манометрик (ғидростатик) босим:

берк идиш учун \[p_\text{ман} = p_m - p_0; \]
(2.43)

очик идиш учун \[p_\text{ман} = p_m - p_a. \]
(2.44)

Маълумки, очик идишлари суюқлик сатҳига атмосфера босими таъсири қилади. У ҳолда манометр ортикча ғидростатик босимни ўлчайди

\[p_\text{ман} = p = \gamma h, \]
(2.45)

бу ёрда \(h \) — суюқлик сатҳидан қаралаётган нуқтагача бўлган чукурлик. Агар мутлақ босим атмосфера босимидан паст
булса, суюклик солинган идиш ичидағи ҳолат вақуум деб аталади. Вакуумни ўлчайдиган асоб вақуумметр дейилади.

$$p_{вак} = p_a - p_m.$$ (2.46)

2.5-§. БОСИМНИ ЎЛЧАШ АСБОБЛАРИ. СУВ ва СИМОБ БИЛАН ИШЛАЙДИГАН АСБОБЛАР. МЕХАНИК АСБОБЛАР

а. Сув билан яшлайдиган асоблар

Пьезометрлар. Пьезометрлар гидростатик босимни сув ёрдамида ўлчайди. Босимнинг микдори шиша найча ичида кўтарилган суюклик баландлиги билан аникланади. Пьезометр (2.7 ва 2.8-расмлар) ҳар хил, яъни тўғри ёки эгилган шаклда бўлиб, икки томони очик шиша найчадан иборат. Пьезометрик баландликни ўлчаётганда суюкликнинг капилляр кўтарилишини таъминлаш ва бунда хатога йўл қўймаслик мақсадида найчанинг диаметри амалиётда 10—15 мм ва ундан қатта қабул қилинади. Пьезометрнинг ластки томони идишнинг деворига, ўлчаниши керак бўлган нукта жойлашган чукурликқа ўрнатилади. 2.7-расмда хам идиш, ҳам пьезометр очик, яъни \(p_o = p_a \). Бу ҳолда суюклик сатҳи идишда ва пьезометрда бир хил текислиқда бўлади ва пьезометрлик \(h_p \) баландлик \(n \) нуктаси жойлашган чукурлик \(h \) га тенг бўлади:

$$h_p = h.$$ (2.47)

Бу ҳолатда ортикча босим қўйидаги ҳаражади:

![2.7-расм](image1)

2.7-расм.

![2.8-расм](image2)

2.8-расм.
\[p = \gamma h = \gamma h. \] (2.48)

2.8-расмда идиш берк, пьезометр эса очик. Идищадаги суюқлик сатхига таъсир этиётган таъки \(p_0 \) босим атмосфера босими \(p_a \) дан катта

\[p_0 > p_a. \] (2.49)

У ҳолда пьезометр нийчасидаги суюқлик идишлаги су-йуклик сатхидан (анча юқориға) \(h_p \) баландлика кўтарила-ди. Суюқликнинг ичидағи \(n \) нуктасидаги гидростатик босим гидростатиканинг асосий тенгламаси (2.34) ёрдамида аниклаанади:

\[p_m = p_a + \rho gh = p_a + \gamma h, \] (2.50)

бундан

\[h_p = \frac{p_m - p_a}{\rho g} = \frac{p_m - p_a}{\gamma}. \] (2.51)

Босимни шиша нийчасидаги сууюқлик баландлиги билан ўлчаш жуда қулаи, шунинг учун бу усул техникада кўп қўлланади. Бу ёрда шунинг яки эслаб қолиш керакки, сув учун 1 кг/куч/см\(^2\) ёки 1 атм.га тенг бўлган босим

\[h_{p_{сув}} = \frac{p}{\rho_{сув}g} = \frac{p}{\gamma_{сув}} = \frac{9,81 \cdot 10000 \frac{H}{m^2}}{9810 \frac{H}{m^3}} = 10 \text{ м}, \] (2.52)

баландлик, асоси 1 см\(^2\) бўлган сув устунини ташкил этади. Симоб учун эса

\[h_{p_{симоб}} = \frac{p}{\rho_{симоб}g} = \frac{p}{\gamma_{симоб}} = \frac{9,81 \cdot 10000 \frac{H}{m^2}}{132900 \frac{H}{m^3}} = 0,738 \text{ м } \sim 738 \text{ мм} \] (2.53)

баландлик, асоси 1 см\(^2\) бўлган симоб устунини ташкил этади.

Пьезометр жуда сезгир ва аник асбоб, аммо у унча катта бўлмagan (0,5 атмосферагача) босимни ўлчаши мумкин. Катта босим учун пьезометрнинг нийчалари жуда узун бўлиши керак. Бу эса анча қийинчиликлари келтириб чиқаради. Бунда бошқача суюқлик ёрдамида ишлайдиган манометрлар

www.ziyouz.com kutubxonasi
купланилади. Бу манометрлар зичлиги катта бўлган суюқликлар (масалан, симоб) ёдамиша ишлайди. Симобнинг зичлигин суъникитга қараганда 13,6 марта катта бўлганидан, симоб манометрнинг найчаси сув билан ишлайдиган пьезометр найчасига қараганда бир неча марта қисқа ва анча ихчам бўлади.

6. Симоб билан ишлайдиган асбоблар

Симоблик манометр (2.9-расм). Бу манометр U симон шакладаги шиша найчадан иборат бўлиб, унинг эгилган тирсаги симоб билан тўлдирилади. Симоб манометрларини 3 атмосферагача бўлган босим учун ишлатиш мумкин. Идиш ичидағи босим ташсирида симоб сатҳи чап томондаги найчада пасайди, ўнг томондаги найчада эса кўтарилади.

Чап томонда турган найчадаги симоб сатҳида A нуктани белгилаймиз. Бу нуктада гидростатик босим кўйидалагача (гидростатиканинг асосий формуласини қўллаб) аникланади.

Нукта A га идишдаги суюқлик томонидан таъсир қилётган мутлақ босим

$$p_a = p_0 + \rho_{сув}gh_{сув} = p_0 + \gamma_{сув}h_{сув}. \quad (2.54)$$

Нукта A га манометрдаги симоб томонидан таъсир қилётган мутлақ босим

$$p_a = p_a + \rho_{симоб}gh_{симоб} =$$

$$= p_a + \gamma_{симоб}h_{симоб}. \quad (2.55)$$

бу әрда $\rho_{сув} ва \rho_{симоб} — тегишили идишдаги суюқликнинг ва манометрдаги симобнинг зичлиги.

(2.54) ва (2.55) тенгламаларнинг ўзаро тенглик шартидан ташқи босим p_0 ни аниклаймиз:

2.9- расм.
\[p_0 + \rho_{сыв} g h_{сыв} = p_a + \rho_{симоб} g h_{симоб}; \]
\[p_0 + \gamma_{сыв} h_{сыв} = p_a + \gamma_{симоб} h_{симоб}. \] (2.56)

(2.56) дан

\[p_0 = p_a + \rho_{симоб} g h_{симоб} - \rho_{сыв} g h_{сыв}; \]
\[p_0 = p_a + \gamma_{симоб} h_{симоб} - \gamma_{сыв} h_{сыв}. \] (2.57)

A найчадан босим поршень қорқали темир пластинка ва каучук пластинка ёрдамида, унинг тубида жойлашган манометр тирсаги ичидаги сувга таъсир этади, сув қорқали эса маномернинг G найчасидаги симобга таъсир қўрсатади, натижада симоб найчада юқорида қўтарилади. Қўтарилган ба-ландликка қараб ортикча гидростатик босим аниқланади. Агар поршень B нинг майдонини f, темир пластинка C нинг майд-
донини F билан, манометр
найчаси G да симобнинг кўта-рилган баландлтини h билан
белгиласак, босим (гидростати-
канинг мувозанат тенгламасидан)
куйидагича бўлади:

$$ p = \frac{F}{f} \rho_{\text{симоб}} g h_{\text{симоб}}. \quad (2.58) $$

Поршенли манометрлар ёр-
дамида кичик симоб устунла-
ри орқали жуда катта босим-
ларни ўлчаш мумкин.

Дифференциал манометрлар. Агар икки идишдаги (2.11-расм) ёки бир
идишнинг икки ихтиёрий нуктасида (2.12-расм) босими-
лар фарқини ўлчаш керак бўlsa, у ҳолда дифференциал
манометр қўлланилади. Икки идишдаги бирлаштирилган диф-
ференциал манометр 2.11-расмда кўрсатилган. Бу ҳардамнам, улар юқорида кўрсатилган деган нейча ичидали
симоб сатҳида (C нуктада) босим куйидагича ёзилади:

а) нукта C ва B идишдаги суюқлик томонидан таъсир
қилаётган мутлак босим

$$ p_m^B = p_0^B + \rho_{\text{сув}} g h_{\text{сув}}, \quad (2.59) $$

б) нукта C ва B идишдаги суюқлик томонидан таъсир
этаётган мутлак босим

$$ p_m^{(B)} = p_0^{(B)} + \rho_{\text{сув}} g h_{\text{сув}} + \rho_{\text{симоб}} g h_{\text{симоб}}. \quad (2.60) $$

(2.59) ва (2.60) тенгламалар C нуктадаги босимни ифодалаг-
нани учун улар бир-бируга тенг бўлишлари ёшт

$$ p_m^{(B)} = p_m^{(B)}. \quad (2.61) $$

у ҳолда (2.59) ва (2.60) тенгламаларнинг ўинг томонлари
ҳам нуктадаги мутлак босимни ифодалайди. Шундай экани,
улар ҳам бир-бирларига тенг бўлади

37
(2.62) ни куйидагида ёзиш мумкин

\[p_0^{(B)} + \rho_{\text{сув}} gh_{\text{сув}} = p_0^{(B)} + \rho_{\text{сув}} gh_{\text{сув}} + \rho_{\text{симоб}} gh_{\text{симоб}} \] \hspace{1cm} (2.62)

ёки

\[p_0^{(B)} - p_0^{(B)} = \rho_{\text{сув}} gh_{\text{сув}} - \rho_{\text{сув}} gh_{\text{сув}} + \rho_{\text{симоб}} gh_{\text{симоб}} \] \hspace{1cm} (2.63)

бу ерда \((h_2 - h_1)_{\text{сув}} = -h_{\text{симоб}}\) бўлгани учун

\[p_0^{(B)} - p_0^{(B)} = -\rho_{\text{сув}} gh_{\text{симоб}} + \rho_{\text{симоб}} gh_{\text{симоб}} \] \hspace{1cm} (2.64)

натижада

\[p_0^{(B)} - p_0^{(B)} = (\rho_{\text{симоб}} - \rho_{\text{сув}}) gh_{\text{симоб}} \] \hspace{1cm} (2.65)

Шундай қилиб, бо- симлар фарқи \(U\) шак- ластилиган дифференциал манометрнинг иккили қисмидали (шила най- чалардали) симоб сат- хларнинг фарқлари билан аниқланади. 2.12- расмда эса гори- зонтал кувурнинг икки \(A\) ва \(B\) нуктасида бирлаштириладан диф- ференциал манометр кўрсатилган. Бу ҳолда ҳам 2.11-расмда кўрса- тилган, \(B\) ва \(B\) нук- талардаги гидростатик бошимлар фарқи (2.66) тенгла ма каби ифода- ланади:
2.13- расм.

\[p_1^{(A)} - p_2^{(B)} = (\rho_{\text{смоб}} - \rho_{\text{сув}})gh_{\text{смоб}} \]

(2.67)

Микроманометр. Микроманометрнинг юқорида кеътирланган манометрлардан фарқи шундаки, уларнинг ўлчаш аниқликлари ниҳоятда юқори бўлиб, паст босимларни ўлчайди. Бундай микроманометрлардан бирининг тузилиши 2.13-расмда кўрсатилган. Микроманометр асосан, босим ўлчандиған идишга уланган ҳавза (резервуар) A ва шиша B найчадан тузилган. Микроманометрнинг шиша найчаси текисликка нисбатан α бурчак остида жойлашган бўлиб, бу бурчак ҳоҳлаганча ўзгартилиши мумкин. Босим шиша найчанинг тубидағи курилма ёрдамида аниқланади.

Вакуумметр. Гидравликада суюқлик тўлдирланган берқидиш ичидағи ичиётрий нuktasiда мутлақ босим атмосфера босимдан паст бўлса, юқорида айтилганда, бундай ҳолатга вакуум дейилади. Масалан, насоснинг сўриш қuvуридаги босим, сифоннинг тирсагидаги босим ва ҳоказо. Атмосфера босимидан паст босимни (идишда вакуум бўлган ҳолда) ўлчайдиған асbobлар вакуумметр деб аталади. Шуну айтиш керакки, вакуумметр бўшлиқда тўғридан-тўғри босимни ўлчамайди, факат вакуумни ўлчайди, яъни у идишдағи атмосфера босимгача етмagan босимни ўлчайди. Бу асбоб симобли асбоблардан деярли фарқ қилмайди, ишлаш усули бир хил. Вакуумметр 2.14- расмда тасвирланган. Бу ёрда 𝑈 шаклдағи шиша найчанинг тирсаги симобга тўлдирланган бўлиб, найчанинг бир томони босим ўлчанадиған идишга уланган. Найчанинг иккинчи очиқ томонига эса, атмосфера
bosimli ta’vsir қилади. Masalan, B идиси газ билан тўлдирилган бўлиб, undagi bosim

$$p_a = p_0 + \rho_{симоб}gh_{симоб}, \quad (2.68)$$

булдан

$$p_a = p_0 - \rho_{симоб}gh_{симоб}. \quad (2.69)$$

Бу ёрда атмосфера bosimli ta’vsiriда шиша найчадаги simob kўtarilgan баландлик

$$h_{симоб} = \frac{p_a - p_0}{\rho_{симоб}g}. \quad (2.70)$$

идишдаги $p_{вак}$ вакуум эса $p_в$ га тенг бўлади

$$p_{вак} = p_a - p = p_в \quad (2.71)$$

Вакуум нолдан 1 атмосферагача ўзгаради. Вакуум гидростатик bosimning ўлчо бирликларида ифодаланиши мумкин, лекин кўпрок, суюқлик (сув) устuni баландлиги каби метрда ифодаланади.

в. Механик ассоблар

Юқорида келтирилган суюқликлар (сув, симоб, спирт, эфир ва бошқалар)да ишлайилган ассоблар учча катта бўлмаган bosimlарни ўлчашда асосан амалий лабораторияларда кенг қўлланилади. Катта bosimlарни, масalan, 5 атмосферадан юқори bosimlарни ўлчашда механик ассоблар, жумладан пружинали манометрлардан фойдаланилади.

Пружинали манометр. Бу ассоб (2.15- расм) бўш юқпача жез A найчадан тузилиган бўлиб, уни бир томони тишили B механизма ёпиширилган. Йккичи очик томони bosim ўлчаниши керак бўлган D идиси билан уланган. A найча ичиға уланган D идиси орқали суюқлик ўтади. Суюқлик bosimli ta’vsiriда пружина тўғриланана бошлайди ва ташки механизм (стрелка)ни ҳаракатга келтиради. Стрелканинг ҳаракати идишдаги ортикча гидростатик bosimни кўрсатади. Манометрдаги шкала ўлчанган bosimning қийматини атмосфера bosimli бирликларида кўрсатади.
Мембранали манометр.
imenti суюклик юпка мембранага таъсир этади (2.16-
расм). Шунда мембрана бу-
килиб рицаглар тизими ор-
қали стрелкани ҳаракатга келтирди, стрелка эса
дишдаги гидростатик бо-
симни кўрсатади.

Гидростатикадан амалий машиналот ҳукамни учун усулбий
характерга эга бўлган намунаий масалалар.

2.1-масала. Берк идишга сув қуйилган ва у пьезометр
билин жиҳозланган. Идишдаги сув сатҳига таъсир қилаёт-
ган босимни идиш берк бўлгани сабабли, ташки босим
деб ҳисоблаймиз. Масала бу ташки босим берилиган (2.17-
расм).

\[p_a = 10^5 \text{Pa}; \quad p_0 = 1.25 \cdot 10^5 \text{ Pa}; \quad \gamma = 9810 \text{ Н/м}^2. \]

Идишга ўрнатилган пьезометр сув сатҳидан \(h = 3.0 \) м пастда
н нуктада жойлашган. Сув пьезометрда қандай \(h_p \) баланд-
ликка кўтарилишини аникланг.

Ечиш. Пьезометрик баландлик (2.51) формула ёрдамида
аниклиданади. Унинг учун (2.54) га асосан \(p_a \) мутлақ босим
(берк идиш учун)ни аниклаймиз
Пьезометрик баландлик

\[h_p = \frac{\rho_u - \rho_a}{\gamma} = \frac{1,544 \cdot 10^5 - 1,0 \cdot 10^5}{9810} = 5,54 \text{ м.} \]

2.2-масала. 2.18-расмдаги \(A \) идишдан ёвво сиқиб чиқарилган, \(h \) атмосферага босим \(p_{\text{вак}} = p_u = 0,60 \) атмосфера. \(A \) идиш найча орқали \(B \) идишдаги сув билан туташтирилган. \(B \) идиш очик, шунинг учун undagi сув сатҳига атмосфера босими таъсир қилади. \(h_{\text{вак}} \) вакуум баландлигини аникламан.

Ечиш. Найчада кўтарилган сувнинг \(h_{\text{вак}} \) баландлигини аниклаймиз:

\[h_{\text{вак}} = h_v = \frac{\rho_u - \rho_a}{\gamma} = \frac{1,1 \cdot 10^5 - 0,6 \cdot 10^5}{9810} \approx 4,0 \text{ м.} \]

бу ерда

\(p_a = 1,0 \cdot 10^5 \text{ Па}; \quad p_u = 0,6 \cdot 10^5 \text{ Па}; \quad \gamma = 9810 \text{ Н/м}^3. \)

2.3-масала. Сув билан тулирилган очик идиш берилган (2.19-расм) \(A \) нуктада (\(h \) чүкурликда) манометр үрнатилган. Агар шу \(A \) нуктада манометр \(p_{\text{ман}} = 0,40 \text{ кгк/см}^2 \) ёки 0,4 атмосферани кўрсатса, сув сатҳи шу нуктадан қанча \(h \) баландликда бўлади?

Ечиш.

\[h = \frac{p_{\text{ман}}}{\gamma} = \frac{0,40 \cdot 10^5}{9810} \approx 4,0 \text{ м.} \]

2.4-масала. Вакуумметрлри найчадаги симоб \(n - n \) чизигига нисбатан \(h_v = 0,30 \) м баландликка кўтарилган бўлса, (2.20-расм) \(A \) цилиндрдаги поршен остида ҳосил бўлган вакуумни аниклаймиз.

www.ziyouz.com kutubxonasi
Ечиш.

\[p_r = \gamma_{смоб} h_r = 13,6 \cdot 10^4 \cdot 0,3 = 4,08 \cdot 10^4 \text{ Па.} \]

2.5-масала. Цилиндр шаклдағи берк идиш сув билан тўлдирилган (2.21-расм). Сувнинг чукурлиги \(h = 2,0 \text{ м.} \) Сувнинг сатҳига \(p_0 = 2 \) атмосферага тенг сиқилган босими, яъни таъқи \(p_0 \) босим таъсири қиляпти. Агар идиш туби ер сатҳи (0-0 такқослаш текислиги)дан \(z = 3,0 \text{ м баландда бўлса, идишдаги сувнинг гидростатик ва пьезометрик босимини аникланг.} \ p'_o = 1,0 \cdot 10^5 \text{ Па.} \)

Ечиш. Идишнинг тубига таъсири қилувчи мутлақ гидростатик босим

\[p'_o = p_0 + \gamma h = 2,0 \cdot 10^5 + 9810 \cdot 2 = 2,196 \cdot 10^5 \text{ Па.} \]

Такқослаш текислигига нисбатан гидростатик напор

43
2.6-§. ПАСКАЛЬ ҚОНУНИ ВА УНИНГ АМАЛДА ҚЎЛЛАНИЛИШИ

2.22- рasmда кўрсатилган идек ҳамма томони берк идиш оламиз. Идиш сув билан тўлдирилган. Идиш деворларидан бирдаги кичик тешикка поршн ўрнатиб, унинг ёрдамида идиш ичилиги сувга ташки p_0 босим кўямиз. Гидростатика-нинг асосий тенглашган маълумки, тинч ҳолатда суъюқликнинг ихтиёрлар нуқтасида гидростатик босим икки омилга боғлиқ; суъюқлик сатҳига таъсир этувчи ташки p_0 босим (идиш очик бўлса, ташки босим атмосфера босими p_u бўлади) шу суъюқлик ичидараги ихтиёрлар олинган нуқтанинг сув сатҳига нисбатан жойлашган h чукурлиги боғлиқ. Агар шу идишдағи суъюқлик ичда ихтиёрлар h_1, h_2, ..., ва ҳоказо чукурликларда бир неча 1, 2, 3 ... n нуқта олсак ва бу нуқта-лар учун гидростатикканинг асосий тенглашган, мутлақ гидростатик босим формулаларини ёзсак, у ҳолда

$$p_1 = p_0 + \gamma h_1;$$
$$p_2 = p_0 + \gamma h_2;$$
$$p_3 = p_0 + \gamma h_3,$$

ихтиёр нукталарга таъсир этиётган босимнинг қиймати факат шу нуктала жойлашган h чукурлики боғлиқ экан, суъюқлик сатҳига таъсир этувчи ташки p_0 босим эса, барча

$$H_s = \frac{p_u}{\gamma} + z =$$
$$= \frac{2.196 \times 10^5}{9810} + 3 = 25.35 \text{ м.}$$

Пьезометрик напор

$$H_p = H_s - \frac{p_u}{\gamma} =$$
$$= 25.35 - \frac{1.0 \times 10^5}{9810} \approx$$
$$\approx 15.15 \text{ м.}$$
1, 2, 3, ... нукталар учун ўзгармас экан, яъни \(p_0 = \text{const.} \) Бу (2.72) тенгламадан кўриниб турлади. Бундан суюълик саткхіга қўйилган ташки \(p_0 \) босим шу суюълик ичидаги ихтиёрларга бир хил таъсир этади, яъни ташки босимни суюълик ичада жойлашган ихтиёрларга (ҳамда ихтиёрлар текисликка) бир хил таъсир этишини Б. Паскаль аникллаган ва у, Б. Паскаль қунуни дейилади. Масалан, \(p \) босим кучининг суюълик орқали идишнинг деворита таъсир, шу деворинг майдонига тўғри пропорционаллигини иқболлаш учун туташ идиш оламиз. (2.23-расм). У идишларнинг кўндаланг кесим майдонлари ҳар хил, улардан \(A \) идишнинг кўндаланг кесим майдони \(\omega_1 \) кичик, \(B \) идишнинг майдони \(\omega_2 \) эса катта. Агар поршен ёрдамида \(A \) идишдаги сув саткхига \(P_1 \) босим кучини қўйсак, бу ёрда поршен тубидаги сув саткхига таъсир қilhaётган босим

\[
p_0 = \frac{P_1}{\omega_1}, \tag{2.73}
\]

булади. Б. Паскаль қунунига биноан \(p_0 \) босим \(B \) идишдаги поршеннинг бирлиқ майдонига ҳам шундай таъсир этади. Бундан \(P_2 \) босим кучи \(B \) идишдаги поршенга таъсир қўйилади.

\[
P_2 = p_0 \omega_2, \tag{2.74}
\]

(2.74) тенгламадан кўринадики, \(B \) идишдаги \(\omega_2 \) ва \(A \) идишдаги \(\omega_1 \) суюълик таъсир этаётган майдонлар нисбати \(\frac{\omega_2}{\omega_1} \) қанча катта бўlsa, \(P_2 \) куч \(P_1 \) га нисбатан шунчалик катта бўлади. Масалан, агар \(\omega_1 = 5 \times 10^{-4} \text{м}^2; \omega_2 = 50 \times 10^{-4} \text{м}^2 \) ва \(P_1 = 100 \text{Н} \) бўлса, у ҳолда

www.ziyouz.com kutubxonasi
\[P_2 = P_1 \frac{\omega_2}{\omega_1} = 100 \frac{50 \cdot 10^{-4}}{5 \cdot 10^{-4}} = 10^3 \text{Н}. \]

Шундай булишига қарамасdan босим иккала поршен майдо
нинг бирлик юзалариға бир хил куч билан таъсири этиди:

\[P_{0_1} = \frac{P_1}{\omega_1} = \frac{100}{5 \cdot 10^{-4}} = 2 \cdot 10^5 \text{ Па}; \]
\[P_{0_2} = \frac{P_2}{\omega_2} = \frac{1000}{50 \cdot 10^{-4}} = 2 \cdot 10^5 \text{ Па}. \]

Б. Паскал қонунининг амалда қўлланилиши

Гидравлик машиналар Б. Паскал қонунига асосан иш
лайди. Гидравлик машиналар қаторига гидравлик пресс, гид-
равлик аккумулятор, гидравлик домкрат ва бошқалар кира-
ди.

2.6-масала. Бир ички гидравлик пресс ёрдамида унинг
ричагига \(Q = 200 \text{ Н} \) куч билан таъсири этиди (2.24-рамс). Гидравлик пресс ричагининг катта елкаси \(a = 1,0 \text{ м} \); ки-
чич елкаси \(b = 0,10 \text{ м} \); катта поршеннинг диаметри \(D = 250 \text{ мм} \), кичич поршеннинг диаметри \(d = 25 \text{ мм} \), фойдалан иш
коеффициенти \(\eta = 0,80 \). Прессда сиқи-
лиш кучининг қий-
матини аникланг \(P_2 \).

Ечиш. Катта пор-
шена таъсири килаёт-
ган босим кучини то-
памиз:

\[P_2 = \eta \frac{aQ}{b} \left(\frac{D}{d} \right)^2 = \]
\[= 0,8 \frac{1,0 \cdot 200}{0,10} \left(\frac{0,25}{0,025} \right)^2 = \]
\[= 1,6 \cdot 10^4 \text{Н}. \]

Прессда сиқилиш ку-
чи ричагининг катта
елкасига қуйилган
иччи кучига нисбатан
800 марта ортиқ экан.
2.7-§. СУЮҚЛИК БОСИМ КUCHINING DEWOR ЮЗАСИГА TAЪСИРИ

Ихтиёрий шаклдаги техис юзали деворга сууқликнинг босим кучини аниклаимвиз. Бундай ҳолат учун сууқлик-нинг босим кучи тенгламаси аниклангандан кейин сув сатҳига қўйилган босимнинг таъсирини қўшоб ўрганамиз. Унинг учун Oy ўқни техис деворнинг йўналиш бўйича оламиз, у горизонтал техисликка нисбатан суъ бур-чакни ташкил этиди (2.25- расм). Бу девор бир томондан чукурлиги h бўлган сууқликни ушлаб турбиди. Шу Oy ўқи жойлашган ихтиёрий MN техисликда ў майдонни белгилаймиз. Деворнинг MN техислигидаги ў майдонига таъсир этаётган сууқликнинг P босим кучини аниклаимвиз.

MN техисликдаги ў майдоннинг оғирлик маркази C сув сатҳидан h, чукурлиқда жойлашган. Оғирлик маркази C нук-тасини Oy ўқи бўйича сув сатҳигача бўлган оралигини у билан ифодалаймиз (2.25- расмга қаранг).

Деворнинг ажратилган шу MN техислигида таъсир қилаётган босим кучини аниклаш учун ундаги ў майдонни до элементар майдончаларга ажратамиз ва шу майдончаларга таъсир қилаётган босим кучларини аниклаимвиз. Шу бо-
2.25-рasm.

сим кучларининг йингиндиси берилинган MN текисликдаги ω майдончага таъсир қилаётган босим кучини беради. Шу MN текисликдаги ω майдонча ичида сув сатҳидан тик бўйича h_m чукурлликدا ва текис леворнинг қиялиги бўйича y_m масофада жойлашган m нуктасини оламиз; бу ёрда h_m чукурлик y_m ордината билан $h_m=y_m \sin \alpha$ тенглама орқали боғланган. Маълумки, m нуктадаги ортиқча гидростатик босим куйидагича бўлади:

$$p^{(m)} = \rho g h_m = \gamma h_m.$$

(2.75)

m нукта атрофидан $\Delta \omega$ элементар майдончани ажратамиз. Бу элементар майдонча жуда кичик бўлгани учун унинг майдон бўйича гидростатик босимини ўзгармас деб қабул қилиб, (2.75) формулага асосан $\Delta \omega$ элементар майдончага таъсир этаётган элементар ΔP босим кучини куйидагича аниқладимиз:

$$\Delta P^{(m)} = p^{(m)} \Delta \omega,$$

(2.76)

ёки

$$\Delta P^{(m)} = \rho g h_m \Delta \omega = \gamma h_m \Delta \omega.$$

(2.77)

h_m нинг ўрнига унинг $h_m = y_m \sin \alpha$ қийматини қўйсак, у ҳолда
\[\Delta P^{(m)} = \gamma y_m \sin \alpha \Delta \omega \]
(2.78)

\(MN \) текисликка таъсир қилаётган суюқликнинг \(P \) босим кучи \(\Delta \omega \) элементар майдончаларга таъсир қилаётган \(\Delta P \) элементар босим кучларининг йиғиндисига тенг:

\[P = \Sigma \Delta P = \Sigma \gamma \sin \alpha y_m \Delta \omega, \]
(2.79)

\(\gamma \) ва \(\sin \alpha \) ұзгармас сонларни йиғинди \(\Sigma \) белгисидан ташқариға чиқарсак, (2.79) тенглама кўйидагича ёзилади:

\[P = \gamma \sin \alpha \Sigma y_m \Delta \omega. \]
(2.80)

(2.80) тенгламада \(\Sigma y_m \Delta \omega = \Delta \omega \) элементар майдончаларни \(y_m \) оралиққа (\(Ox \) ўқидан то \(\Delta \omega \) майдончагача бўлган масофаларининг йиғиндиси. Назарий механика курсida бундай кўпайтмаларни йиғиндиси майдончаларнинг статик моментини библиради, у ҳолда \(MN \) текисликдаги \(\omega \) майдончанинг унинг оғирлик марказидан \(Ox \) ўқигача бўлган масофага кўпайтмаси бица статик моментни беради, яъни

\[\sum_0^\omega y_m \Delta \omega = y_c \omega. \]
(2.81)

(2.81) тенгламадаги \(\sum_0^\omega y_m \Delta \omega \) ни (2.80) тенгламага кўйсак:

\[P = \gamma y_c \sin \alpha \omega. \]
(2.82)

Бундан \(y \sin \alpha \) ни \(h_c \) деб олсак, суюқликнинг босим кучининг аниклалидан асосий формулини оламиз

\[P = \gamma h_c \omega. \]
(2.83)

\(\gamma h_c \) — \(MN \) текисликдаги \(\omega \) майдончанинг \(C \) оғирлик марказига қўйилган ортиқча гидростатик босим бўлгани учун (2.83) тенгламага кўйидагича маъно бериш мумкин: текис деворнинг \(\omega \) майдонига қўйилган суюқликнинг \(P \) босим кучи шу \(\omega \) майдоннинг оғирлик марказига таъсир этётган ортиқча гидростатик босимнинг шу майдонга кўпайтмасига тенг.

Юқорида келтирилган тушунча мутлақ босим кучига ҳам тааллукли, яъни бу ҳолда суюқлик сатҳига таъсир қилаётган босим \(\rho_0 \) (яъни таший босим) эътиборга олинади. У
ҳолда текис деворнинг юзасига қўйилган P_m мутлаъ босим кучи қўйилганча ёзилади:

$$P_m = p_0 \omega + \gamma h_c \omega = (p_0 + \gamma h_c) \omega.$$ (2.84) (2.83) ва (2.84) тенгламалар ёрдамида P босим кучини ва ω, h_c ларни аниклашда бир хил ўлчов бирлиги тизими CH дан фойдаланиш керак.

2.26-расм. Шуни ҳар доим эслада тутиш керакки, h_c нинг қийматини доим тик (вертикал) буйича ўлча максадга мунофий (сув таъсири қилаётган текис деворнинг горизонтал текисликка нисбатан қандай бурчакда жойлаштанидан қатъи назар). Яна шуни айтиш керакки, бундан бўён деворга ва бошқа иншоотларга таъсир этаётган суюқликнинг босим кучи сўзини қискача ортикча босим ёки ортикча босим кучи деб юритамиз.

2.7-масала. Квадрат шаклидағи сув тутқич текис темир дарвозага сувнинг босим кучини аниклантган, квадрат дарвозанинг томонлари 1,0х1,0 м; дарвоза горизонтал текисликка нисбатан $\alpha = 45^\circ$ бурчак остида жойлаштирилган. Дарвозанинг юқори қирраси сув сатҳидан $h = 2,0$ м чукурликда жойлашган (2.26-расм); $\gamma = 9810$ Н/м³ (ёки $\rho = 1000$ кг/м³).

Ечиш. Сувнинг босим кучини (2.83) формуладан аниклаймиз

$$P = \rho g h_c \omega = 1000 \cdot 9,81 \cdot 2,35 \cdot 1 = 2,305 \cdot 10^4 \text{H} = 2,305 \cdot 10 \text{kN}.$$ Бу ерда

$$\rho g = \gamma = 9810 \text{H/m}^3;$$

$$h_c = h + \gamma_c \sin \alpha = 2,0 + 0,5 \cdot 0,707 = 2,35 \text{m};$$

$$\omega = 1,0 \cdot 1,0 = 1,0 \text{m}^2.$$ Суюқлик босим кучининг текис деворга таъсири ва шу кучнинг микдорини билишдан ташқари, шу P кучнинг йўналиши ва унинг таъсир нуктасини ҳисоблашни билиш керак. Текис деворга таъсири қилувчи суюқликнинг босим кучининг йўналиши, гидростатик босимнинг биринчи хосса сиға асосан, текис девор юзасига тик (нормал) йўналган бўлади.
2.8-§. ГИДРОСТАТИК БОСИМ МАРКАЗИ. БОСИМ КУЧИНИНГ ҚУЙИЛИШ НУКТАСИ

Текис девор юзасидаги босим кучи қўйилган нукта босим маркази дейилади. Горизонтал текисликка о бурчак остида жойлашган текис деворга қўйилган босим марказини аниклаш учун 2.25-рasmга мурожаат этамиз. Расмда босим марказини D нукта билан ифодалаб, унинг координати шу текис девор текислиги бўйича (яъни Ou ўқи бўйича) y_d бўлади. Босим маркази D сув сатхидан h_d чукурликда жойлашган бўлиб, у деворнинг оғирлиқ маркази (C нукта) дан пастда бўлади.

Босим марказининг координаталарини аниклаш формуласи. Бунинг учун назарий механика қўлланиладиган, тенг таъсир этувчи момент теоремасида қўлданамиз, у қўйилганчача: «Тенг таъсир этувчи кучнинг ихтиёрий координата ўқи (масалан, Ox ўқи)га нисбатан моменти унинг ташкил этувчи элементар кучларини шу координатата ўқи қўшбатан моментларининг йиғиндисига тенг». Тенг таъсир этувчи куч P нинг Ox ўқи қўшбатан елкаси (ординатаси) y_d бўлади. Ташкил этувчи ΔP элементар куч эса $\Delta\omega$ элементар майдончага таъсир этади, унинг елкаси u.

Тенг таъсир этувчи P кучнинг Ox ўқи қўшбатан моменти

$$M_p = Py_d,$$ \hspace{1cm} (2.85)

Элементар кичик ΔP кучнинг Ox ўқи қўшбатан моменти

$$M_{\Delta P} = \Delta Py.$$ \hspace{1cm} (2.86)

Ташкил этувчи кучлар моментларининг йиғиндиси

$$\Sigma M_{\Delta P} = \sum_{\theta} \Delta Py.$$ \hspace{1cm} (2.87)

Тенг таъсир этувчи момент теоремасида асосан (2.85) тенгламадан M_p (2.87) тенгламадаги $M_{\Delta P}$ нинг йиғиндисига тенг

$$M_p = \Sigma M_{\Delta P},$$

51
(2.88)

$$Py_d = \sum_{0}^{\omega} \Delta Py.$$

Ортиқча босим кучини назарда тутсак, у ҳолда \(2.88\) тенгламадан

$$\Delta P = p \Delta \omega = \gamma h \Delta \omega = \gamma y \sin \alpha \Delta \omega$$

(2.89)

ва

$$P = \gamma y_c \sin \alpha \cdot \omega = \gamma h_c \omega.$$

(2.90)

Моментлар тенгламаси \(2.88\) нима куйидагича кўчириб ёзамиз

$$\gamma h_c \omega y_d = \sum_{0}^{\omega} \gamma y^2 \sin \alpha \Delta \omega,$$

(2.91)

ёки ўзгармас элемент \(\gamma\) ва \(\sin \alpha\) ларни йиғинди белгиси \(\Sigma\) дан ташқарига чиқариб, \(h_c\) ни \(y_c \sin \alpha\) га тенг деб олиб,
\(2.91\)нини куйидагича ёзамиз:

$$\gamma y_c \sin \alpha \omega y_d = \gamma \sin \alpha \sum_{0}^{\omega} \Delta \omega y^2,$$

(2.92)

(2.92) дан

$$y_d = \frac{\sum_{0}^{\omega} \Delta \omega y^2}{\omega y_c}.$$

(2.93)

Назарий механикадан маълумки, бу \(\sum_{0}^{\omega} \Delta \omega y^2\) катталик Ox ўқиға нисбатан \(\omega\) майдоннинг \(I_x\) инерция моменти; \(\omega y_c\) катталик эса ўша Ox ўқиға нисбатан \(\omega\) майдоннинг \(S_x\) статик моменти. Ихтиёрй шаклдаги текис майдончалар учун \(y_d\) ни ҳисоблаш формулалари 2.1-жадвалда келтирилган. Юқорида айтилганларни назарда тутган ҳолда \(2.93\) тенгламани куйидагича ёзиш мумкнин

$$y_d = \frac{I_x}{S_x} \cdot \frac{I_x}{\omega y_c}.$$

(2.94)

Амалда кўпроқ, шакл майдоннинг онирлиқ марказига нисбат инерция моментилан фойдаланилади. Агар \(\omega\) май-
лексий нерция моментини \(I_c \) орқали ифодаласак, натарий механизманинг параллел ўқларга нисбатан нерция моменти теоремасiga асосан қўйидаги тенгламани ёзиш мумкин

\[
I_x = I_c + \omega y_c^2.
\]
(2.95)

Бу \(I_x \) нерция моментининг қийматини (2.94) га қўйсак, босим марказининг \(y_d \) координатаси учун қўйидаги тенгламани оламиз

\[
y_d = y_c + \frac{I_c}{\omega y_c}.
\]
(2.96)

ёки

\[
y_d = y_c + e,
\]
бу ерда \(e \) — экскентриситет, у огирилк маркази билан босим маркази оралгидаги масофа

\[
e = \frac{I_c}{\omega y_c},
\]
бунда \(I_c \) — каралаОтган майдоннинг огирилк маркази \(C \) нукта орқали ўқзилган ўққа нисбатан (\(Ox \) ўқиға параллел) нерция моменти. Майдоннинг нерция моментининг ўлчо бирлиги \(m^4 \); статик моментники эса, \(m^3 \); у ҳолда босим маркази \(y_d \) координатасининг ўлчо бирлиги, \(m \).

(2.96) формуладан кўринадикki, \(D \) босим маркази ҳар доим майдоннинг огирилк марказидан пастда жойлашган бўлади. Суюқликнинг босими таъсири қилувчи майдон (тексислик) горизонтал жойлашган бўлса, фақат бу ҳолда босим маркази майдоннинг огирилк маркази билан бир нуктада жойлашади. (2.96) формуладан фойдаланиш осон бўлиши учун 2.1-жадвалда текис деворга таъсири этувчи босим ва огирилк марказининг координаталарини хусусий ҳоллар учун ҳисоблаш формуаларни келтирилган.

2.8-мақа. Текис тўғри тўртбurchakli сув тутгич дарвозанинг эни \(b = 1,5 \) м, у горизонтал тексисликка нисбатан \(\alpha = 60^\circ \) бurchак остида жойлашган бўлиб, \(h = 2,2 \) м чукурликдаги сувни тутгич турнабди (2.27-расм). Шу дарвозага сув-нинг босим кучини ва бу босим кучининг марказини аникланган. \(\rho = 1000 \) кг/м³.

53

www.ziyouz.com kutubxonasi
2.27-рasm.

Ечиш. Босим кучини (2.83) формулалардан аникладаймиз:

\[P = \gamma h_C \omega = \rho g h_C \omega = 1000 \cdot 9,81 \cdot 1,1 \cdot 3,82 = 4,12 \cdot 10^4 \, H = \]
\[= 4,12 \cdot 10 \, \text{kH}; \]

бунда

\[h_C = \frac{1}{2} h = \frac{1}{2} 2,2 = 1,1 \, \text{m}; \]
\[\omega = b \cdot y = b \cdot \frac{h}{\sin \alpha} = 1,5 \cdot \frac{2,2}{0,866} = 3,82 \, \text{м}^2; \]
\[y = \frac{h}{\sin \alpha} = \frac{2,2}{0,866} = 2,55 \, \text{m}. \]

Босим марказининг координатаси (2.96) формулалардан аниклади:

\[y_B = y_C + \frac{I_C}{\omega y_C} = 1,27 + \frac{2,07}{3,82 \cdot 1,27} = 1,27 + 0,423 = 1,69 \, \text{m}, \]

бунда

\[y_C = \frac{h_C}{\sin \alpha} = \frac{1,10}{0,866} = 1,27 \, \text{m}; \]
\[I_C = \frac{by^3}{12} = \frac{1,5 \cdot 2,55^3}{12} = 2,07 \, \text{м}^4; \]

54
<table>
<thead>
<tr>
<th>Майдончанинг номи</th>
<th>Майдончанинг схемаси</th>
<th>Босим марказиннинг координатаси</th>
<th>Огирилик марказиннинг координатаси</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тўгри тўртбurchак (\omega = b \cdot h_1)</td>
<td></td>
<td>(y_D = \frac{2}{3} h_1)</td>
<td>(y_C = \frac{1}{2} h_1)</td>
</tr>
<tr>
<td>Тўгри тўртбurchак (кўмилган) (\omega = b \cdot h_1)</td>
<td></td>
<td>(y_D = a + \frac{h_1}{3} \cdot \frac{3a+2h_1}{2a+h_1})</td>
<td>(y_C = a + \frac{h_1}{2})</td>
</tr>
<tr>
<td>Трапеция (\omega = \frac{1}{2} (B + b)h_1)</td>
<td></td>
<td>(y_D = \frac{1}{2} \cdot \frac{B+3b}{B+2b})</td>
<td>(y_C = \frac{h_1}{3} \cdot \frac{B+2b}{B+b})</td>
</tr>
<tr>
<td>Доира (кўмилган) (\omega = \frac{a^2}{4})</td>
<td></td>
<td>(y_D = a + r + \frac{r^2}{4(a+r)})</td>
<td>(y_C = a + r)</td>
</tr>
</tbody>
</table>

Изод. Агар текис девор горизонтал текислиқка нисбатан қандайдир \(\alpha\) бurchак осида жойлашган бўлса, \(y_D\) нинг жадвалда келтирилган қийматини син \(\alpha\) та бўлиш керак.

2.1-жадвалдан фойдаланиб, \(y_D\) нинг координатларини куйидагича аниклаймиз

\[y_D = \frac{2}{3} h_1 \cdot \frac{1}{\sin \alpha} = \frac{2}{3} \cdot \frac{2}{2} \cdot \frac{1}{0.866} = 1.69 \text{ м.} \]

2.1-жадвалда келтирилган формулалар босим марказиннинг координатларини аниклашда ҳисоб-китобни анча соддalaштиради.
2.9-масала. \(\alpha = 60^\circ \) ён-бошлаган текис девордаги тешикни беркитувчи, диаметри \(d = 0,5 \) м бўлган доир-равий сув тутгич дарвозага сувнинг \(P \) босим кучини ва қўйилган марказни аннабланг, \(a = 1,0 \) м, \(\rho = 1000 \) кг/м\(^3\) (2.28-рasm).

Ечиш. Сувнинг босим кучи (2.83) формуладан аннабланади:

\[
P = \rho g h_c \omega = 1000 \cdot 9,81 \cdot 1,08 \cdot 0,196 = 2076,6 \text{ Н} = 2,08 \text{ кН},
\]
бу ерда

\[
h_c = (a + \frac{d}{2}) \sin \alpha = \left(1,0 + \frac{0,5}{2}\right) 0,866 = 1,08 \text{ м},
\]

\[
\omega = 0,785d^2 = 0,785 \cdot 0,5^2 = 0,196 \text{ м}^2.
\]

Босим марказининг координатасини 2.1-жадвалдан оламиз

\[
y_d = a + r + \frac{r^2}{4(a+r)},
\]

бу ерда \(a = 1,0 \) м ва \(r = 0,25 \) м бўлса, \(y_d \) ни аннабланмиз:

\[
y_d = 1,0 + 0,25 + \frac{0,25^2}{4(1,0+0,25)} = 1,26 \text{ м}.
\]

2.9-§. СУЮҚЛИК БОСИМИНИНГ ИДИШ ТУБИГА ТАЪСИРИ

Идиш туби текис ного ризонтал бўлган чо л. Юқорида келтирилган босим кучини ва у қўйилган нукталарини ҳисоблайдиган формулалар, бу ерда ҳам идишнинг текис тубига таъсир этивчи босим кучларини ва суюқликнинг босим марказини аннабла шти қўлланилиши мумкин. Умуман олгандан, агар идишнинг текис туби горизонтал текисликка \(\alpha \) бурчак остида ва шу идиш туби юзасининг оғирлиқ маркази сув сатхидан \(h_c \) чуюқлиқда жой-
лашган бўлса, у ҳолда P босим кучи ва y_p босим марказининг координати (2.83) ва (2.96) формулалар ёрдамида аникланаади. Бу формулалардаги ҳамма шартли белгилилар 2.29-растмда кўрсатилган.

Идиш туби текис горизонтал бўлган ҳол.
Маълумки, амалда идишлар (яъни резервуарлар, сув ҳавза-залари, тиндиригиляр, босимли баклар ва ҳоказолар)нинг тублари текис горизонталга яқин бўлади. Бунда P босим кучини ва y_p босим марказининг координатасини аниклаш осонлашади. Ҳақиқатан, суюқлик тўлкирилган идиш туби текис горизонтал ва унинг майдони ω бўлса, шу ω майдоннинг офирлик маркази h_c (C нукта) шу идишдаги суюқликнинг h чукурлигига тенг бўлса (яъни $h_c=\gamma$), у идишдаги текис горизонтал тубига таъсир этувчи ортиқча босим кучини ҳисоблаш формуласи қуйидагича бўлади:

$$P = \gamma h \omega.$$

Бу кўринишдаги формула қуйида-гича ўқилади: идишнинг текис горизонтал тубига таъсир этаётган суюқликнинг босим кучи идиш тубида сув сатҳигача бўлган чукурликида сув устунининг офирлигига тенг. Йишишнинг текис горизонтал тубининг ω майдоннига таъсир этувчи босим кучи қуйилган нукта шу майдончанинг офирлик маркази билан мос тушади (2.30-растм), яъни офирлик маркази ва босим маркази бир нуктада бўлади.

2.30-растм.
2.10-$\bar{9}$. Тўғри тўртбурчакли деворга таъсири этифчи гидростатик босимни аниклашда графиканалитик усул

Умумий усул. Гидроиншоотларни гидравлик ҳисоблашда амалда кўпинча текис тўртбурчакли деворларга суюқлик босимининг таъсирини аниклашга тўғри келади. Бу ҳолларда суюқликнинг P босим кучини ва у қўйилган D нуктани аниклашда графикаланик усул кенг қўлланилади. Текис тўртбурчакли деворга таъсири этифтган босимни графикаланик усулда аниклаш қўйилганча: босимниг миқдори ва унинг маркази ҳам график тузиш йўли билан чизова ёрдамида (босим эпорасидан), ҳам аналитик ҳисоблаш йўли билан аникланади.

Босим миқдорини аниклаш. Бу нинг учун тўғри тўртбурчакли тик (вертикал) AB деворни оламиз (2.31-расм). Бу деворга бир томондан чукурликни h_1 бўлган суюқлик таъсири этипти. Бу деворнинг кенглигини b билан, суюқликнинг солиширима огирилигини ΔS билан ифодалаймиз. AB деворга ортиқча гидростатик босим эпорасини чизамиз, у, тўғри бurchakli учбurchakdan иборат. Унинг BC томони γh_1 га тенг бўлади. Бу эпораниянг майдонини S деб олайлик. Берилган тик деворда эни b га ва баландлиги Δh га тенг бўлган ΔS элементар майдончани ажратамиз, бу майдонча суюқлик сатҳидан h чукурликида жойлашган. Шу майдончага тўғри келадиган босим кучи
\[\Delta P = p b \Delta h = \gamma h b \Delta h. \]
(297)

2.31- расмдан кўринадики, \(\gamma h \Delta h \) кўпайтма, эйоранинг элементар \(\Delta S \) майдончасини беради, яъни
\[\Delta S = \gamma h \Delta h. \]
(298)

(2.98) тенгламани (2.97) тенгламага кўйсак,
\[\Delta P = \Delta S b. \]
(2.99)

Бу ҳолда \(AB \) деворнинг бутун юзасиға таъсири этаётган суюқликнинг босим кучини оламиз
\[P = \Sigma \Delta P = \Sigma \Delta S b. \]
(2.100)

Тўғри тўртбурчакли деворнинг эни ўзгармас бўлгани учун суюқликнинг \(AB \) деворга босим кучи
\[P = b \Sigma \Delta S, \]
(2.101)

ёки \(\Sigma \Delta S = S \) бўлгани учун
\[P = S b. \]
(2.102)

Шундай қилиб, текис тўртбурчакли деворга таъсири этаётган босим кучи девордаги босим эйораси \(S \) майдониннинг деворнинг \(b \) энига кўпайтмасиға тенг.

Босим марказини аниқлаш. Маълумкі, \(P \) босим кучи \(AB \) деворга тик йўналган бўлди, шундай экан, текис тўртбурчакли деворга кўйилган \(D \) босим маркази деворнинг \(0-0 \) симметрия ўқида жойлашган бўлиб, шу ўқ бўйича деворнинг оғирлик марказидан пастда туради (2.32- расмга қаранғ).

Босим кучини график усулда аниқлашда унинг босим марказини деворнинг тубидан бошлаб улчаб кўйиш қуляйрок. Деворнинг баландлиги бўйича унинг тубидаги \(B \) нуктадан, босим маркази \(D \) нуктагача бўлган ораликни е билан белги- лаймиз (2.32- расм), у ораликдаги масофа босим кучининг елкаси дейилади.

Шундай қилиб, босим кучи ва босим марказини

\[2.32- \text{расм} . \]
аниқлашда қўлланиладиган графоаналитик усул қуйидагича. Аввало, берилиган тўғри тўртбурчакли деворга суюқликнинг гидростатик босим эпюраси чизилади, ва эпюранинг S майдони аниклашниб, уни деворнинг кенглиги b га қўпайтирилади; бу олинган Sb қўпайтма деворга қўйилган босим кучининг миқдорини беради: $P = Sb$. Кейин, босим эпюрасининг огирилик маркази аникланади ва шу марказдан девор чизигигача тик (перпендикуляр) ўтказамиз. Шу ўтказилган тик (перпендикуляр)нинг девор чизиги билан учрашган нуктаси босим маркази дейилади. Шунинг айтиш керакки, бундай графоаналитик усул фақат текис тўғри тўртбурчакли, унинг эни ўзгармас бўлган шакладаги деворларга таалкулди.

2.11-§. ГИДРОСТАТИК БОСИМ КUCHINING TEKIS TЎГRI TЎРТBURCHAKLI DEVORGA TAЪSIРИ

Графоаналитик усулни қўллаш. Текис тўғри тўртбурчакли деворга суюқликнинг босим кучини графоаналитик усулда аниклашнинг бешта хусусий ҳолини қўриб чиқамиз. Бунда қуйидаги шартли белгила қабул қилинган. h_1 — юқори бефдаги сувнинг чукурлиги (бу ҳолда сув деворга бир томондан, яъни чап томондан таъсир этади); h_2 — пастки бефдаги сувнинг чукурлиги (бу ҳолда сув деворга ўнг томондан таъсир қилади). Қолган шартли белгила умумий гидравликада қабул қилинган.

1. Биринчи хусусий ҳол. Тик текис тўғри тўртбурчакли девор берилиган, унга сув бир томондан (чап томондан), яъни юқори бефдан таъсир этилти. 2.31- расмда сувнинг чукурлиги h_1. Расмда суюқлик босимининг эпюраси тўғри бурчакли учбurchак шаклида бўлиб, бу эпюранинг S майдони

$$S = \frac{\gamma h_1 h_2}{2} = \frac{\gamma h_1^2}{2},$$

у ҳолда суюқликнинг деворга босим кучи

$$P = S b = \frac{1}{2} \gamma h_1^2 b.$$
\[e = \frac{1}{3} h_1. \]

2. Иккинчи хусусий ҳол. Бу хусусий ҳолда девор қия жойлашган бўлиб, горизонтал текислик билан \(\alpha \) бурчакни ҳосил қилади (2.32- расм), қолган ҳамма шартлари чиринчи хусусий ҳолдагидек. Бу ҳолда ҳам суъилликнинг босим эпюраси тўғри бурчакли учбурсак шаклида бўлади. Бу эпюранинг \(S \) майдони қуйидагича ёзилади:

\[S = \frac{\gamma h_1 h_1}{2 \sin \alpha} = \frac{1}{2} \frac{\gamma h_1^2}{2 \sin \alpha}. \]

Суъилликнинг деворга босим кучи \(P = S b \) ёки

\[P = \frac{1}{2} \frac{\gamma h_1^2 b}{2 \sin \alpha}. \]

Деворга қўйилган босим кучининг елкаси

\[e = \frac{1}{3} \frac{h_1}{\sin \alpha}. \]

2.10- масала. Тошдан қурилган тўғон берилган, унга қиёри бьефдан сув таъсир қилгапти. Тўғонга таъсир қилаётган \(P \) босим, кучининг \(P_x \) горизонтал ташкил этувчиси аниқлансин. Тўғоннинг узунлиги (олди деворининг эни) \(b = 5,0 \) м, сувнинг чукурлиги \(h_1 = 4,0 \) м (2.33- расм). \(\rho = 1000 \) кг/м\(^3\) ёки \(\gamma = \rho g = 1000 \times 9,81 = 9810 \) Н/м\(^3\).

Ечиш. Тўғоннинг олди деворига қўйилган босим кучи қуйидаги тенгламадан аниқланади:

\[P = \frac{\gamma h_1^2 b}{2 \sin \alpha}, \]

2.33-расм.
бу ерда α — туғон олди деворининг горизонтал текислик-ка нисбатан оғиш бурчаги.

Босим қучининг горизонтал текисликка проекцияси

$$P_x = P \cos(90^\circ - \alpha).$$

P нинг қийматини ўрнига қўйсак ва $\cos(90^\circ - \alpha)$ ни $\sin \alpha$ билан алмаштирилсак, у ҳолда

$$P_x = \frac{\gamma h^2 b \sin \alpha}{2 \sin \alpha} = \frac{\gamma h^2 b}{2} = 9810 \cdot 4^2 \cdot 5 =$$

$$= 392400 \text{ Н} = 3,92 \cdot 10^3 \text{ Н} = 3,92 \cdot 10^2 \text{ кН}.$$

3. Учичи хусусий ҳол. Тик туғри тўртбурчакли деворга икки томондан сюълик босим кучи таъсир қилити (2.34- расм). Деворнинг чап томонидаги сувнинг чуқурлиги h_1, ўнг томонидаги эса — h_2.

AB деворга натижавий босим эйпроаси тренция шаклда бўлиб, уни ташкил этувчи асослари h_1 ва h_2, баландлиги эса ($\gamma h_1 - \gamma h_2$) бўлади. Бу тренция шаклдаги босим эйпроасининг майдони қуйидагича

$$S = \frac{\gamma h_1^2 - \gamma h_2^2}{2} = \frac{\gamma}{2} (h_1^2 - h_2^2).$$

Сюъликнинг AB деворига босим кучи

$$P = S \cdot b = \gamma \left(h_1^2 - h_2^2 \right) \cdot \frac{b}{2}.$$

Графоаналитик усулда тренция шаклидаги босим эйпроасининг босим маркази аникланади. Бунинг учун аввало, график усулда асослари m ва n бўлган тренция шаклидаги босим эйпроасининг офирлик маркази аникла-
нили (бу сурда 2.34-расмдаги \(h \), ни \(m \) 46 \(h \), ни \(m \) леб қабул қилинган, 2.35-

рам мақъият). Трапеция шаклида-

ги илборанинг оғирлик марказини

инининг учун медиана ўтказамиз —

бу чиққ трапециянинг иккала асосие-

рининг тенг иккига бўлади: \(m \) асо-

сининг узунлиги \(n \) асосининг бир

ққ томонига, \(m \) асосининг узунлиги

\(n \) асосининг иккинчи йққ томонига

қўйилади, уларнинг охирлари тўғри

чиққ билан бирлаштирилади; шу

тиқчи чизикнинг медиана билан уч-

ришан \(O \) нуктаси бизга трапеция-

нинг оғирлик марказини беради

(2.35-рам). Шу тарзда босим эъро-

пусининг марказини аниқлаймиз. Бу

марказдан тенг таъсир этувчи босим

кучининг векторини ўтказиб, уни девор билан учрашун-на лавом эттирсак, босим маркази топилади, бу нуктани

\(P \) ҳарф билан белгилаймиз. Масштабда, чизмадан \(BD \) ора-

ниг босим кучининг елкаси \(e \) дейиллади. Босим кучи елка-

сини аналитик усулда ҳам аниқлаш мумкин. У ҳолда тенг

таъсир этувчи кучинг моменти, қандайдир бир ижтiyor

нуктага нисбатан, қулилар моментининг йиғиндисига тенг.

Фараз қилайлик, 2.36-рамда \(P \) — тенг таъсир этувчи бо-

сим кучи; \(e \) — унинг елкаси. \(P_1 \) — чап томондаги суюқлик-

нинг босим кучи, \(P_1 \) қуйидаги формулага асосан аниқла-

нади:
\[P_1 = \frac{\gamma h_1^2 b}{2}, \]
буга \(e_1 \) — шу \(P_1 \) босим кучининг елкаси;
\[e_1 = \frac{1}{3} h_1, \]
\[P_2 = \frac{\gamma h_2^2 b}{2}, \]
бунда \(e_2 \) — шу \(P_2 \) босим кучининг елкаси;
\[e_2 = \frac{1}{3} h_2. \]
Босим кучининг елкасини аналитик усулда аниклаш учун берилиган нуктага нисбатан моментлар тенгламасини тузамиз
\[P \cdot e = P_1 e_1 - P_2 e_2. \]
Мазкур тенгламага \(P, P_1, P_2, e_1, e_2 \) ларининг қийматлари қўйиб чиқамиз

\[\frac{\gamma (h_1^2 - h_2^2)}{2} b e = \frac{\gamma h_1^2 b h_1}{3} - \frac{\gamma h_2^2 b h_2}{3}, \]
ёки

\[\frac{1}{2} \gamma (h_1^2 - h_2^2) b e = \frac{1}{6} \gamma (h_1^3 - h_2^3) b, \]
бундан тенг таъсир этувчи босим кучининг елкасини аниклаймиз

\[e = \frac{1}{3} \cdot \frac{h_1^3 - h_2^3}{h_1^2 - h_2^2}. \]

2.11-масала. Эни \(b = 4,0 \) м бўлган вертикал сув туткич дарвозани юқорида тик йўналишда кўтариш учун тортиш кучини аниклант. Дарвозанинг чап томонидаги сувнинг чукурлиги \(h_1 = 3,0 \) м, ўнг томонидаги сувнинг чукурлиги эса \(h_2 = 1,0 \) м (2.37- расм).
Дарвозанинг оғирлиги \(G = 250 \) кг·к. Дарвоза қўтарилалейган вақтда у бетон устунга йўққаланади, бундаги йўққаланиш коэффициенти \(f = 0,5 \).

\[T = P f + G, \]

бу ерда \(P f \) — йўққаланиш кучи.

Шундай қилич, суъоқликнинг дарвозага нисбатан бо-сим кучини қуйидаги тенгламадан аникланади

\[P = \frac{1}{2} \gamma (h_1^2 - h_2^2) b = \frac{1}{2} 9810 (3,0^2 - 1,0^2)4,0 = 1,57 \cdot 10^5H = \]
\[= 1,57 \cdot 10^2 \text{ кН}. \]

Дарвозани юқорида тортиш кучи:

\[T = 1,57 \cdot 10^5 \cdot 0,5 + 2,45 \cdot 10^3 = \]
\[= 8,10 \cdot 10^4H = 8,10 \cdot 10 \text{ кН}. \]
4. Тўртинчи хусусий ҳол. Бу учинчи хусусий ҳолдан факат девор горизонтал тексисликка нисбатан α бурчак остида қия жойлашганлиги билан фарқ қилади (2.38-расм). Бунда қия деворга суюқликниң тенг таъсир этувчи босим кучи, учинчи хусусий ҳолдаги, қуйидаги формуладан аникланади:

$$p = \frac{1}{2} \frac{\gamma(h_1^2-h_2^2)b}{\sin \alpha},$$

tенг таъсир этувчи босим кучининг ёлкаси

$$e = \frac{1}{3} \frac{(h_1^3-h_2^3)}{(h_1^2-h_2^2)\sin \alpha}.$$

5. Бешинчи хусусий ҳол. Тик тўғри тўртбурчакли деворга суюқлик бир томондан (масалан, чап томондан, яъни юқори бьефдан) таъсир қиляпти (2.39-расм). Деворнинг устки томони сув сатҳида қия жойлашган. Бу деворга таъсир қилоётган суюқлик босимининг эпюраси трапеция шаклида бўлиб, пасти томонининг (тубининг) асоси γh_1, юқори томонининг асоси γa, эпюранинг баландлиги h_1-a (2.39-расмга қаранг). Бундай трапеция шаклидаги эпюранинг майдони қуйидагида:

66
\[S = \frac{1}{2} (\gamma h_1 - \gamma a)(h_1 - a) = \frac{1}{2} \gamma (h_1^2 - a^2). \]

2.39-расм.

Алл деорга таъсир этаётган суюқликнинг босим кучи

\[P = S b, \]

2.39-расм.

Бунда ҳам, учинчи ҳусусий ҳолдаги каби трапеция шаклидаги эпюрдан график усулни қўллаш йўли билан босим маркази топилади. Бу ҳолда трапеция шаклидаги эпюранинг оғирлик маркази қуйидаги формулдан аниқланади

\[e = k \frac{2m+n}{3m+n}, \]

бу қуда ғирда ва \(m \) — трапециянинг пастки ва юқори томонларининг асослари; \(k \) — трапециянинг баландлиги (2.40-расм).

2.39- ва 2.40-расмларни солиштирсак, у ҳолда қуйидагиларга эга бўлмиз: \(n = \gamma h_1, m = \gamma a, k = h_1 - a. \)

Юқорида келтирилган \(e \) ни аниқлаш тенглашасига 2.39- ва 2.40-расмлардан босим эпюрасидан \(k, m, n \) нинг қийматларини қўйиб чиқсак, суюқликнинг тенг таъсир этувчи босим қучининг елказини аниқловчи формулати оламиз:

\[e = \frac{1}{3} (h_1 - a) \frac{h_1 + 2a}{h_1 + a}. \]

Агар суюқлик таъсир этувчи девор горизонтал техисликка нисбатан қандайдир \(\alpha \) бурчак остида жойлажган бўлса, у ҳолда юқорида \(P \) ни ва \(e \) ни аниқлаш формулаларининг маҳражига \(\sin \alpha \) қўпайтувчи киритилади.

2.40-расм.

67
2.12-масала. Тик жойлашган тўгри тўртбурчакли сув тутқич дарвоза берилган, унинг баландлиги \(h_{дар} = 0,70 \) м, эни \(b = 0,50 \) м, дарвоза сувга чўкирилган бўлиб, унинг устки томони сув сатҳидан \(a = 4,0 \) м чукурликда жойлашган (2.41-расм). Дарвозага таъсир этиётган суюқликнинг босим кучини ва босим марказини аналитик ва графоаналитик усулларда аниқланг.

Ечиди. 2.41-расмдан кўринадики, сув тутқич дарвозага таъсир этувчи суюқлик босимининг эпюраси трапеция шаклида бўлиб, унинг устки асоси:

\[
\gamma a = 9810 \cdot 4,0 = 3,92 \cdot 10^4 \text{ H/m}^2 = 3,92 \cdot 10 \text{ kH/m}^2;
\]

пастки асоси

\[
\gamma h = \gamma (h_{дар} + a) = 9810 \cdot (0,70 + 4,0) = 4,6 \cdot 10^4 \text{ H/m}^2 = 4,6 \cdot 10 \text{ kH/m}^2;
\]

баландлиги

\[
h_{дар} = 0,70 \text{ m.}
\]

Трапеция шаклидаги босим эпюрасининг майдони

\[
S = \frac{3,92 \cdot 10^4 + 4,6 \cdot 10^4}{2} \cdot h_{дар} = 4,26 \cdot 10^4 \cdot 0,7 = 2,98 \cdot 10^4 \text{ H/m}.
\]

Суюқликнинг босим кучи

\[
P = S \cdot b = 2,98 \cdot 10^4 \cdot 0,5 = 1,49 \cdot 10^4 \text{ H} = 1,49 \cdot 10 \text{ kH}.
\]
Босим марказининг елкаси

\[e = \frac{h-a}{3} \cdot \frac{2a+h}{a+h} = \frac{4.7-4}{3} \cdot \frac{2.4+4.7}{4+4.7} = \frac{0.7}{3} \cdot \frac{7.1}{8.7} = 0.19 \text{ м.} \]

2.12-§. СУЮКЛИКНИНГ ЦИЛИНДРИК ЮЗАГА БОСИМИ.
ГИДРОСТАТИК БОСИМНИНГ ЭПИРАТИ. СУЮКЛИК БОСИМ КУЧИНИ АНИҚЛАШДА УМУМӢ УСЛУБӢ КЎРСАТМА

Амалда суюқликнинг гидростатик босим кучини факат текис тик ва қия ҳолатдаги деворларга таъсирини ўрганиб қолмасдан, балки суюқликнинг иқтисодий эғри юзага таъсирини ҳам аниклаш керак бўлади. Мазкур дарсликда гидронык иншоотларни гидравлик ҳисоблашда кўпроқ учрайдиган эғри юзаларида ғиқ соғдаси — эғри цилиндрик юзаларни қараб чиқамиз.

Суюқликнинг босим кучини аниклашда умумӣ услубӣ кўрсатма

Цилиндрик деворга суюқликнинг босим кучини, унинг йўқалишини ва қўйилган нуктасини аниклаш. Ҳисоблашнинг умумӣ тартиби кўйилдачча. Босим кучининг координаталар қўйидаги вертикал ва горизонтал ташкил этувчилари-ни аниклаг ва назарий механика қоидалариға асосан, босим кучининг тенг таъсир этувчисини топамиз. У цилиндрик юзага таъсир этаётган кучни беради. 2.42-расмда \(AB \)
цилиндрические сферы сферы сферы сферы сферы

Аналитиз:

(2.103)

(2.104)

(2.105)

(2.106)

(2.107)
Уни маълумки, \(\Sigma h\Delta \omega_z \) бизга сув сатхигра нисбатан барча \(\omega_z \) элементар майдончаларни проекциясининг статик моментини беради ва у барча \(\omega_z \) майдоннинг вертикал проекциясини унинг оғирлик марказининг сув сатҳида \(h_c \) чукурликда жойлашган оралининг кўпайт-масиға тенг

\[
\Sigma h\Delta \omega_z = \omega_z h_c. \tag{2.109}
\]

(2.109) ни (2.108)га қўйиб, суъҳлиқ босим кучининг горизонтал ташкил этувчисини топамиз

\[
P_x = \gamma h_c \omega_z, \tag{2.110}
\]

бу ерда \(\omega_z \) — цилиндрик доврнинг вертикал проекциясининг майдони; \(h_c \) — шу вертикал проекцияси майдоннинг оғирликтаринин (сув сатҳида нисбатан) жойлашган чукурлиги.

Горизонтал ташкил этувчи \(P_x \) кучининг катталиги босим эпиорасининг \(B'BC \) майдони \(S \) қорқали ифодаланишни ҳам мумкин (2.42-рамл). Босим кучининг вертикал ташкил этувчиси. \(AB \) цилиндрик доврнинг элементар майдончасига таъсир этилган \(\Delta P \) элементар босим кучининг \(\Delta P_z \) вертикал ташкил этувчиси (2.103) тенгламанан

\[
\Delta P_z = \Delta P \sin \alpha = \gamma h\Delta \omega \sin \alpha, \tag{2.111}
\]

бу ерда \(\Delta \omega \sin \alpha \) — элементар \(\Delta \omega \) майдончанинг горизонтал текисликка проекцияси; унинг \(\Delta \omega \) билан белгила бошлади.

\[
\Delta P_z = \gamma h\Delta \omega, \tag{2.112}
\]

бу ерда \(h\Delta \omega \) кўпайтма \(V_0 \) элементар признанинг ҳажми-ни беради, яъни

71
hΔω_1 = ΔV_0,

уни (2.112) га қўйсак, қўйидагича бўлади:

ΔP_1 = γΔV_0. (2.113)

Эгри деворга тенг таъсири этувчи босим кучининг вертикал ташкил этувчи P_1 кучи

P_1 = ΣΔP_a = ΣγΔV_0 = γΣΔV_0 (2.114)

ёки

P_1 = γV_0, (2.115)

бу ёрда ΣΔV_0 — AB эгри (цилиндрик) шакли девор бўйича элементар ΔV_0 ҳажмлар йиғиндинси. 2.42-рамдандан кўришади, ABB' жисмнинг ҳажми V_0. Бу ҳажм гидравликада шартли равишда «босим тана»си деб аталади, у 2.42-рамда вертикал штрих чизиқлар билан белгилangan. Бу ёрда γV_0 — «босим тана» оғирлиги, ўнда (2.115) тенглама қўйидағича ўқилади: элементар цилиндрлик деворга P_1 суюқлик босим кучининг вертикал ташкил этувчиси шу ҳажмдаги сувнинг босим танасининг оғирлигига тенг. Юқорида олинган натижаларни иктиёрий эгри текисликлар учун қўллаш мумкин. Лекин бу ёрда босим тана орқали ифодаланган босим кучининг вертикал ташкил этувчиси P_1 га эътибор бериш лозим, чунки у:

1) шу эгри текислиқни шаклига (ва унинг суюқлик ичида жойлашишига) қараб икки кўринишда бўлиши мумкин;

2.43-рам. 2.44-рам.
эзувчи (ёки мусбат Θ, 2.43-рамга каран), ва сиқиб чикарувчи (ёки манфий Θ, 2.44-рамга каран).

Босим тана мусбат бўлса, у ҳақиқатнан суъюқликнинг эзувчи соҳасида ётади, агар манфий бўлса, фараз қилинаётган суъюқлик соҳасида ётади.

Ҳақиқатнан суъюқлик эзувчи соҳадаги босим танадаги P_z кучи ҳар доим мусбат бўлиб, юқоридан паства йўналган бўлади; фараз қилинган босим танадаги P_z кучи эса манфий бўлиб, пастан юқориға йўналган бўлади.

2) агар бирор эзри шаклдағи сирт берилган бўлиб, унинг бир бўлғига босим тана мусбат ва унинг бошқа бир бўлғига эса манфий бўлса, у ҳолда босим кучининг P_z вертиккал ташкил этувчиси ўша икки босим ҳақимининг фарқи билан аникланади.

2.45- расмда мусбат босим танасининг қўндалаг сеси-ми Amn бўлади ва манфий босим танасининг қўндалаг кесиим $Bmnk$; ҳақим босим танасининг тенг таъсир этувчи қўндалаг кесиим $AmBk$ бўлади, унинг майдони эса F_w. Эзри юзаларга таъсир этувчи босим кучининг P_z вертиккал ташкил этувчисини аниклаш учун ҳар ил эзри доврлар учун ҳам, гарчи у доврларнинг устки томони сув сатхидан па- стда бўлганда ҳам қўллаш мумкин (2.46 ва 2.47-расмлар).
Босим кучининг тенг таъсир этувчисини аниклаш формуласи. Ox ва Oz координатага P_x горизонтал ташкил этувчи ва P_z вертикал ташкил этувчи кучларни аниклагандан кейин, суюқлик босим кучининг тенг таъсир этувчиси P ни назарий махнанинг маълум қоидасига асосан аниқланади.

\[P = \sqrt{P_x^2 + P_z^2}. \]

(2.116)

(2.116) тенглама эгри шаклли деворга таъсир қилаётган босим кучини ҳисоблаш формуласи. (2.116) формула ёрдамида ихтиёрий эгри шаклдаги юзага таъсир қилаётган суюқлик босим кучини аниклаш мумкин.

2.13-масал. Цилиндрнинг тўртдан бир қисмидан ташкил топган AB цилиндрик юзага таъсир қилаётган босим кучини аникланг; унинг радиуси $r = 1,0$ м, чап томон (юқори бөф)даги суюқликнинг чукурлиги $h = 1,0$ м, цилиндрнинг узунлиги $l^* = 3,0$ м (2.48-рамс).

Бўйича. Суюқликнинг босим кучи (2.116) формула ёрдамида аникланади. Унинг горизонтал ташкил этувчиси P_x ни (2.110) формулдан аникланади:

\[P_x = \gamma h \omega, \]

ёки қуйидаги формулдан аникланади (2.11-§ ни каранг)

\[P_x = \frac{1}{2} \gamma h^2 l = \frac{1}{2} \times 9810 \cdot 1,0 \cdot 3,0 = 1,47 \cdot 10^4 \text{Н} = 1,47 \cdot 10\text{кН}. \]

Вертикал ташкил этувчиси P_z эса босим тана оғирлиги ёрдамида аникланади. ABO босим тана оғирлиги қуйидаги-ча аникланади:

\[P_z = -\gamma V_0. \]

(2.117)

* Бу масалада b ни ўрнига l ни қабул қилдиқ ($b = l = 3$ м), чунки l — цилиндрнинг узунлиғи, b эса шу цилиндр дарвозанинг эни. Демак b ва l бир тушунчани англатади.
тўрдан бир кисмининг майдонига тенг бўлади, яъни
\[F_0 = \frac{\pi r^2}{4} = \frac{3.14 \cdot 1.0^2}{4} = 0.785 \text{ м}^2, \]
bosim tanasining ҳажми:
\[V_0 = F_0 l = 0.785 \cdot 3 = 2.36 \text{ м}^3. \]
Бундан келиб чиқадики,
\[P_z = -9810 \cdot 2.36 = -2.3 \cdot 10^4 \text{ Н} = -2.3 \cdot 10 \text{ кН}. \]

AB цилиндрик деворга таъсир қилаётган суюқликнинг босим кучи
\[P = \sqrt{P_x^2 + P_z^2} = \sqrt{(1.47 \cdot 10^4)^2 + (-2.3 \cdot 10^4)^2} = \]
\[= \sqrt{(10^4)^2((1.47)^2 + (-2.3)^2)} = 2.73 \cdot 10^4 \text{ Н}. \]

Суюқлик босим кучининг йўналиши ва қўйилган нуктаси. Суюқликнинг босим кучи унинг йўналиши, горизонтал техисликка нисбатан \(\alpha\) оғиши бурчаги билан аниқланади. Бу бурчак P_x ва P_z катетлариidan қурилган кучлар учбurchagiyдан осонгина топилади (2.49-расм), унда шундай тригонометрик тенгламалар ечиш мумкин:

2.49-расм.
\[
\sin \alpha = \frac{P_x}{P}; \quad \cos \alpha = \frac{P_x}{P}; \quad \tan \alpha = \frac{P_y}{P_x}.
\]

Бу тенгламалар ёрдамида босим кучи \(P \) нинг горизонтал
tekislikka nisbatan \(\alpha \) o'g'ishi burchagini aniqlash mumkin. 2.13-masaladan \(\sin \alpha \) ni olamiz

\[
\sin \alpha = \frac{P_y}{P} = \frac{2.3 \times 10^4}{2.73 \times 10^4} = 0.843,
\]

бундан

\[
\alpha = 57^\circ 30' .
\]

\(AB \) cilindrik devorga ta'sir қилаётган суюқликнинг босим кучи қўйилган нуктани, яъни босим маркази аниклайдимиз. Бу ҳолда босим маркази, назарий механика қоидасида тенг таъсир этувчи \(P \) босим кучи қўйилган нуктадан топилади. Бунинг учун горизонтал ва вертикал
taşkil etuvchi kuchlar \(P_x \) ва \(P_z \) нинг уручашган нуктасини аниклаб, шу нуктадан тенг таъсир этувчи босим кучининг векторини ўтказсак, у горизонтал текислик билан \(\alpha \) бур-чакни хосил қилади. \(P_x \) ва \(P_z \) учрашган нуктадан ўтказилган тенг таъсир этувчи босим кучининг вектори йўналишида (чиқмадаги текислик буйида) cilindrik devor юзаси билан учрашган \(D \) нукта шу суюқлик таъсир этаётган кучининг босим маркази бўлади (2.49-расм).

2.13-§. СУЮҚЛИК БОСИМ КУЧИННОГ ЭГРИ (НОТЕКИС)
ЮЗАЛАРГА TAЪСИРИНИ АНИҚЛАШДА АМАЛӢЁТДА
УЧРАЙДИГАН ОДДИЙ ХОЛЛАР

Сегмент ва цилиндрлик сув туткич дарвозалар. Була р като-
рига гидротехник иншоотларда кўп учраайдиган, амалда
cilindriladiyag sement, sector ва цилиндрлик сув туткич
darvazalar киради. Masalan, sementli sув туткич дарво-
zanin r radiusi O айланиш ўқиға эга. У ҳолда унга тенг
taъсир этувчи суюқликнинг \(P \) босим кучи махбурий ра-
вишида дарвозанинг \(O \) айланиш ўқидан ўтади (2.50-расмга
carang). Босим \(P \) нинг AB эгри юза билан учрашган нуктаси
bosim markazi қўйилган \(D \) нуктани беради. Шу тенг таъ-
sir этувчи \(P \) bosim kuchinng horizontall tekislik bilan
hosil qilgan \(\alpha \) burchagini bilisak, darvazanin g O aylaniyish
нымидан то босим маркази D нуктагача бўлган тик z_D координатани топамиз

$$z_D = r \sin \alpha.$$ (2.119)

2.14-масала. Сегментли сув туткич дарвозага чукурлиги h га тенг бўлган сув таъсир қилади. Дарвозанинг эни $b = 4,0$ м, марказий бурчаги $\varphi = 45^\circ$ ва радиуси $r = 2,0$ м. Сув туткич дарвозанинг айланиш ўқи сув сатҳи текислигида жойлашган. Сувнинг дарвозага бўлган босимини ва босим марказини аникланган (2.51-пасм).

Ечиш. Сув туткич дарвозанинг олдидаги сувнинг чукурлигини аниклайди:

$$h = r \sin \alpha = 2 \cdot 0,707 = 1,41 \text{ м.}$$

Тенг таъсир этувчи P босим кучи (2.116) формулдан аникланади. Горизонтал ташкил этув-чисини қуйидаги формулдан аниклаибиз:

$$P_x = \frac{1}{2} \gamma h^2 b =$$

$$= \frac{1}{2} 9810 \cdot 1,41^2 \cdot 4 =$$

$$= 3,9 \cdot 10^4 \text{Н} =$$

$$= 3,9 \cdot 10 \text{ кН.}$$

2.51-пасм.
Vertikal tashkili etuvchisi esa (2.51-rasm) ABK bilan chegaraalangan sjuoklik ҳажмининг o'girligiga teng, yanni

$$P_z = \gamma V_0 = \gamma (майдон \ ABK) b.$$

Bu erda mайдон $ABK = \{(донра майдонининг \ \frac{1}{8} \ бўлгани\} \rightarrow \майдон \ OKB\} = \frac{\pi r^2}{8} \ - \ \frac{h^2}{2} = \frac{1}{8} \ \pi r^2 \ - \ \frac{1}{2} \ h^2 = \frac{1}{8} \ 3,14 \cdot 2^2 \ - \ \frac{1}{2} \ 1,41^2 = 0,57 \ m^2,$$

$$P_z = 9810 \cdot 0,57 \cdot 4 = 2,23 \cdot 10^4 \ N = 2,23 \cdot 10 \ kH,$$

у ҳолда

$$P = \sqrt{(10^4)^2(3,9^2 + 2,2^2)} = 10^4 \sqrt{3,9^2 + 2,2^2} = 4,48 \cdot 10^4 \ H =$$

$$= 4,48 \cdot 10 \ kH.$$

Teng taъsis etuvchi P кучининг горизонтал текисликка нисбатан оғиш бурчагини қуйидаги маанисан аниклаймиз.

$$\sin \alpha = \frac{P_z}{P} = \frac{2,23 \cdot 10^4}{4,48 \cdot 10^4} = 0,498,$$

бундан

$$\alpha \approx 30^\circ.$$

Bosim markazining vertikal z_p koordinatasi (2.119) formuladan topiladi

$$z_p = r \sin \alpha = 2 \cdot 0,498 = 0,996 \ m.$$

2.15-masala. Segmentli sув тутқич дарвоза берилган, uning radiusi $r = 7,5$ m. Юқори бьефда чукурлиги $h = 4,8$ m бўлган сувни тутиб турибди. Дарвозанинг марказий бурча-гиги $\varphi =43^\circ$. Bu дарвозанинг O айланиш ўқи вертикал бўйича канилнинг тубидан $C = 5,8$ m баландликда жойлашган (2.52-расм). Дарвозанинг AB эъри юзасининг горизонтал текис-ликка проекцияси $\overline{CB} = a = 2,7$ m. Дарвозанинг эни $b = 6,4$ m. Shu дарвозага таъsis қилаётган сувнинг bosim kучини ва bosim kучи taъsis этиётган марказни анқладанг.

Ечиси. Bosim kучининг горизонтал ташкил этиувчиси

$$P_x = \frac{1}{2} \gamma h^2 b = \frac{1}{2} \ 9810 \cdot 4,8^2 \cdot 6,4 = 7,22 \cdot 10^4 \ N = 7,22 \cdot 10 \ kH.$$
2.52-рasm.

Босим кучининг вертикал таъкил этувчиси

\[P_z = \gamma V_0 \]

ёки

\[P_z = \gamma (\text{маён} ABK + \text{сегмент} \text{маён} AB) b = \]

\[= \gamma b \left[\frac{1}{2} ah + \frac{1}{2} r^2 \cdot \left(\frac{\pi}{180} \varphi - \sin \varphi \right) \right] = \]

\[= 9810 \cdot 6.4 \left[\frac{1}{2} \cdot 2.7 \cdot 4.8 + \frac{1}{2} \cdot 7.5^2 \left(\frac{3.14}{180} \cdot 43 - \sin 43 \right) \right] = \]

\[= 5.3 \cdot 10^4 \text{ H} = 5.3 \cdot 10^4 \text{ кН}. \]

Босим кучининг тенг таъсир этувчиси:

\[P = 10^4 \sqrt{7.22^2 + 5.3^2} = 8.96 \cdot 10^4 \text{ H} = 8.96 \cdot 10^4 \text{ кН}. \]

Босим марказининг вертикал координатаси:

\[z_d = r \sin \alpha = r \cdot \frac{P_z}{P} = 7.5 \frac{5.3 \cdot 10^4}{8.96 \cdot 10^4} = 4.436 \text{ м}. \]

2.14-§. СУЮҚЛИҚДА ЖИСМЛАРНИНГ СУЗИШ ҚОНУНИ.
АРХИМЕД ҚОНУНИ

Жисмларнинг суюқлик сатҳида сузиш назарияси бизга аввалдан, эрамиздан 287–212 йил илгари маълум бўлган Архимед қонунига асосланади. Бу қонун қуйидагича таърифланади: «Сувга ботирилган жисмға сув томонидан ита-
рувчи (кўтарувчи) куч таъсиди, бу куч пастдан юқориға вертикал йўналаган бўлиб, у куч жисм сиқиб чиқарган су- юқликининг оғирли-гига тент». Бу қонун- ни биз суюқлик бо- симининг иҳтиёрй юзатга бўлган кучла- рини ҳисоблаш формулаларидан фойдаланиб исботлашшимииз мумкин. Бунинг учун 2.53-расмда кўрсатилгандақ, сувга бутунлай ботирилган ҳар қандай иҳтиёрй шаклдаги жисмини олиб, суюқлик қандай куч билан уни ташқариқа итариб чиқаришини аниқлаймиз. Сувга бутунлай ботирилган иҳтиёрй шаклдаги жисминг кўндаланг кесимининг майдонини жуда кичик элементар параллелепипедларга бўламиз. Бу параллелепипедларнинг устки ва пастки томонларининг элементар юзларининг текис ва бир хил деб оламиз. У элементар юзларнинг майдон- ни $\Delta \omega$ бўлсин. У ҳолда ҳар бир параллелепипеднинг устки томонига суюқликнинг элементар босим кучи юқоридан пастга йўналаган бўлади:

$$\Delta P_1 = \gamma h_1 \Delta \omega,$$

пастки томонига эса пастдан юқориға тик йўналаган бўлади:

$$\Delta P_2 = \gamma h_2 \Delta \omega,$$

бу ёрда h_1 ва h_2 — параллелепипеднинг устки ва пастки томонлари элементар майдонлари оғирлик марказларининг сув сатҳига нисбатан жойлашган чуқурликлари. Бундан кўрими, параллелепипедга нисбатан элементар тент таъсир этувчи ΔP_2 босим кучи пастдан юқориға йўналаган бўлади:

$$\Delta P_2 = \Delta P_2 - \Delta P_1 = (\gamma h_2 - \gamma h_1) \Delta \omega,$$

ёки

$$\Delta P_2 = \gamma (h_2 - h_1) \Delta \omega = \gamma h \Delta \omega = \gamma \Delta V.$$
бу ерда ΔV — асоси $\Delta \omega$ ва баландлиги h бўлган элементар параллелепипеднинг ҳажми. Шундай қилиб, элементар параллелепипедга паstraan юқориға вертикал элементар тенг таъсир этувчи ΔP_v босим кучи параллелепипеднинг ҳажмига тенг ҳажмий суюқлик оғирлигиға тенг. Ҳар бир элементар параллелепипедга паstraan юқориға вертикал элементар тенг таъсир этувчи босим кучларининг йигиндиси сувга бутунлай ботирилган иhtiёрий шаклдағи бутун жисмга таъсир этувчи тўлик босим кучини беради

$$P_v = \Sigma \Delta P_v = \Sigma \gamma \Delta V = \gamma \Sigma \Delta V,$$

ёки

$$P_v = \gamma V,$$ \hspace{1cm} (2.120)

бу ерда γ — суюқликнинг солиштирима оғирлиги; V — сувга ботирилган жисмнинг ҳажми ёки шу жисм сиқиб чиқарган суюқлик ҳажми. Сувга ботирилган жисмга суюқлик босимнинг тенг таъсир этувчи кучи шу ҳажмдаги сиқиб чиқарилган суюқликнинг оғирлигиға тенг ва у паstraan юқориға вертикал йўналган. Бу, Архимед қонуни йомини олган. Архимед қонун ва унинг аналитик кўрнишиси (2.120) тенглама бўлиб, у суюқлик сатҳида сузいб юрған жисмга ҳам тааллукли, факат бу қолда жисмнинг ҳажми V ни эмас, унинг сувга ботган жисмнинг ҳажмини ёки шу сузаётган жисмнинг сувга ботган қисми ҳисобита сиқиб чиқарилган суюқликнинг ҳажмини назарда туши керак (2.54-расм). Бу (2.120) тенгламадаги P_v кўтарувчи куч дейилади.

Жисмнинг сузиси шарти. Суюқликка ботирилган жисмга (2.55-расм) икки хил куч таъсир қилади: 1) юқорида

![2.54-расм.](image1)

![2.55-расм.](image2)

6—K-24 81
пастга тик таъсир этувчи G оғирлиқ кучи (жисм оғирлиги); 2) пастдан юқорига тик таъсир этувчи P_z кўтарувчи куч, у жисм сиқиб чиқарган суюқлик оғирлиғи-га тенг. Суюқликка ботирилган жисмнинг G оғирлиқ кучи ва уни кўтарувчи P_z куч бир-бирин билан қандай боғланишида бўлишига қараб сусаётган жисм уч хил ҳолатда бўлиши мумкин:

1. Жисмнинг оғирлиқ кучи уни кўтарувчи кучга тенг бўлган $G = P_z$ ҳолда жисм суюқликка ботирилган ҳолатда мустаҳкам, номустаҳкам ёки бефарқ мувозанатда сузади.

2. Жисмнинг оғирлиқ кучи уни кўтарувчи кучдан катта $G > P_z$ бўлганда жисм чўқади.

3. Жисмнинг оғирлиқ кучи уни кўтарувчи кучдан кичик $G < P_z$ бўлганда жисм сув сатҳиға қалқиб чиқади.

Жисмнинг бир бўлғи суюқликдан чиқиб турса, кўтарувчи куч камайди, чунки жисм сиқиб чиқарган суюқлик ҳажми камайди. Камайган кўтарувчи куч $P_z' = \gamma V$ жисмнинг оғирлиғиға тенг бўлса $P_z' = G$, сузаётган жисм мувозанат ҳолатда бўлади, бунда жисм сув сатҳида бемалол сузил юради. Шундай қилиб, жисм суюқлик ичида ёки суюқлик сатҳида сузил юрган бўлса ҳам, жисмнинг G оғирлиғи уни кўтарувчи P_z кучга тенг бўлиши шарт, яъни

$$G = P_z.$$ \hspace{1cm} (2.121) \\

(2.121) тенглама жисм сузишининг асосий шарти. Бу шарт жисмга кўшимча юк жойланган ҳолда ҳам қўлланилиши мумкин. Бунда жисмнинг оғирлиғиға кўшимча юк оғирлиғини кўшиш керак. Масалан, агар (2.56-рasm) жисмнинг оғирлиғи G, кўшимча юк Q билин бирга суюқлик сатҳида сузил юрса, у ҳолда жисм сузишининг асосий шарти кўйидаги чиқади:

$$G + Q = P_z.$$ \hspace{1cm} (2.122) \\

бу ерда P_z — кўтарувчи куч, у (2.120) формуладан аникла-нади.
115 §. JISMNING CHÛKIŞ CHUҚURLIGI VA UNI SIҚIB CHIҚARGAN SUV HAJMI

Suyuklikda suziib organ jismning suvga botgan eng yoqishini nuktasining chûkiş chuқurligiga dеб ataladi. Unini \(h \) bilan belgilaymiz (2.56-rasm). Amalda, parohodda qo`sh vaqta daraja da tula yuq bûlgan xoldagi chûkiş chuқurligiga uning tashqi devorining sirti bûyicha perimetringi uyligini kizil bûyda horizonta chiqish bilan belgilanadi, bu chizik vatoq chiziqi dеб ataladi. Umum xator chizik dеб, suzaётган jismning suyuqlik sathchi bilan kesiishi tekisligida hosil bûlgan chizikka aytildi. Masalan, 2.56-rasmdagi \(m-n \) chiziqi vatoq chizik dеб ataladi. (2.120) tenganlamadan kurihadi, suzaётган jism char xil suyuqlikda turlicha qûkadi. Soliştirma ofiqrlik tuchuqlikda suyuqlikda chûkiş qatna bûlgan va aksinca. Shunday ekans, kema darёda yek keruqalarda suyuq-kanada dengiz va okeanlar dagi kûroq qûka, chunqi \(\gamma_{dare} < \gamma_{denqiz} \). Kemaga tûlik yuq ortilgannda uning suvga botgan jismning xajmi kemaning siқib chiqargan suv xajmiga teng buлади ва у кеманинг сув сиғими деб аталади ва у пароходдига асоисий характеристикаси ҳисоблана. Amalda kemaning siқib chiqargan suv xajmi suyuqlik ofiqrlik bilan ўлчанади, uning ўлчов бирлиги — тонна. Masalan, kemaning siқib chiqargan suv xajmi 10 mint tonna бўлса, у кеманинг кўшимча ўқ билан бирга сиқиб чиқарган суюқлик офирлиги 10 mint tonnani ташкил этади.

Ofiqrlik markazi. Siiqib chiqargan suv xajmi (suv siғimi) markazi. Jismning \(G \) (ofiqrlik kuchi) qўyilgan nuktada ofiqrlik markazi dейилади ва у нукта шартли белги \(D \) ҳарфи билан ifodalanadi (2.57-rasm). Kûtaruvchi kuch qўyilgan nuktada esa bosisim markazi ёки suv siғimi markazi dейилади ва \(D' \) ҳарфи bilan ifodalanadi (2.57-rasm). Bu nuktada suzaётgan jism siқib chiqargan suyuqlik xajminiнг ofiqrlik markaziда жойлашган. Suyuklikda suzaётган jismning
офирлик маркази ҳатто у қия ҳолатда бўlsa ҳам ڄзгармас бўлади. Суюқликда сузаётган жисм сиқиб чиқарган суюқлик ҳажми у қия ҳолатда бўлганда ҳам ڄзгармайди, аммо унинг жойи ва шакли ڄзгаради, факат сиқиб чиқарилган сув ҳажми маркази бошқа янгий ҳолатга ўтади (2.57-расм). Шундай қилиб, тинч ҳолатдаги суюқлик сатҳида сузувчи жисм мувозанатда бўлиши учун қўйидаги икки шарт ба-жарилишни керак:

1. Жисм ва унга ортилган юк офирликлари қўтарувчи кучга тенг бўлиши керак (2.121-тенгламаға қаранг).

2. Жисманг офирлик маркази ва сиқиб чиқарилган сув ҳажми маркази бир вертикалда (0–0 вертикалда) ётиши керак (2.55, 2.56- ва 2.58-расмлар).

Юқорида келтирилган (2.120), (2.121), (2.122) формулаардан фойдаланиб, ҳар хил масалаларни ечиш мумкин. Масалан, жисманг ва унга қўйилган юкларнинг офирликлари берилган бўлса, қўтариш кичини аниклаш мумкин.

2.16-масала. Дарёда тўғри тўртбурчакли понтон сузив юрибди (2.58-расм). Понтон асосининг майдони \(\omega = b \cdot l = 16 \cdot 20 = 320 \text{ м}^2 \). Понтоннинг сиқиб чиқарган сув ҳажмини ва унинг чўкиш чукурлигини аникланг. Понтоннинг офирлиги \(G = 1 \cdot 10^6 \text{ Н} \), унга қўйилган юкнинг офирлиги \(Q = 7 \cdot 10^6 \text{ Н} \).

Ечиш. (2.122) формула ёрдамида сиқиб чиқарилган сув ҳажмини аниклашмиз

\[
P_z = G + Q = 1,0 \cdot 10^6 + 7,0 \cdot 10^6 = 8,0 \cdot 10^6 \text{ Н} = 8,0 \cdot 10^3 \text{ кН}.
\]

Понтоннинг чўкиш чукурлигини (2.120) формуллардан топамиз (2.58-расм)

\[
P_z = \gamma V,
\]

8,0 \cdot 10^6 = 9810V.

Понтоннинг сувга ботган қисми-нинг ҳажмини қўйидаги формуладан аниклашмиз

84
\[V = (b \cdot l) \cdot h = 320 \cdot h, \]
анар \(\gamma = 9810 \text{ H/m}^3 \) бўлса,

\[P_z = \gamma h; \]

\[8,0 \cdot 10^6 = 9810 \cdot 320 \cdot h, \]

\[\omega = b \cdot l = 320, \]

бундан понтоннинг чўкиш чукурлиги

\[h = \frac{P_z}{\gamma \omega} = \frac{P_z}{\gamma (b \cdot l)} = \frac{8,0 \cdot 10^6}{9810 \cdot 16 \cdot 20} = 2,55 \text{ м} \]

2.16-§. СУЮКЛИКДА СУЗАЁТГАН ЖИСМНИНГ ЧАЙҚАЛМАСЛИК ШАРТИ. МЕТОМАРКАЗ

Суюлик сатъида сузаётган бир жисмни оламиз. Унинг узунаси бўйича 0–0 симметрик вертикал техислик ўтказа-миз (2.59 а-расм). Бу жисм вертикал мувозанат ҳолатда туради. Бирор ташки куч таъсирида (масалан, шамол таъ- сирида) бу жисмнинг мувозанат ҳолати бузилади дейлик. Бундай ҳолда суюлик сатъида сузувчи жисм ўзининг бош- лангич мувозанат ҳолига келиши ҳам, келмаслиги ҳам мум- кин. Суюлик сатъида сузил юрган жисм, бирор ташки куч таъсирида ўзининг мустаъкам мувозанати ҳолатидан чи- қиб кетиб, яна ўша бошланиш қийтак мувозанат ҳола- тига қайтиб келса (2.59 а, б-расмлар), бундай жисмлар

2.59-расм.
чайқалмаслик хусусиятига эга бўлиб, уларни мустаҳкам мувозанатдаги жисмлар, яъни жисминнинг уступорлиги (ос-тойчивость) дейилди.

Шундай қилиб, сузаётган жисминнинг оғган ҳолатида янги ҳосил бўлган кўтрубу-ччи кучнинг йўналиши билан симмет-рик ўқнинг учрашган нуктаси метомарказ деб аталади. Метомарказни ўрганиш, сузаётган жисминнинг уступорли-гини, яъни чайқалмаслик хусусиятини аниклашда ҳал қилувчи аҳамиятга эга.

2.17-§. СУЮҚЛИКДА СУЗАЁТГАН ЖИСМНИНГ МУВОЗАНАТ ҲОЛАТИ. МУСТАҲКAM VA НОМУСТАҲҚAM МУВОЗАНАТ

Суюқликда сузаётган жисм қуийдаги уч нукта билан характерланади: оғирлик маркази, C нукта, сув сиғими мар-кази, D нукта; метомарказ, M нукта.

Жисм мустаҳкам мувозанатда бўлганда C ва D нукта-лари бир вертикалда жойлашади, жисм оғганда сув сиғим маркази D сурилади, метомарказ M эса O’ – O’ симметрия ўқи бўйича ўзгаради. Метомарказ жисминнинг C оғирлик марказига нисбатан уч ҳолатда бўлиши мумкнин:

2. Жисминнинг C оғирлик маркази M метомарказдан юқорида (2.59 в-раасм) жойлашган, бунда P, ва G кучлар жисмини кўпроқ оғдиришга ҳаракат қилади — бу номустаҳ- кам мувозанат дейилади.

3. Жисминнинг C оғирлик маркази ва M метомарказ уст-ма-уст тушида, бу бефарқ мувозанат дейилади.
Суяътган жисмнан озгина оилорок D сув сизимнин маркази бирор айлана бўйича сурилали, M метомарказдан MD' радиус бўйича айлана чиғиллади (2.60-раъс). Бу радиус метоценткр радийус деб аталади ва r билин ифодаланалади. Метомарказ радиуси туғунчасидан фойдаланиб, жисминнинг оғирлиқ маркази ва жисминнинг нормал ҳолатидағи сув сизимнин курилдаги CD узунликни e билин ифодалаб, суяътган жисмининг мустаҳкам мувозанати шартини қўйидағича ёзили мумкин:

$$r > e$$ бўлса, жисм чайқалмаслик хусусийтига эга, яъни мустаҳкам мувозанатда бўлди;

$$r < e$$ бўлса, жисм чайқалмаслик хусусийтига эга эмас, яъни номустаҳкам мувозанатда бўлди;

$$r = e$$ бўлса, befark muvozanatda bouldi.

Суяълдикда суяътган жисм чайқалмаслик қобилияттига эга бўлиши учун метомарказ радиусининг узунлиги оғирлик маркази билан босим маркази оралифидан қатта бўлиши керак, яъни

$$r > e$$ (2.123)

Амалий машулолот ўтказиш учун гидростатикадан материаллар

2.1-масала. Очиқ туташ идли икки хил солишитирма оғирликка эга бўлган суяълик билан тўлдирилган: $\gamma_1 = 7848$ Н/м3 ва $\gamma_2 = 11772$ Н/м3. Бу туташ идлилардаги суяъликларнинг баландликлари h_1 ва h_2 бўлса, у идлилардаги суяълик сатҳларининг фарқи маълум, яъни у $\Delta h = 0,30$ м, у ҳолда 2.61- расмдаса қўрсатилганда h_1 ва h_2 лар аниқлансин.

Жавоб: $h_1 = 0,90$ м, $h_2 = 0,60$ м.

2.2-масала. Юқори томони сув сатҳидан $h_1 = 1,0$ м чукурликда, пастки томони эса $h_2 = 3,0$ м чукурликда жой-
лалган тик деворга таъсир этувчи сув-нинг босим эпюрасини чизинг. Сув фақат бир томондан, яъни чап томондан таъсир этапти (2.62-расм).

2.3-масала. 2.63-расмдаги а, б, в шакллар учун гидростатик босим эпюрасини тузинг.

2.4-масала. Тик текис деворда доирравий тешик мавжуд, у доирравий шаклдаги сув тутқич дарвоза ёрдамида беркилади ва очилади, унинг диаметри $d = 1,0$ м. Дарвозанинг маркази сув сатҳидан $h_e = 4,0$ м чукурликда жойлаш-
ган. Доғравий сув туткич дарвозага таъсир этаётган суюқликнинг босим кучини ва босим марказини аниқланг (2.64-расм).

Жавоб: \(P = 3,14 \cdot 10^4 \) Н; \(y_D = 4,02 \) м.

2.5-масала. Текис сув туткич дарвоза сувга кўмилган ҳолатда бўлиб, унинг устки томони сув сатҳидан \(h = 2,0 \) м чуқурликда жойлашган. Дарвоза тўғри тўртбурчак шаклида, эни \(b = 1,0 \) м, баландлиги \(h_{par} = 0,5 \) м, у горизонтал текислик билан 45° бурчакни ташил эган ҳолда қия жойлашган. Бу дарвозага таъсири этаётган сувнинг босим кучини ва босим марказини аниқланг. Масалани аналитик ва графоаналитик усулда ечинг (2.65-расм).

Жавоб: \(P = 1,09 \cdot 10^4 \) Н, \(e = 0,24 \) м.

2.6-масала. Тик тўғри тўртбурчакли сув туткич дарвозанинг (2.66-расм) эни \(b = 1,5 \) м, баландлиги \(h_{par} = 2,0 \) м. Бу дарвозанинг устки томони сув сатҳидан \(h_i = 2,0 \) м чуқурликда, пастки томони эса \(h_2 = 4,0 \) м чуқурликда жойлашган. Бундан ташқари дарвозага пастки бьердан ҳам сув таъсири этапти, у сувнинг чуқурлиги \(h_n = 2,0 \) м. Дарвозага таъсири этаётган босим кучини ва босим марказини аниқланг.
Жавоб: \(P = 6,0 \cdot 10^4 \) Н, \(e = 1,0 \) м.

2.7-масала. Секторлари сув туткич дарвозага сувнинг босим кучини ва йўналишини аниқланган (2.67-рasm). Дарвоза тутит турган сувнинг чуқурлиги \(h = 3,0 \) м, \(\alpha = 45^\circ \), \(r = 4,24 \) м, дарвозанинг эни \(b = 1,0 \) м.

Жавоб: \(P = 4,67 \cdot 10^4 \) Н, \(\beta = 14^\circ 30^\prime \).

2.8-масала. Темирдан ясалган тўғри тўртбурчакли идишнинг (2.68-рasm) баландлиги \(h = 1,0 \) м, томонлари \(1,5 \times 1,5 \) м (устидан кўришида), оғирлиги \(G = 1,35 \cdot 10^4 \) Н. Бу идиш сув сатҳига туштирилди ва унга қўшимча \(Q \) юқ ортили, шу ҳолда бу идиш сувда сузид юриби. Бу идишнинг сатҳи сув сатҳидан \(h = 0,10 \) м баландликда сузид юриши учун унга ортилган қўшимча юкнинг энг катта оғирлиги қандай бўлиши керак, бу идиш сувга қанча \(h \), чуқурлиқка чўкиши керак?

Жавоб: \(Q = 0,675 \cdot 10^4 \) Н; \(h_r = 0,60 \) м.

2.9-масала. Сувда сузид юрувчи понтоннинг баландлиги \(h_r = 0,70 \) м, диаметри \(d = 16 \) м, деворининг қалинлиги \(\delta = 0,012 \) м. Понтон девори материалнинг солиштирима оғирлиги (у пўлатдан ясалган) \(\gamma_{	ext{мал}} = 8,1 \cdot 10^4 \) Н/м³ (2.69-рasm) бўлса, унинг чайкалмаслик хусусиятини аниқланган.

Жавоб: Понтон чайкалмаслик хусусиятига эга (остой-чив).
Такорлаш учун савollar

2.1. Гидростатика нима ва унинг вазифаси нималардан иборат?
2.2. Нуктадаги гидростатик босим ва унинг хоссалари қандай?
2.3. Пьезометрик баландлик деб нимага айтилади?
2.4. Паскаль қонунини қандай ва у амалда қанда жагиондай?
2.5. Босим кучи ва унинг тенг таъсири этувчи деб нимага айтилади?
2.6. \(P = \gamma h \) даги символларнинг «СИ»да ўлчо ва бирикклатрини изох-лаб беринг?
2.7. Текис деворга босим кучининг таъсири ва эпюрани қандай бўлади?
УЧИНЧИ БОБ
ГИДРОДИНАМИКА АСОСЛАРИ
3.1-§. АСОСИЙ ТУШУНЧАЛАР

Гидродинамикада суюқликларнинг ҳаракат қонунлари ўрганилади. Бу ерда мухандислик гидравликаси масалаларини ечишда, асосан нўкталардаги суюқлик заррачалари и тезлиги ва р босимлар микдорларини аниклаш билан шу-гулланилади. У амалиётда муҳим рол йўнайди. Гидротехника иншоотлари, мелиорация, энергетика ва бошқа соҳаларда улардаги иншоотларни гидравлик ҳисоблашда гидродинамиканинг асосий тенгламаларида ғойдаланилади. Бу соҳаларда суюқлик ҳаракати билан боғлиқ бўлган кўп масалалар, чуноччи, дарё ва каналларда сувнинг ҳаракати, шунингдек, сув таъминоти ва канализация, дренаж кувуруларидаги сув ҳаракати, тўғон устидан ошиб ўтаётган сув ҳаракати ва бошқа гидротехник иншоотлар, сув кўтар- гичлар ҳамда гидромашиналарда суюқликларнинг ҳаракати, ер ости сувларнинг ҳаракати (фильтрация) ва бошқалар гидродинамиканинг асосий тенгламалари билан боғлиқ. Суюқликларнинг ҳаракатга келишига уларга ташқа- ридан қўйилган кучлар: огирилик кучи, ташқи босим кучи, ишқаланиш кучи, Архимед кучи ва бошқалар сабаб бўлади. Гидравликанинг гидродинамика қисмида масалаларни ечаётганда, ташқаридан қўйилган қучлар маълум, яъни уларни берилган деб ҳисоблаш, гидравликада фақат иъқин тезликлари ва босимларнинг ўзгариш қонунлари ўрганилади. Бунда асосан ҳаракатдаги суюқлик ичидағи иқтисодий нўктада оқим тезликлари ва босимларнинг ўзгариш қонунлари ўрганилади. Суюқлик ҳаракати пайтида ривожланатган ички босимларни суюқлик оқимининг бирор кўндаланг кесими- нинг майдонига нисбатан олсак, бундан босим гидроди- намик босим деб аталади. Бу босим гидростатик босим сингари шартли белги р билан ӣфодаланади. Гидродинамик босимнинг гидростатик босимдан фарқи шундаки, у фа-
қит координата ўқи бўйича ўзгармай, вақт ўтиши билан ҳам ўзгарами. Гидродинамик босим факат қўндаланг қе- қимда ғидростаттик босим қонунiga буйсунади. Шундай ҳилиб, суюқлик ҳаракатларини ўрганишда асосан икки хил мисалга дуч келамиз.

1. Такки маола — бу ҳолда оким берилиган бўлиб, шу оким ичидаги қаттик жисмга таъсир этаётган кучларни анниқлаш керак.

2. Ўқи маола — бу ҳолда суюқликка таъсир этувчи таққи кучлар (чунончи, ҳажмий куч, ғирлиқ кучи, никаланиш кучи ва бошқалар) берилиган бўлиб, окимнинг гидродинамик ҳаракетлигининг ўзгариш қонунлари ўрганилади. Окимвинг гидродинамик ҳаракетлигининг қаториға: а) суюқлик зарраоаларининг ҳаракати тезлик-лари; б) унданги гидродинамик босимларнинг ўзгариши ва бошқалар қиради.

Гидравликада асосан, иккинчи, яъни иччма маола билан шуғулланилади. Бунда биз нуктадаги тезлик ва бо- симларнинг ўзгариш қонунларини ўрганамиз, бу ерда суюқликка таққаридан таъсир этувчи кучлар берилиган деб қабул қиламиз. Суюқлик билан банд бўлган фазонинг ҳар хил нуктасида и тезлик ва р босим ҳар хил бўлди. Бундан таққарри и ва р лар фазонинг берилиган нуктасида ҳам вақт ўтиши билан ўзгариб боради. Унли қуйидагича ёзиш мумкун:

\[
\begin{align*}
 u_x &= f_1(x, y, z, t); \\
 u_y &= f_2(x, y, z, t); \\
 u_z &= f_3(x, y, z, t); \\
 p &= f_4(x, y, z, t),
\end{align*}
\]

бу ерда \(u_x, u_y, u_z\) тезликнинг тўғри бурчакли координата ўқларидаги проекциялар. Агар \(f_1, f_2, f_3\) ва \(f_4\) функциялар-нинг ечимини топганимизда, масалани ечган бўлар эдик. Ҳақиқатан, агар шу функцияларни билсак, биз сув билан банд бўлган фазодаги ҳар бир нуктада и тезликлари ва \(p\) босимларни топиб, вақт ўтиши билан уларнинг миқдори ўзгаришини билган бўлар эдик. Амалда эса, бу функциялар ечимини топишнинг иложи йўқ даражада мураккаб. Шунинг учун гидравликада бошқа солдатор ўйл тутилади.

93
Бу функцияларнинг ечимини топиш гидромеханика фанининг вазифаси. Гидравликада юқорида кўрсатилган масалаларни ечиш учун у функцияларнинг ўрнини босадиган гидромеханиканинг бўлак асосий тенгламалари қабул қилинган, бунда улар ёрдамида ечилган масалалар ҳакқиқат-га яқинроқ бўлиши керак.

Гидравликада қабул қилинган асосий назарий тенгламалар куйидагилар:
1) узлуксизлик тенгламаси (суюқлик сарфининг баланс тенгламаси);
2) Д. Бернулли тенгламаси (суюқлик қўимининг солиш-тирма энергиясининг баланс тенгламаси);
3) ҳаракат микдорининг гидравлик тенгламаси.

Булардан ташқари мухандислик гидравликасида масалаларни ечиш учун яна қўшимча тенгламалар мавжуд, улар:
4) текис илгарилиман ҳаракатнинг асосий тенгламаси;
5) суюқлик ҳаракати пайтида ишқаланиш таъсирида йўқотилган напор (йўқотилган энергия)ни ҳисоблаш тенгламаси.

Бу асосий учта назарий тенглама гидравликада, яъни суюқликнинг техникавий механикасида асосий назарий база бўлиб ҳисобланади. Бу тенгламаларнинг келиб чиқиш йўллари (суюқликнинг барқарор ҳаракати учун) ҳақида кейинроқ сўз юритамиз ва кенгроқ ёртишга ҳаракат қиламиз. Бунинг учун, аввало, суюқлик ҳаракатининг кинематикасини ўрганиш керак бўлади.

3.2-§. СУЮҚЛИК ҲАРАКАТИНИНГ КИНЕМАТИКАСИ

Суюқлик ҳаракатини ўрганишда қўлланиладиган асосий аналитик усуллар. Ж. Лагранж ва Л. Эйлер усуллари. Гидромеханикада, худди назарий механикадаги каби қаттиқ жисмларнинг ҳаракатини кўргандек, суюқликни ҳаракатга келтирувчи сабабларни ўрганмасдан туриб унинг ҳаракати, бўлажак қўримиши ва шакли ўрганилади. Суюқликни ҳаракатга келтирувчи ташқи қучларни қараб чиқмасдан туриб, суюқлик ҳаракатининг қўримиши ва шаклларни ўрганувчи гидромеханиканинг бир қисми суюқлик ҳаракатининг кинематикаси деб атала-ди.
Суюқлик ҳаракатини ўрганишда қўлланиладиган асосий аналитик усуллар. Суюқликнинг ҳаракатини ўрганишда икки аналитик усул мавжуд: Ж. Лагранж ҳамда Л. Эйлер усуллари.
1. Ж. Лагранж усули. Фаозодаги бирор элементар майдончада ҳаракат қилаётган суюқликни қараб чиқамиз (3.1-расм). Бу суюқлик ичида ўзгармайдиган Ox, Oy, Oz тўғри бурчакли декарт системасидаги координаталари қўлланиб ўташамиз. Суюқликнинг бир қанча заррачалари ҳаракатини қараб чиқамиз. Масалан, \(M_1, M_2, M_3, \ldots \) заррачаларини бошлангич даврда қаралётган майдоннинг чегарасида жойлашган деб, заррачаларнинг бошлангич координаталари \(a_1, a_2, a_3 \) шартли бегилар билан бегилаймиз. Вакт ўтиши билан ҳаракатдаги суюқлик заррачалари ўзининг турган ҳолатини ўзгартиради ва уларнинг координаталари энди \(a_1, a_2, a_3 \) ўзгармас координатада бўлмай, ҳар бир даққа учун вакт ўтиши билан ўзгарувчани \(x, y, z \) миқдорида ўтади. Агар суюқлик ҳаракатининг бошлангич координаталари \(a_1, a_2, a_3 \) берилиган бўлса, \(x, y, z \) координаталари вактга борилгач бўлади, яъни \(x, y, z \) координаталари қўйидагиқа ёзилади:

\[
\begin{align*}
x &= x(a, b, c, t); \\
y &= y(a, b, c, t); \\
z &= z(a, b, c, t).
\end{align*}
\] (3.3)

Бу тенгламадан фойдаланиб, юқорида қўрсатилган суюқлик заррачаларининг ҳаракатлари траекториясини осонгина куриш мумкин. Кейин шу траектория чизингини ҳоллабан еридан бирор \(dt \) вақт ичида заррачалар босиб ўтган йўлнинг узунлигини \(ds \) деб бегилаймиз. \(ds \) узунлигининг \(dt \) вақтга нисбати шу траектория бўйича берилган нуктадаги тезликни беради

\[
u = \frac{ds}{dt}. \] (3.4)
Шу ихтиёрий нукта учун суюқликкунг ихтиёрий M заррачасининг тезланишини ҳам аниклаш мумкин:
\[
a = \frac{d^2s}{dt^2}. \tag{3.5}
\]

Ж. Лагранж усули бўйича тулик суюқлик окимини суюқлик заррачалари ҳаракатлари траекторияларининг йигингидиси деб қабул қиламиз. Бу ерда x, y, z суюқлик заррачаларининг оқувчи координаталари бўлгани учун dx, dy ва dz нинг қийматлари ds ўтилган йўлнинг тегишили координаталарига проекциялари ташкил этади. Шунинг учун Ж. Лагранж усулида суюқлик заррачалари тезлекларининг Ox, Oy, Oz координаталари бўйича ўзгаришини кўйидагича ёзишимиз мумкин:
\[
\begin{align*}
 u_x &= \frac{\partial x}{\partial t}; & u_y &= \frac{\partial y}{\partial t}; & u_z &= \frac{\partial z}{\partial t}; \tag{3.6}
\end{align*}
\]

тезланиш эса
\[
\begin{align*}
 a_x &= \frac{\partial^2 x}{\partial t^2}; & a_y &= \frac{\partial^2 y}{\partial t^2}; & a_z &= \frac{\partial^2 z}{\partial t^2}. \tag{3.7}
\end{align*}
\]

2. Л. Эйлер усули. Фазодаги бирор элементар майдончада ҳаракат қилаётган суюқликни қараб чиқамиз (3.2-рассм). Л. Эйлер усулида бизни суюқликкунг ихтиёрий бирор заррачашиции ҳаракат ва учун траекторияси қизиктирмайди. Балки қараляётган суюқликкунг ичида бир неча ўзгармас нуқталар, масалан, 1, 2, 3, ... нуқталар белгилашниб, улар қараляётган майдончада ўрнаштирилиб («қотириб») қўйилган бўлади. Суюқлик заррачалари ҳаракат қилганда бу 1, 2, 3, ... нуқталар ҳаракат қилмасдан, ўша ўрнатилган жойларида туради. Бу ерда x, y, z координаталари суюқлик заррачаларининг оқувчи координаталари эмас, балки шунчаки «қотирилган» нуқталарнинг координаталари (3.2-рассм).

3.2-рассм.
Энди t, вакт ичидағи тезликларнинг ўзгаришининг қароб чиққамиз. Бу вакт ичида 1-нутқада суюқликнинг иҳтиёрий бирор заррачаси $u_i(t_i)$ тезликка эга бўлади. Шу вакт ичида 2-нутқада суюқликнинг иҳтиёрий бошқа бирор заррачаси $u_i(t_2)$ тезликка эга бўлади; учинчи нутқада эса $u_i(t_3)$ тезликка эга бўлади ва ҳоказо. Булардан кўриниб турнибдики, t_i вакт ичида қандайдир тезликлар векторлари майдони ҳосил бўлади. Қейинги t_i вакт ичидашу 1, 2, 3 нутқаларда тегишки $u_i(t_2), u_i(t_2), u_i(t_3)$, ... тезлик майдонлари ҳосил бўлади. Кўриниб турнибдики, Л. Эйлер усули бўйича тўлиқ оким берилган вакт ичида ўрнатилган 1, 2, 3 қўзғалмас нутқаларга нисбатан тезлик векторлари майдони билан ўлча-нанар экан.

3. Гидравликада суюқлик ҳаракатларини ўрғанишда қўлланиладиган аналитик усул. Гидравликада, асосан Л. Эйлер усули кент қўлланилади. Бу усул қўлланганда ҳам шунинг назарда тутиш қеракки, Л. Эйлер усули билан суюқлик заррачалари ҳаракатини, ўша бир нукта орқали dt вакт ичида шу заррача жуда қичкина ds йўлини босим ўтади, бу заррачанинг берилган нукта орқали босиб ўтган йўлининг координата ўқларига проекциясини dx, dy, dz деб қабул қилсақ, нутқадаги заррача ҳаракат тезлигининг координата ўқларига проекциялари қуйидагича бўлади:

$$u_x = \frac{dx}{dt}; \quad u_y = \frac{dy}{dt}; \quad u_z = \frac{dz}{dt}. \quad (3.8)$$

3.3-§. СУЮҚЛИК ОҚИМИНИНГ БАРҚАРОР VA БЕҚАРОР ҲАРАКАТИ

Вакт ўтиши билан суюқлик ҳаракати окимининг асосий гидродинамик элементлари u ва p нинг ўзгаришита қараб ики қўринища, яъни барқарор ва бекарор ҳаракат бўлади. Суюқлик ҳаракати вактида унинг иҳтиёрий нуктасида оким тезлиги ва гидродинамиқ босими ҳар доим ўзгариб туради, яъни суюқлик заррачанинг ҳаракати фақат координаталарга боглик бўлмасдан, вақтга ҳам боғлик бўлмасдан ҳаракат бекарор ҳаракат дейилади. Бу қуйидагича ёзилади:

$$u = f_1(x, y, z, t);$$
$$p = f_2(x, y, z, t). \quad (3.9)$$

7—К-24

97

www.ziyouz.com kutubxonasi
Бекарор ҳаракатдаги суюқликка мисollar: кичик ва қатта тешиклардан оқаётган суюқликлар ҳаракати; сувошгичлардан оқиб ўтаётган сув ҳаракати; кенглиги ва чукурлиги ўзан-нинг узунлиги бўйича ўзгардиған дарёлардаги сув ҳаракати. Келтирилган мисollarда сувнинг эркин эгри сатҳи ўзгар-риб туради. Бундай ташқари яна қўллаб мисollar келтириш mumkin, масалан, гидравлик зарба, тўғонлар бузилиб бирдан сув тошиб кетган вақтда, дарёларда баҳорда сув кўпайиши натижасида сув сарфи гидрографларининг гид-ротехник иншоотлар орқали ўтказиш жараёнларда бека- рор ҳаракатларни қузатиш mumkin. Суюқликнинг бекарор ҳаракати пайтида ихтиёрий A_1, A_2, A_3 ва ҳоказо нуктадарда Δt вақт ичида заррачаларнинг тезликлари ва босимлари ўзга-ришлари $A_1(u_1 \neq \text{const}, p_1 \neq \text{const}) \neq A_2(u_2 \neq \text{const}, p_2 \neq \text{const}) \neq A_3(u_3 \neq \text{const}, p_3 \neq \text{const}) \neq \ldots$ ва ҳоказо вақт ўтиши билан бир- биридан фарқ қилади.

Ҳаракат этаётган суюқлик ичидаги ихтиёрий нуктада тезлик ва гидродинамик босим вақт ўтиши билан ўзгармаса, бундай ҳаракат барқарор ҳаракат дейилади. Бу ҳаракатда суюқлик заррачалари окимдаги A нуктадан ўтганда шу зар-рачаларнинг u тезликлари ва p гидродинамик босимлари вақт ўтиши билан ўзгармайди. Бу барқарор ҳаракат анали-тик кўринишида куйидагича ёзилади:

$$
\begin{align*}
 u &= f_1(x, y, z); \\
 p &= f_2(x, y, z).
\end{align*}
$$

(3.10)

Бу ҳолда A нуктада u ва p ўзгармас бўlsa, улар кейинги, масалан, A_1 нуктада бошқа ўзгармас микдорга эга бўлади. Шундай қилиб, ҳаракатдаги суюқлик заррачалари A_1 нук-тасида u_1 ва p_1 бўlsa, A_2 нуктасида эса u_2 ва p_2 ва ҳоказо бўлади. Суюқликни барқарор ҳаракати пайтида ихтиёрий A_1, A_2, A_3 ва ҳоказо нуктадарда t_1 вақтда заррачаларнинг тезликлари ва босимларининг ўзгаришлари $A_1(u_1 = \text{const}, p_1 = \text{const}) \neq A_2(u_2 = \text{const}, p_2 = \text{const}) \neq A_3(u_3 = \text{const}, p_3 = \text{const})$ ва ҳоказо, ҳар бир нуктала учун ўзгармас бўлиб, ҳар хил нук-тала ҳар хил микдорга эга бўлади. Сув сатҳи ўзгармас бўлганда ундаги оким кўндаланг кесимнинг о майдони ўзгармайдиган каналлари сув окимнинг ҳаракатини барқ-арор ҳаракатга мисол қилиб келтириш mumkin.

Гидротехник иншоотларни гидравлик ҳисоблашда, амалда, асосан суюқликнинг барқарор ҳаракати кўп уч-
райди. Шунинг учун гидравликада кўпинча барқарор ҳаракат қаралади.

Юқорида кўрсатилган бекарор ва барқарор ҳаракатларни яхши тушуниб олиш учун 3.3- расмда кўрсатилганидек, сукълик окимининг ҳаракатини қараб чиқамиз. Расмда ихтиёрлар сукълик окими $a_1 b_1$ ва $a_2 b_2$ чизиклари билан чегаралган. Шу чегаралганда окимининг ичида A_1 нуқтани оламиз, бу нуқта қотирилган (ҳаракат қилмайди), аммо сукъликнинг M заррачалари шу нуқтадан ўтади деб фарқ қилайлик. Масalan, сукъликнинг бир нечтан M_1, M_2, M_3, ... заррачалари ихтиёрлар равишда, ўзининг ҳар хил траекторияси билан ҳаракатланган, улар ҳар ҳил вақт ичида шу A_1 нуқта орқали ўтади дейлик: M_1 заррача t_1 вақтда, M_2 заррача t_2 вақтда ўтади ва ҳолахо. M_1 заррача A_1 нуқтага келиб, бу нуқтада t_1 вақтда u_1' тезликка эга бўлади. M_2 заррача эса ўша A_1 нуқтага келиб бошқа t_2 вақтда шу нуқтада бошқа u_2'' тезликка эга бўлади.

A_2 нуқтада ҳам худди A_1 нуқтадагида ўхшаш ҳодиса рўй беради, аммо A_2 нуқтада мутлақо бошқа u ва p лар ҳосил бўлади.

3.3 а-расмда бекарор ҳаракатнинг умумий кўринишни келтирилган, унда қўйидаги ҳаракат турларини кўришмиз мумкин:

3.4-расм.
а) ихтиёрий олинган, масалан, A_i нуқтада оқим тезлиги нисбатан секин ўзгаради, бунда

$$\frac{\partial u_x}{\partial t}, \frac{\partial u_y}{\partial t}, \frac{\partial u_z}{\partial t}$$ (3.11)

ларни ҳисобга олмаса ҳам бўлади. Бекарор ҳаракатнинг бу холини секин ўзгарувчан ҳаракат деб аталади.

б) ихтиёрий олинган, масалан, A_i нуқтада оқим тезлиги нисбатан тез ўзгаради дейлик. Бундай ҳаракат эса, тез ўзгарувчан ҳаракат деб аталади.

Суюқлик ҳаракати барқарор ҳаракат бўлса, M_1, M_2, M_3, ...
тарракалар ҳар ҳил вақт ичида A_i нуқтага келиб, бу нуқтада бир ҳил тезликка эга бўлади, бу тезликнинг миқдори ҳам, йўналиши ҳам бир ҳил бўлади) (3.4-расм). Барқарор ҳаракат учун эса

$$u = f(x, y, z),$$ (3.12)

яъни бу ерда u вақтга боғлик эмас, шунинг учун барқарор ҳаракат бўлгана:

$$\frac{\partial u_x}{\partial t} = \frac{\partial u_y}{\partial t} = \frac{\partial u_z}{\partial t} = 0.$$ (3.13)

Барқарор ҳаракат учун A_i нуқтадан ўтаётган суюқлик M
тарракаларнинг траекториялари (3.4-расм) қуйидагича ҳаракатланиди:

1. M_1, M_2, M_3, ...
тарракалар A_i нуқтадан ўтса, уларнинг A_i нуқтадан кейинги траекториялари бир чизикда бўлади.
2. A_i нуқтасида тарракаларнинг тезликлари (миқдорлари ва векторлари) бир ҳил бўлади.

Суюқлик ҳаракатлари турларининг классификацияси

Илгар суюқлик ҳаракатлари қўрникиларининг классификацияси берилган эди (суюқлик ҳаракатларин ҳар ҳил белгилиларга асосан). Бу классификация блок шаклида келтирилган (3.5-расм).

Суюқлик ҳаракатнинг турларини бундай шаклда келтириш педагоглар, талабалар ва ёш мухандисларга гидравлика фонини ўзлаштиришда қулий имкониятлар яратади, чунки бу алгоритмик жадвалда бутун курс бўйича учрайдиган суюқлик ҳаракат турларининг номлари ўзининг ташқи белгили бўйича қисқа ҳолда берилган.
3.5-расс. (давоми 102-бетда)
3.5-расм (давоми).

102
3.4-§. ТРАЕКТОРИЯ. ОКИМ ЧИЗИГИ. ЭЛЕМЕНТАР ОКИМ НАЙЧАСИ. СУЮКЛИКНИНГ ТЎЛИК ОКИМИ

Суюкликнинг ҳаракат қонунларини ўрганиш учун траектория, оким чизиги, элементар оким найчаси қаби тушунчаларни билиб олиш керак.

Траектория. Берилиган суюклик заррачаларининг вақт ўтиши билан босиб ўтган йўлининг изи унинг траекторияси деб аталади. Маълум массадаги ҳаракатдаги суюкликни олиб, унлар бирор заррачани M билан белгилаймиз, унинг координаталари x, y, z, тезлиги u ва гидродинамик босими p бўлсин (3.6-расм). Бу заррача i вақт ичидада A_i нуктага келади, бу ҳолда унинг координаталари x_i, y_i, z_i, тезлиги u_i ва гидродинамик босим p_i бўлади. Шу M заррача ҳаракатини давом этирса, у 2, 3 ва ҳоҳазо нукталардан ўтиб, унинг координаталари, тезлиги ва гидродинамик босим ҳузараб боради. M заррачанинг A_1, A_2, A_3 ва қейинги ўтган йўлининг изи унинг траекторияси деб аталади. Барқарор ҳаракат учун оким тезлиги ва гидродинамик босим белгиланган A_1 нуктада ўзгармас, ўнинг учун бошқа бир N заррача M заррача кетида, шу A_1 нуктага келса, у ерда ҳудди M заррача қаби тезликка, ўша гидродинамик босимга (ҳам микдори ва ҳам йўналиши жиҳатидан) эга бўлади. A_1 нуктадан қейинги 2, 3 нуктадарда тезлик ва гидродинамик босим ўзгармагандек, A_1 нуктадан қейин ҳам N заррача 2, 3 нуктадарда ўша M заррача траекторияси билан ҳаракат қилади. Шундай қилиб, барқарор ҳаракатда суюклик заррачалари узок вақт ичидада ўзгармас траектория чизиги йўналишида ҳаракатланади. Бекарор ҳаракатда эса заррачанинг у тезлиги ҳам, унинг микдори ҳам, йўналиш буйича ўзгарган учун учун унинг траекторияси вақт ўтиши билан тинимсиз ўзгаради. Шу нинг учун юқорида кўрсатилган бекарор ҳаракатда N заррачанинг траекторияси биринчи M заррача траекторияси бўйича, яъни A_1, A_2, A_3 чизиги йўналишида ҳаракатланмайди.

Оким чизиги. Буни ўрганиш учун барқарор ва бекарор ҳаракатларни қараб чиқамиз.

Барқарор ҳаракатда оким чизиги вақт ўтиши билан ўзгар-

3.6-расм
3.7-расм.

мас траекторияни англатиб, шу йўл узунлиги бўйича суюқлик заррачатлари бирик-кетин ҳаракатланади. Мисол учун 3.6- расмдаги \(N-M-A_1-2-3 \) чизигини олийлик.

Бекарор ҳаракатда биз бирор суюқлик масасининг ҳаракатини кузатиб турибмиз дейилм (3.7- расм). Шу массаннинг иётиёрй нуктасидаги тезликнинг ҳам миқдори, ҳам йўналиши ҳар хил. Бу суюқлик масасининг ичида иётиёрй 1 нукта олиб, \(t \) вақт ичида шу нуктадаги \(\mathbf{u}_1 \) тезликнинг миқдорини ва йўналаш векторини қурамиз. Бу вектор устига 1-нуктадан жуда кичик \(\Delta S \) масофа оралигida 2- нуктани олиб, унинг \(\mathbf{u}_2 \) тезликини, ўша \(t \) вақт ичидали векторини қурамиз. Кейин 2- векторинг йўналиши бўйича 2- нуктадан жуда кичик \(\Delta S \) масофаса оралигida 3- нуктани қўяним ва ўша жойдан \(\mathbf{u}_3 \) вектор тезликни қурамиз ва ҳоказо. Агар \(\Delta S \) оралиги камайтириб борсақ ва у нолга интилса, бу 1, 2, 3 ва ҳоказо синқ чизиклар бериладига 1- нуктадан ўтказилган эғри чизик шаклни ҳосил қилади. Бу эғри чизик оким чизиги деб аталади. Шундай қилнаб, оким чизиги деб шундай эғри чизикка айтилдики, у ҳаракатдаги суюқлик ичидалар қатор нукталар орқали ўтказилган бўлиб, шу нуктадарда ўтказилган тезлик векторлари берилади. Вакт ичида шу эғри чизикка уринма бўлади. Бу ҳарда оким чизиги ва траектория тушунчаларининг фарқини ажрати билиш керак. Траектория факат суюқлик заррачатасининг бир анинг вақт ичида босиб ўтган йўлиниг изини кўрсатади. Оқим чизикдаги ўрталаштирилади ўй тезлик векторларининг миқдорларига тенг.
a.

Масштаб бўлимлари
Узак тарқалган таштарга тилған мақсат олиш учун:
(тракция 0.4-0.5м)

b.

3.9-расм.
зиғи эса бирор элементар Δt вақт ичида оқим характеристикасни беради, шу оқим чизиги устида ётган ҳар хил суюқлик заррачаларини боғловчи бўлиб, ўша заррачаларни шу қаққаға тезликларининг йўналишини кўрсатади. Барқарор ҳаракатда суюқлик заррачаларининг траекторияси ва оқим чизиги бир хил бўллади (бир-бирининг устига тушмайди). Бекарор ҳаракатда эса, траектория ва оқим чизиги бир хил бўлмайди (бир-бирининг устига тушмайди). Оқим чизигини ва траекторияни лабораторияда суюқлик ҳаракати вақтида кузатиш мумкин. Бунинг учун ҳаракат қилаётган суюқликка майда заррача, сувдан бошқача модда (жисм) ёки суюқлик (у сув ичида эрмаслиги керак, унинг зичлиги тажриба ўтказилаётган суюқлиқнинг зичлигига тенг бўлиши шарт) юбориб, унинг ҳаракат траекториясини киносурат ёки фотосуратга олиш ёрдамида аниқланади. Кинога олаётганда, ёқса вақт ичида кўп миқдорда ҳаракатланувчи заррачаларининг босиб ўтган йўллари олинган расмда кўрингъ турган оқим чизиги бўлади. 3.8-расмдағи пластинкада оқиб ўтаётган суюқлик оқим чизиги ҳолати кўрсатилган. Агар кинога олаётганда узоқ вақт ичида кам миқдорда ҳаракатланувчи суюқлик заррачаларини расмга туширилса, у ҳолда расмдағи узун излар заррачаларининг ўтган йўлининг изини, яъни унинг траекториясини ифодалайди (3.9 ва 3.9 б-расм).

Элементар оқим найчаси. 3.10-расмда кўрсатилган суюқлик оқими ичида 1-нуктани тайинлаб, у нукта атрофида элементар Δω кичик майдончани ажратамиз, бу Δω майдонча N чегара чизиги билан чегаралangan. Шу Δω майдонча N чизиги билан чегараланган майдон атрофида ҳамма нуктадардан оқим чизигини ўтказамиз. Бу ҳолда ҳажмий бир тўда оқим чизигини оламиз, у бизга элементар оқим найчасини беради. Бундан келиб чиқадики, элементар оқим найчаси суюқлик оқимининг бир қисми бўлиб, у ҳаракат қилаётган суюқлик ичида берк N чегара чизигидаги нукталарак қолди ҳаракат қилаётган оқим чизилари билан чегараланган.

Барқарор ҳаракат учун элementar оқим найчаси қуйидаги уч хосса ға эга.

1. Биринчи хосса. Оқим чизиги барқарор ҳаракат бўлганда вақт ўтиши билан ўзининг
наклини ўзгартиргани учун (3.6- расм) элементар оким нийчасининг шакли ҳам вақт ўтиши билан ўзгармайди.

2. Ӣққинчи хоҳсаси. Элементар оким найчасининг биргина оким чизиклари ташкил этган учун суюқлик заррачалари бирин-кетин унинг узунлиги бўйича сурилиб юрар киши, у ҳолда нийча сиртиён орқали суюқлик ташқаридалар ичкарига (яъни қаралаётган элементар оким найчасининг ичига ташқаридалар, бошқа оким найчасидан) ўтиши мумкун эмас. Худди шундай ичкаридан ташқарида ҳам чиқиши мумкун эмас, чунки окимнинг тезлик векторлари ҳар лоим оким чизигига уринма ҳолда бўлади.

3. Ӣққинчи хоҳсаси. Оқим тезлиги у ва гидродинамик босим p микдорлари элементар оким найчасининг қўндалган кесими Дў маёнчунчақнинг ҳар бир нуқтаси учун бир хил, яъни Дў маёнчунча бўйича $u = \text{const}$, $p = \text{const}$ деб ҳисоблаш мумкун, чунки бу элементар маёндона нийқотда кичик бўлиб, ноля интилиди. Мавлумки, Дў элементар маёндонча нолга интилганда, маёнчунчани ўрнида нуқта ҳосил бўлади. У ҳолда бу Дў маёнчунча u ва p маёнчунчанинг периметри бўйича ўзгармас деб олинади. Шуну айтб ӯти қеракки, элементар оким найчасининг узунлиги бўйича u тезлик ва p босимнинг микдорлари, умуман олтангда ўзгариси мумкун.

Суюқлиқнинг тўлиқ окими. Суюқлиқнинг тўлиқ окими деб, амалда қаттиқ девор билан чегараланган тизимда ҳаракат қилаётган суюқлик ҳажмига (массасига) айтилади. Масалан, қўвур, канал, дарё ва бошқа қўлларда ҳаракатланётган сов. Бошқача қилиб айтилгандан, ҳар хил тезликда ҳаракатланувчи суюқлиқнинг тўлиқ окими — элементар оким найчаларининг йигиндисидан ташкил топади. Бундай қайнада тушунтириш гидродинамикада назарий жиҳатдан суюқлик ҳаракатларини ўрганиш ва уларнинг натижаларини амалда қўллаш қўлаллаби жиҳатидан асосий рол ўйнайди.

Текис ўзгарувчан ҳаракат. Қатор элементар оким найчаларидан тузилган суюқлиқнинг тўлиқ окимини ўрганаётганда, асосан элементар оким найчаларининг бир-бирова параллел бўлмаганлиги сабабли, окимнинг назарий излашларда мураккаблашганлигини айтб ўтиш максадда муvoorик. Шундай экан, уни соддааштириш учун гидродинамикада текис ўзгарувчан ҳаракат тушунчаси қиритилади. Суюқлиқнинг ҳаракатида оким найчалари ўзларининг йўналишлиги бўйича бир-бировдан жуда кичик 0 бurchак ва жуда кичик эгриник, яъни жуда кичик бурилиш радиуси r ни ҳосил қиладиган ҳаракати, суюқлиқнинг текис ўзгарувчан ҳаракати дейилади (3.11- расм). Суюқлиқларнинг бундай
3.11-расм.

харакати суюқлик оқим найчалари тахминан бир-бирига параллел бўлган ҳолда, диаметри ўзгармас бўлган қувурлар, узунлиги бўйича қўндаланг кесими ўзгармас бўлган каналларда, дарёларнинг айрим участкаларида учрайди. Текис ўзгарувчан ҳаракат бўлган пайтда суюқлик оқим ўзининг қўйинлани босаси билан характерланади:

1) суюқлик оқимининг қўндаланг кесими текис ва оқимнинг ўқига нормал бўлади;

2) суюқлик оқимининг қўндаланг кесими текислигида гидродинамика босимнинг таксимланиши гидростатиканинг асосий қонунинг бўйсунади;

3) солишишмай потенциал энергия (яъни суюқликнинг бирлик оғирлигига нисбатан олинган потенциал энергияси) ихтиёрий горизонтал такҳослаш 0—0 текисликига нисбатан олинган бўлиб, оқим қўндаланг кесимининг ҳамма нуктлари учун бир хил.

Бу хоссаларни исботдаймиз. Текис ўзгарувчан ҳаракатнинг биринчи хоссаси тўғридан-тўфри шу текис ўзгарувчан ҳаракат тушунчасидан келиб чиқади. Бу ҳол параллел йўналган ҳаракат турига жуда яқин бўлиб, унда ўз-ўзидан маълумки, оқимнинг қўндаланг кесими текис ҳамда оқим ўқига тик бўлади. Текис ўзгарувчан ҳаракатнинг иккинчи хосса-сини қўйиндагича исботлаш мумкин. Оқим найчалари бир-бирига нисбатан параллел ҳаракат қилаётган суюқлик ичида ниҳоятда кичик \(a - b - c - d\) параллелепипедни ажратиб олиб, унинг мувозанат ҳолатини қараб чиқамиз. Биз ажратиб олин параллелепипедга таъсир этаётган ва уни мувозанат ҳолатида саклаб турувчи қучлар (параллелепипеднинг \(G\) оғирлик кучи, параллелепипедга алоқаси бўлган, уни ўраб турган ташқи суюқлик заррачаларининг \(P_1, P_2, P_3, P_4\))
bosim kuchlari, mj inerция кучи)ни ўрнига кўйсак, шу қара-лаётган ҳолат учун юқорида айтилган биринчи хоссаға асосан, бу mj куч окимнинг кўндаланг кесими юзасиға нормал йўналанган бўлади (3.12-расм). Агар юқорида келтирилган кучларнинг вертикал ўққа проекциясини олсак ва унинг мувозанат тенгламасини ёзсак, у ҳолда

\[P_3 + G = P_4, \]

(3.14)

ёки

\[P_4 - P_3 = G, \]

(3.15)

бундан, инерция кучи (3.14), (3.15) тенгламаларга кирмaganini кўрамиз, демак, окимнинг кўндаланг кесими майдонидаги ниҳоятда кичик суъқлик ҳажмининг мувозанат ҳолати шу тинч ҳолатдаги суъқликдаги шундай кичик суъқлик ҳажмининг мувозанатидан фарқ қилмайди. Бундан текис ўзгарувчан ҳаракатдаги окимнинг кўндаланг кесимининг майдони бўйича гидродинамик босимнинг таксимланиши тинч ҳолатдаги суъқликдаги горизонтал босимнинг таксимланишидан фарқ қилмаслиги қўриниб турибди. Учунчи хоссаси иккинчи хоссасининг натижасидан келиб чиқади. Гидростатикадан маълумки (2.1-§ га қараб), нуқтадаги \(p \) гидростатик босим ва унинг ўрнини аниқловчи \(z \) вертикал координатасининг ъифиндиси ўша нуқтага нисбатан ўзгармас бўлади (тинч ҳолатдаги суъқликнинг бутун ҳажми бўйича):

\[\frac{p}{\gamma} + z = \text{const.} \]

(3.16)
3.13- рasm.

Текис ўзгарувчан ҳаракат учун окимнинг фақат кўндаланг кесими майдони бўйича гидродинамик босимнинг таксимланиши гидростатик босимнинг таксимланиши қонунига бўйсунади:

\[
\frac{P}{\gamma} + z = \text{const (окимнинг берилган кўндаланг кесими майдони бўйича)},
\]

(3.17)

бу ерда \(z\) — вертикал координата, яъни \(O-O\) горизонтал такқослаш текисликка нисбатан ҳаракатдаги суюқлик ичида қаралаётган нукта жойлашган баландлик (3.13-расм); \(p\) — шу нуктадаги гидродинамик босим.

Ҳулоса қилиб айтганда, текис ўзгарувчан ҳаракатдаги окимнинг кўндаланг кесимининг майдонидаги ихтиёрий нуктага нисбатан \(\frac{P}{\gamma}\) ва \(z\) нинг йигиндиси ўзгармас бўлади (3.13-расм), масалан, \(A-A\) кўндаланг кесим учун

\[
\left(\frac{P}{\gamma} + z\right)_{A-A} = \text{const, } B-B \text{ кўндаланг кесим учун}
\]

110
\(\left(\frac{v'}{v} + z' \right)_{B-B} = \text{const} \) ва бошқа қўндаланг кесимлар учун, унинг ўзининг микдори \(\left(\frac{p'}{p} + z \right)_{n-n} = \text{const} \), аммо шуни ай- ниб ўтиш керакки, қимнинг ҳар хил қўндаланг кесимлари учун бу йигиндилик ҳар хил бўлади.

3.5-§. СУЮҚЛИК ҚИМНИНГ ГИДРАВЛИК ЭЛЕМЕНТЛАРИ. ҚИМНИНГ ҚЎНДАЛАНГ КЕСИМИ БЎЙИЧА ЎРТАЧА ТЕЗЛИГИ. СУЮҚЛИК ҚИМНИНГ ҲАЖМИЙ САРФИ

Қимнинг қўндаланг кесими майдоннинг гидравлик элементлари. Суюқлик қимнинг ҳаракати ўрганилаётганда қимнинг қўндаланг кесим майдоннинг қуйидағи асосий гидравлик элементлари назарда тутилади: қимнинг қўндаланг кесими майдони; ўзаннинг ҳўлланган (қўндаланг кесими бўйича) периметрининг узунлиги; гидравлик радиуси ва бошқалар.

1. Қимнинг қўндаланг кесими. Қимнинг қўндаланг кесими деб, суюқликнинг қим чизиклариға тик ўтказилган текислик ёрдамида кесиб ўтган юзага айтилади ва у юза қимнинг ичида жойлашган бўлиб, жонли кесим дейилади ва о билен ифодаланади.

Умуман қимнинг қўндаланг кесими бироз эгри чизикли юздан иборат бўлади (3.14 а-расм), факат текис ўзгарувчан ҳаракат учун қимнинг қўндаланг кесими текис юзали текисликдан иборат бўлади (3.14 б-расм).

Шунинг учун кўпинча амалий гидравлик када, текис ўзгарувчан ҳаракатдаги қимларда, қимнинг қўндаланг кесими деб, суюқликнинг ҳаракат йўналишига нормал бўлган қим-
3.15-расм.

нинг текис кўндаланг кесимига айтилади. Гидравликада окимнинг кўндаланг кесими майдони шартли равишда о харфи билан ифодаланади. 3.15- расмга нисбатан окимнинг кўндаланг кесими майдони:

а) трапеция шаклидағи ўзан учун

$$\omega = (b + mh) h; \quad (3.18)$$

б) тўғри тўртбурчак шакли ўзан учун

$$\omega = bh; \quad (3.19)$$

в) учбурчак шакли ўзан учун

$$\omega = \frac{Bh}{2}; \quad (3.20)$$

g) доира шаклдағи ўзанлар (масалан, кувурлар) учун бу кувурларда суюқлик ҳаракати напорли бўлган ҳолда

$$\omega = \frac{khD^2}{4}. \quad (3.21)$$

112
Ихтиёрий шаклдаги кувурларда суюқлик ҳаракати наноқиз бўлса, бундай кувурлар (дренаж кувурлари, туннел-чар ва бошқалар) каналлаштирилган кувурлар деб аталади. Булар гидравлик нуктани назардан очик ўзанлар қаторига киради ва уларнинг қўндаланг кесим майдонлари шакллариға қараб юқорида келтирилган (3.18), (3.19), (3.20), (3.21) ва бошқа формулалар ёрдамида ҳисобланади.

2. Озан қўндаланг кесимининг ҳулланган периметри. Ҳулланган периметр деб ўзаннинг қўндаланг кесими бўйича ҳаракатдаги суюқлик билан ҳулланган периметрининг узунлиги айтилади. Озан қўндаланг кесимининг ҳулланган периметри узунлиги χ ҳаракий билан ифодаланади. Бу тушунчадан келиб чиқадики, очик ўзанлар (канал, дарё ва бошқалар) учун унинг қўндаланг кесимининг ҳулланган периметри ўзан қўндаланг кесимларининг шакллариға борлик. Масалан, трапеция шакли (3.15а-расм) ўзан (канал) учун унинг ҳулланган периметрининг узунлиги

$$\chi = AB + BC + CD; \quad (3.22)$$

tўгри тўртбурчакли ўзан (канал) учун (3.15 б-расм)

$$\chi = AB + BC + CD; \quad (3.23)$$

учбурчакли ўзан (канал) учун (3.15 в -расм)

$$\chi = AB + BC; \quad (3.24)$$

doира шакли ўзан (кувур) учун (3.15 г-расм)

$$\chi = \pi D. \quad (3.25)$$

Юқорида келтирилган мисоллардан қўринадики, очик ўзанларда (3.15-расм) уларнинг қўндаланг кесимлари бўйича ҳулланган периметрларининг узунлиги χ ўзанларнинг геометрик қўндаланг кесими билан мослашмайди. Напорли кувурларда эса унинг ҳулланган периметри кувурнинг геометрик периметри билан мослашади. Шундай қилиб, очик ўзанларда уларнинг қўндаланг кесими майдони окимнинг қўндаланг кесими майдонидан фарқ қилади. Щунинг учун гидротехник иншоотларни гидравлик ҳисоблаш пайтида берилган ўзандаги окимнинг қўндаланг кесимининг 8—К-24 113

www.ziyouz.com kutubxonasi
майдони билан ўзаннинг кўндаланг кесими майдони орасидаги фарққа катта эътибор бериш керак.

3. Гидравлик радиус. Окимнинг кўндаланг кесими майдонининг шу кесимдаги ўзаннинг ҳулланган периметрига нисбати гидравлик радиус деб аталади. Гидравлик радиус R шартли белги билан ифодаланади ва қўйилдагича ёзилади:

$$R = \frac{\omega}{\chi}. \quad (3.26)$$

Гидравлик радиуснинг физик маъноси. Бу гидравлик элемен-т ӯзан кўндаланг кесими кесмининг шаклини ва ӯзаннинг дейорлари ҳамда тубининг гадир-будурликларини (микро- ва макро шакларини) қиёсан ифодалайди, чунки ω ва χ ӯзанлардаги (унинг довридаги ва тубидаги) нотекисилқ- ларнинг микро- ва макро шакларини характерловчи параметрлари ҳисобланади.

3.1-масала. Трапеция шаклидаги каналнинг кўндаланг кесими бўйича (3.16 а, б-расм) сув сатхининг қенглиги $AD = B = 4,0$ м, тубининг эни $BC = b = 1,0$ м, каналдаги сувнинг чукурлиги $h = 1,0$ м берилиган. Шунга қура, канал- нинг гидравлик радиусини аниқлант.

Ечиш. Окимнинг кўндаланг кесими майдони

$$\omega = \frac{1}{2} (B + b)h = \frac{1}{2} (4 + 1) 1 = 2,5 \text{ м}^2.$$

Кanalнинг ҳулланган периметрининг узунлиги

$$\chi = |AB| + |BC| + |CD| = 1,8 + 1,0 + 1,8 = 4,6 \text{ м};$$

бунда

$$AB = CD = \sqrt{\left[\frac{1}{2} (B - b)\right]^2 + h^2} = \sqrt{\left[\frac{1}{2} (4 - 1,0)\right]^2 + 1,0^2} = 1,8 \text{ м};$$

$$BC = b = 1,0 \text{ м}.$$

Гидравлик радиус

$$R = \frac{\omega}{\chi} = \frac{2,5}{4,6} = 0,54 \text{ м}.$$

Бу масаланинг бошқачароқ ечимини тахлил қиламиз:
3.16-рис.

Трапеция шаклдаги канал учун окимнинг кўндаланг кесимининг майдони

\[\omega = (b + mh)h = 2,5 \text{ м}^2, \]

бу ерда \(m \) — канал ён деворининг нишаб коэффициенти. Масалада \(m \) берилмаган. Шунга қарамасдан, каналнинг кўндаланг кесими учун берилган бошқа гидравлиқ элементларининг миқдорлари асосида \(m \) ни англаш мумкин (чизма усулини қўллаш йўли билан). 3.16-расмдандан \(m = 1,5 \), у ҳолда

\[\omega = (b + mh)h = (1,0 + 1,5 \cdot 1,0)1,0 = 2,5 \text{ м}^2, \]

трапеция шакли канал учун унинг ҳўлланган периметрининг узунлиги

\[\chi = b + 2h\sqrt{1 + m^2} = 1,0 + 2 \cdot 1,0\sqrt{1,0 + 1,5^2} = 4,6 \text{ м}. \]

Гидравлиқ радиус

\[R = \frac{\omega}{\chi} = \frac{2,5}{4,6} = 0,54 \text{ м}. \]

3.2-масала. Доира шаклли кувур берилиган, учун ички диаметри \(d = 0,5 \) м. Бу кувурда суюқлик окимнинг ҳаракати напорли. Гидравлиқ радиусни аниқланг.

Ечиш. Доира шаклли кувурнинг кўндаланг кесимининг майдони

\[\omega = \frac{\pi d^2}{4} = \frac{3,14 \cdot 0,5^2}{4} = 0,196 \text{ м}^2. \]
Ҳуллangan perimetrinинг узунлиги

\[\chi = \pi d = 3.14 \cdot 0.5 = 1.57 \text{ м.} \]

Гидравлик радиус

\[R = \frac{\omega}{\chi} = \frac{0.196}{1.57} = 0.125 \text{ м.} \]

4. Суюқликнинг ҳажмиий сарфи. Суюқликнинг ҳажмиий сарфи деб, вақт бирлиги учида ўзанинг берилган кўндаланг кесимидан ўтган суюқлик ҳажмига айтилади. Гидравликада суюқликнинг ҳажмиий сарфи \(Q \) билан, элементар оким нийча учун суюқликнинг ҳажмиий сарфи эса \(dQ \) билан белгиланади. \(Q \) нинг ўлчов бирлиги

\[|Q| = \frac{I^3}{T}. \] (3.27)

Агар суюқликнинг тулик окимини элементар оким нийчаларидан ташкил топган десак, у ҳолда суюқликнинг тулик окими учун унинг ҳажмиий сарфи, шу элементар оким нийчаларининг ниҳоятида кичик кўндаланг кесимидан ўтаётган суюқликнинг ҳажмиий сарфларининг йигиндисидан иборат

\[Q = \int_{\omega} dQ. \] (3.28)

Агар элементар оким нийчасининг ниҳоятида кичик кўндаланг кесим майдонини \(d\omega \), шу элементар окимнинг тезлигини \(u \) билан белгиласак, унда барқарор ҳаракатдаги элементар оким нийчасининг хоссасини назарда тутган ҳолда, элементар оким нийчасининг кўндаланг кесимидан ўтаётган суюқликнинг ҳажмиий сарфини қуйидагicha ёзиш мумкин:

\[dQ = ud\omega. \] (3.29)

Бу ҳолда суюқликнинг тулик ҳажмиий сарфи қуйидагича бўлади

\[Q = \int_{\omega} dQ = \int u d\omega. \] (3.30)

Маълумки, ҳатто барқарор ҳаракатдаги окимнинг кўндаланг кесими майдони бўйича ҳар хил нуктларда, улар-
нинг тезликлари ҳар хил бўлганлиги сабабли ҳамда шу қўндаланг кесим бўйича тезликларининг тақсимланиш қону- ни аник ишлаб чиқилмагани учун суюқликнинг тўлиқ ҳаж- мий сарфини (3.30) тенгламадан аниклаш қўйин ва у тен- гламадан гидравлик масалаларни ечишда, фақат назарий усулда, оқим ҳаракатини ўрганишда ғойдaloniladi. Амалда эса, суюқликнинг тўлиқ ҳажмий сарфини аниклашда берилиган оқимнинг қўндаланг кесимидаги ўртача тезлиги ғушунчасидан ғойдaloniladi, чунки оқим тезлиги оқим- нинг қўндаланг кесимидаги ҳар хил нўқталаарда ҳар хил бўлади, масalan,

$$u_1
eq u_2
eq u_3 \ldots$$ (3.31)

5. Тўлиқ оқимнинг қўндаланг кесимининг майдони бўйича ўртача тезлиги. Тўлиқ оқимнинг берилиган қўндаланг кесимининг майдони бўйича ўртача тезлиги вақт бирили учида берилиган қўндаланг кесимдан ўтган сув ҳажмийнинг шу ўзандаги оқимнинг қўндаланг кесими майдонига бўлган нисбатига айтилади. Бошқача қиilib айтганда в ўртача тезлик ҳажмий сув сарфи Q нинг қўндаланг кесим майдони вга нис- бати бўлади.

Тўлиқ оқимнинг берилиган қўндаланг кесими бўйича ўртача тезлиги гидравликада v шартли белги билан ифодаланади ва унинг ўлчов бирилиги

$$|v| = \frac{L}{T}.$$ (3.32)

Бу тенгламадан ҳар бир элементар оқим найчасидаги ҳақкий оқим тезлиги u ни тўлиқ оқимнинг қўндаланг кесими бўйича ўртача тезлиги v билан алмаштирсак, у ҳолда

$$Q = \int ud\omega = v\int d\omega = v\omega, $$ (3.33)

ёки

$$Q = v\omega,$$ (3.34)

йўни берилиган қўндаланг кесимда суюқликнинг ҳажмий сарфи оқимнинг қўндаланг кесими майдонини унинг ўртача тезлигига қўпайтмасига тенг. (3.33) тенгламадан оқимнинг ўртача тезлиги

117
Шуний айтиб ўтиш керакки, окимнинг ўртача тезлиги v тушунчаси фақат элементар оким нийчалари (худди шундай, оким чизиклари) паралелл бўлган ва текис ўзгарув-чун ҳаракат учун қўлланилади. Юқорида (3.34) ва (3.35) тенгламалар гидравликада зарур ҳамда улар гидротехника, сув таъминоти ва канализация, гидромашина, гидрометрия, мелиорация, ўзан жараёнларини ўрганишда кенг қўламда қўлланилади ва муҳим формулалардан бири ҳисобланади. Шу сабабли бу тенгламаларни талабалар жуда яхши ўрганиши шарт, чунки у гидродинамика нинг асосий тенгламаларидан бири.

ликда 1, 2, 3, 4 нукталарни олиб, улардаги \(u_1, u_2, u_3, u_4 \) тезлик векторларини 3.17-расмда кўрсатилган идек бажармиз (бу тезликлар лаборатория шароитида тезлик ўлчайдиган асбооблар — X. Пито трубкаси, микровертушка ва бошқалар, дала шароитида эса пўкааклар, вертушкалар ва бошқа асбооблар ёрдамида гидрометрия қоидаларида асосан ўлчанади). Шу 1, 2, 3, 4 нукталардаги \(u_1, u_2, u_3, u_4 \) тезлик векторларининг охирларини эгри чизик билан бирлаштириб, парабола шаклинни ҳосил қиламиз, бу бизга шу вертикал бўйича нукталардаги тезликларнинг тақсимланниси харкаретини кўрсатади. Бу шакл берилиган \(M-N \) ёки III вертикал учун қурилиган тезликларнинг тақсимланниси эпюраси деб аталади (3.17 а-расм). Табиатда кўндаланг кесимларнинг ҳар хил вертикаллари учун тезликнинг тақсимланниси эпюраси бир хил бўлмайди. Каналларнинг ўқидан унинг қирғоқларига яқинлашган сари окимнинг тезлигин камайиб боради. Шунинг учун окимнинг кўндаланг кесимда бир неча вертикаллар тайинлаб, уларда юқорида кўрсатилган усулда бошқа вертикал I, II, IV, V лар учун ўртача оким тезлигини аниқлаймиз. Шу вертикалларнинг ҳар бири учун уларнинг ўрталаштирилган тезликларидан тўлиқ окимнинг кўндаланг кесими бўйича (унинг эпюрасини чизиб) окимнинг тезлиги \(v \) ни ва суъоқликнинг ҳажмий сарфини* аниқлаймиз.

3.3-масала. Канадаги окимнинг кўндаланг кесими майдони \(\omega = 4,0 \text{ m}^2 \) ва окимнинг ўртача тезлиги \(v = 0,85 \text{ m/s} \) берилиган. Суъоқликнинг ҳажмий сарфини аниқланг.

\[Ениш. Q = v \cdot \omega = 0,85 \cdot 4,0 = 3,40 \text{ m}^3/\text{s}. \]

3.4-масала. Пўлат кувурда сув сарфи \(Q = 0,25 \text{ m}^3/\text{s} \), ва унинг кўндаланг кесимининг майдони \(\omega = 0,60 \text{ m}^2 \) бўлса, ундағи окимнинг ўртача тезлигинни аниқланг.

\[Ениш. v = \frac{Q}{\omega} = \frac{0,25}{0,60} = 0,42 \text{ m/s}. \]

* Бундан буён соддалаштириш мақсадида «суъоқликнинг ҳажмий сарфи» ўрнига «сув сарфи» деб югорамиз.
3.6-§. СУЮКЛИК ОКИМИНИНГ УЗЛУКСИЗЛИК ТЕНГЛАМАСИ

Умумий тушунча. Гидравликада асосан суюқлик окими ичида узилиш ҳодисалари (жараёнлари) бўлмайдиган окимлар ўрганилади, яъни оким шундай бўлиши қеракки, у ҳаракат қилаётган ўзанда ичидағи ҳамма бўшликлар суюқлик билан зич тўлдирилган бўлиши қерак. Гидродинамикада бундай зич суюқлик окимиининг ҳаракатини ифодаловчи тенглама узлуксизлик тенгламаси деб аталади. Шу сабабли гидромеханикада суюқлик деган сўзнинг ўрнига узлуксиз муҳит сузи ишлатилади. Бу ҳол ҳақиқатта анча якинроқ келса қерак, чунки фазодаги суюқлик окими ҳаракатининг ихтиёрий нуктасида суюқлик заррачасини у Câmaraтиш мумкин. Аввало, узлуксизлик тенгламасини окимнинг элементар найчаси учун ишлаб чиқамиз ва олинган натижани тўлиқ оким учун татбиқ этамиз.

А. Элементар оким найчаси учун узлуксизлик тенгламаси

Суюқликнинг элементар оким найчасини (3.18-расм) олиб, унда 1-1 ва 2-2 кўндаланг кесимларни тайинламиз. Элементар оким найчаси 1-1 кўндаланг кесими майдонини \(d\omega_1 \), ўша кесимдаги оким тезлигини \(u_1 \), сув сарфи \(dQ_1 \) ва худди шунингдек, 2-2 кесим учун \(d\omega_2 \), \(u_2 \), \(dQ_2 \) деб ифодаласак, (3.29) тенгламага асосан

\[
\begin{align*}
 dQ_1 &= u_1 d\omega_1; \\
 dQ_2 &= u_2 d\omega_2.
\end{align*}
\] (3.36)

Барқарор ҳаракатдаги элементар оким найчасининг хоссасига асосан, биринчида, элементар оким найчаси орқали ўтаётган сув сарфи вақт ўтиши билан ўзгармайди

![3.18-расм](120)
на иккинчида, элементар оким найчасининг ён деворла-рининг сирти орқали суъиклик ичкарига кирмайди ва ичкаридан ташкарига чиқмайди, бундан ташқари бу суъиклик сиқилмайди, яъни \(\rho = \text{const} \). Бундан келиб чиққадики, элементар оким найчаци орқали вақт ўтиши билан 1–1 кўндаланг кесимидан кирган суъиклик ҳақми, унинг 2–2 кўндаланг кесимидан чиққан суъиклик ҳақмига тент, у ҳолда куйидаги шарт бахарлиши керак

\[
dQ_1 dt = dQ_2 dt, \tag{3.37}
\]

ёки

\[
dQ_1 = dQ_2, \tag{3.38}
\]

(3.36) тенгламадан

\[
u_1 d\omega_1 = u_2 d\omega_2. \tag{3.39}
\]

Демак, окимнинг узунлиги бўйича 1–1 ва 2–2 кўндаланг кесимлари ихтиёрий бўлгани сабабли (3.39) тенгламани бошқа ихтиёрий кесимлар учун ҳам ёзиш мумкин

\[
u_1 d\omega_1 = u_2 d\omega_2 = \ldots = u d\omega = dQ = \text{const}, \tag{3.40}
\]

ёки

\[
dQ = u d\omega. \tag{3.41}
\]

Бу (3.40) тенглама элементар оким найчаци учун узлук-сизлик тенгламаси деб аталади. (3.40) ва (3.41) тенглама-
лардан кўриниб тургибдики, ихтиёрий элементар оким ний-часидан ўтаётган элементар сув сарфининг микдори барқарор ҳаракатдаги оким учун ўзгармас бўлади.

Б. Тўлик оким учун узлуксизлик тенгламаси

Тўлик суюқлик окимини қатор элементар оким наичаларга бўлсак (3.19-расм), ихтиёрий бирор элементар оким наичаси учун (3.40) тенгламага асосан,

\[u_1 d\omega_1 = u_2 d\omega_2 = \ldots, \] \hspace{1cm} (3.42)

(3.42) тенгламанинг икки томонини окимнинг кўндаланг кесими бўйича элементар майдонларини алоқида кўшиб чиқсак, у ҳолда

\[\int_{\omega_1} u_1 d\omega_1 = \int_{\omega_2} u_2 d\omega_2 = \ldots, \] \hspace{1cm} (3.43)

(3.43) тенгламага асосан

\[\int_{\omega_1} u_1 d\omega_1 = v_1 \omega_1; \] \hspace{1cm} (3.44)

\[\int_{\omega_2} u_2 d\omega_2 = v_2 \omega_2 \] \hspace{1cm} (3.45)

булади, у ҳолда (3.43) тенгламадан

\[v_1 \omega_1 = v_2 \omega_2 = \ldots v \omega = Q; \] \hspace{1cm} (3.46)

ъяни

\[Q_1 = Q_2 = \ldots = Q = const. \] \hspace{1cm} (3.47)

(3.47) тенгламадан кўринадики, суюқлик сарфининг микдори тўлик окимнинг кўндаланг кесими бўйича барқарор ҳаракат учун ўзгармас бўлади. (3.46) тенгламани такроран ёзмиз:

\[v_1 \omega_1 = v_2 \omega_2 = \ldots v \omega = Q = const. \] \hspace{1cm} (3.48)

(3.48) тенгламадан кўринадики, барқарор ҳаракат пайтида ҳам окимнинг кўндаланг кесими ва ундаги ўртача тезлик окимнинг узунлиги бўйича ўзгаришига қарамай, сув сарфи, яъни \(\omega \) кўндаланг кесим майдонининг шу кўндаланг кесим бўйича окимнинг \(v \) ўртача тезлигига кўпайт-
маси ҳар ҳил ихтиёрий кесимларда бир ҳил йўгармасдан қолади. (3.48) тенгламадан қўйидаги нисбатларни оламиз:

\[
\frac{v_1}{v_2} = \frac{\omega_2}{\omega_1}.
\]
(3.49)

(3.49) тенглама қўйидагича ўқилади: қўимнинг ихтиёрий икки қўндаланг кесимидаги ўртача тезликларнинг нисбати ўшо икки қўндаланг кесим майдонларининг нисбатига тесқари пропорционал.

3.5-масала. Қўндаланг кесими узунлиги бўйича ўзгарувчан (икки ҳил диаметрли) напорли қувур берилган. Қўимнинг биринчи қўндаланг кесимидаги \(v_1 \) ўртача тезлигини аниқлаган. Қувурнинг биринчи қўндаланг кесимидаги диаметри \(d_1 = 200 \) мм, иккинчи қўндаланг кесимидаги диаметри \(d_2 = 100 \) мм, ўшо иккинчи кесимдаги қўимнинг ўртача тезлиги \(v_2 = 1,0 \) м/с.

Ечиш. Қувурнинг иккага қўндаланг кесимларининг майдони:

\[
\omega_1 = \frac{\pi d_1}{4}; \quad \omega_2 = \frac{\pi d_2}{4}.
\]
(3.50)

(3.50) ни (3.49) га қўйсак,

\[
\frac{v_1}{v_2} = \frac{d_2^2}{d_1^2},
\]
(3.51)

яъни доиравий қувур учун иккага кесимлардаги қўим тезликларининг нисбати қувурнинг ўша кесимларидаги диаметрларининг квадратлари нисбатларига тесқари пропорционал. (3.51) тенгламадан қувурнинг биринчи қўндаланг кесимидаги қўимнинг ўртача тезлиги қўйидагича

\[
v_1 = v_2 \cdot \frac{d_2^2}{d_1^2},
\]

ёки уларнинг ўрнига \(d_1, d_2, v_2 \) қийматларини қўйиб чиқсак,

\[
v_1 = 1,0 \cdot \frac{0,10^2}{0,20^2} = 0,25 \text{ м/с}.
\]

123

www.ziyouz.com kutubxonasi
3.7-§. СУЮҚЛИК ОҚИМИНИНГ УЗЛУКСИЗЛИК ТЕНГЛАМАСИННИНГ ДИФФЕРЕНЦИАЛ ШАҚЛДАГИ КЎРИНИШИ

Суюқлик оқимининг узлуксизлик тенгламасининг аналитик шарти қўйидағи мухокамадан келиб чиқиши мумкун. Агар оқим сиҳилмайдиган узлуксиз мухит бўлса, вақт ўтиши билан унинг массаси қўпаймайди ва камаймайди. Фазода элементар параллелепипед шаклидаги суюқлик оқимини оламиз (3.20-расм), унинг ҳамма қирраларида ийтирий йўналишда узлуксиз равишда суюқлик оқади. Қараётган параллелепипед сукляклиқка лиқ тўла бўлганни учун параллелепипед ичидаги сукляк массасининг микдори вақт ўтиши билан муглоқ узгариш мумкин эмас. Параллелепипеднинг ул, вл, ул координата текисликларига параллел бўлган қирралари орқали кираётган ҳамда чиқиб кетаётган сукляк массасининг микдорини кузатамиз. Бунинг учун аввало, параллелепипеднинг ду, дз қирраси орқали кирган сукляк массасининг микдорини қараб чиқамиз: фарқ қилайлик, шу қирраси орқали кираётган суклякнинг тезлиги у вектори эса шу текисликка нормал бўлсин ва унинг қаршисидаги қиррасидан чиқиб кетаётган сукляк тезлиги у + \(\frac{d v_x}{d x} \) дўлсин (3.20-расм). Суклякнинг зичлигини \(\rho \) билан белгилаб, факат ул текислиги параллел бўлган қирраси орқали вақт бирлиги ичидага параллелепипед ичидан ўтган сукляк массаси микдорининг узгаришни оламиз. У қўйидағича ёзилади:

\[
\rho v_x dy dz - \rho \left(v_x + \frac{d v_x}{d x} \right) dx dz = -\rho \frac{d v_x}{d x} dx dy dz. \tag{3.52}
\]

3.20-расм.
Ҳулди шу йўл билан параллелепипед ичидан ўтиб, \(\mathbf{x} \) ва \(\mathbf{y} \) текислигига параллел бўлган параллелепипед қирраларидан вақт бирлиги ичидан ўтган суюқлик массасининг ўзгар-ришини аниклайди:

\[
- \rho \frac{\partial v_x}{\partial y} \, dx \, dy \, dz; \tag{3.53}
\]

\(\mathbf{x} \) текислигига нисбатан

\[
- \rho \frac{\partial v_z}{\partial z} \, dx \, dy \, dz. \tag{3.54}
\]

Суюқлик ҳаракатининг узлуксиз муҳит шартига биноан, параллелепипедга, унинг қирраларидан оқиб қираётган ва оқиб чиқаётган суюқликлар массасининг микдори ўзгар-майди (кушилмайди ҳам, камаймайди ҳам); у ҳолда юкорида келтирилган суюқлик массалари [(3.52), (3.53), (3.54) тенглагалар]нинг йифиндиси нолга тенг бўлади, яъни

\[
- \rho \, dx \, dy \, dz \left(\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \right) = 0. \tag{3.55}
\]

(3.55) тенглагамадан \(- \rho \, dx \, dy \, dz \) нолга тенг бўлмайди, у ҳолда қавс ичи нолга тенг бўлади

\[
\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0. \tag{3.56}
\]

Бу тенглама суюқлик оқимининг узлуксизлик тенгламаси шартини ифодаловчи аналитик кўриниш. Бу тенгламани 1755 й. Л. Эйлер ишлаб чиққан. Бундан ташқари узлуксизлик шарти суюқлик сарфининг ўзгармас шарти ёки узлуксиз муҳит шарти деб аталади.

Агар йифинди

\[
\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} \tag{3.57}
\]

нолга тенг бўлмаса, напорли қувурнинг қўндалаъга кесими суюқлик билан зич бўлмаган бўлар эди, яъни тулиқ оқими-нинг бирон бир элементар оқим началари ўзининг шак-лининг ўзгартириб ёки бирор томонга сурilib, тулиқ оқимни-нинг ичига бирор бир бошқа суюқлик микдорини олиши
мумкин эди. Аммо бу элементар оким найчасининг бирор томонга сурилиб, оким ичига суюқлик қабул қилиш имқонияти мутлако бўлмагани учун ҳамда окимнинг узлуксизлик шартини баҳаргани учун, дивергенция деган гидродинамики тушунчани қабул этишга тўғри келди, бу қисқартирилган ҳолда қуйидагиқа ифодаланади:

$$\text{div.} \quad (3.58)$$

Агар

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z}, \quad (3.59)$$

йигиндини

$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = \text{div}, \quad (3.60)$$

шартли белги билан ифодаласак, у ҳолда суюқлик ҳаракатининг узлуксиз мухит шартига асосан

$$d v = 0. \quad (3.61)$$

3.8-§. СУЮҚЛИК ОҚИМИНИНГ БАРҚАРОР TEKIS VA НОТЕКИС ИЛГАРИЛАНМА ҲАРАКАТИ.
НАПОРЛИ ВА НАПОРСИЗ ҲАРАКАТ

Юқорида биз суюқлик окими ҳаракатининг икки кўринишни, яъни бекарор ва барқарор ҳаракатларни қараб чиққан эдик. Қуйида ҳар бир ҳаракатни алоҳида қараб чиқамиз. Суюқлик окимнинг барқарор ҳаракати ўз навбатида яна икки хил кўринишдаги ҳаракатга, яъни барқарор текис илгариланма ва барқарор нотекис илгариланма ҳаракатларга бўлинади.

Суюқлик окимнинг барқарор текис илгариланма ҳаракати

Суюқлик ҳаракати пайтида окимнинг о кўндаланг кесими майдони ва шу кесим бўйича окимнинг v ўртача тезлиги ҳамда сувнинг чукурлиги h вақт ўтиши билан ўзаннинг узунлиги бўйича ўзгармаса, бундай ҳаракат барқарор текис илгариланма ҳаракат дейилади. Барқарор текис илгариланма ҳаракатда окимнинг кўндаланг кесими майдо-
ни текис бўлди, яъни \(\omega = \text{const} \) ва ҳамма қўндаланг кесимлардаги тегишили нуктalarда окимнинг ўртача тезликлари бир хил бўлади. Унда барча кесимлар учун фақат тезликларининг таъсирланиш эпюралари майдонлари бир хил бўлиб қўлмай, уларнинг шакллари ҳам бир хил бўлади. Бундай ҳаракат учун

\[
\begin{align*}
 v &= \text{const} \ (\text{окимнинг узунлиги бўйича}) \\
 h &= \text{const} \ (\text{окимнинг узунлиги бўйича})
\end{align*}
\] (3.62)

Суъқлик окимнинг барқарор нотекис илгариланма ҳаракати

Суъқликининг барқарор нотекис илгариланма ҳаракати пайтида окимнинг \(\omega \) қўндаланг кесими майдонни ва \(v \) ўртача тезлиги ўзан узунлиги бўйича ўзгаради, окимнинг тегишили нукталаридаги тезликлари эса бир-бирларига тенг бўлмайди: \(u_1 \neq u_2 \neq \ldots \) (3.21 а, б-расм). Бундай ҳаракат барқарор нотекис илгариланма ҳаракат дейилади. Бунда

\[
\begin{align*}
 v &\neq \text{const} \ (\text{окимнинг узунлиги бўйича}) \\
 h &\neq \text{const} \ (\text{окимнинг узунлиги бўйича})
\end{align*}
\] (3.63)

Очқ ўзанларда бирор гидротехник иншоот қурилганда суъқлик окимнинг чукурлиги унинг узунлиги бўйича ортиб ёки камайиб борган ҳоллардаги ҳаракати барқарор нотекис илгариланма ҳаракатга мисол бўлиши мумкин. 3.21 а-расмда барқарор нотекис илгариланма ҳарак-
катнинг шундай ҳолати кўрсатилган. Унда 1—1, 2—2 ва оқим узунлиги бўйича бошқа ихтиёрий кесимларда тезликнинг таксимланши эпюраси майдонлари \(\omega' \) бир-бирига тенг бўлади: \(\omega'_1 = \omega'_2 = \omega'_3 = \ldots \), аммо бу кўндаланг кесимлардаги сувнинг чукурлиги бўйича тегишли нукта-лардаги ўрталаштирилган тезликлари \(u_1, u_2, \ldots \) ўзаро тенг бўлмайди. Тезлик эпюралари майдонларнинг бир-бирига тенг бўлишига сабаб, улар суюқликнинг сарфининг ифода-лайди. Чунки барқарор ҳаракат учун \(Q = \text{const} \) бўлади. Шунга қарамасдан, тезликнинг таксимланши эпюраси шакли оқимнинг узунлиги бўйича ўзгарishi mumkin. Шунинг учун ҳам бундай ҳаракат суюқлик оқимнинг барқарор нотекис илгирланма ҳаракати дейилади (3.21 а ва 3.21 б-расм).

Суюқлик оқимнинг напорли ва напорсиз ҳаракати

Суюқликка таъсир этувчи ва уни ҳаракатга келтирувчи ташқи кучга боғлиқ бўлган ҳамма суюқлик оқимлари на-порли ва напорсиз ҳаракатларга бўлиниади. Суюқлик оқим ташқи манбалдан таъсир этадиган атмосфера босимида қатта босим кучи таъсирида ҳаракатга келса, бундай ҳаракат оқимнинг напорли ҳаракати дейилади. Ташқи манбалар қаторига гидравлик машиналар, миноралар сувлар ва бошқалар кириши mumkin (инкинчи боғга қаранг). Суюқликнинг напорли ҳаракати пайтида фақат қувириларда уларнинг кўндаланг кесимлари суюқлик билан лиқ тўғлан бўлиши керак. Амалда суюқликларнинг напорли ҳаракати бу — сувнинг водопровод қувиридаги ҳаракати, гидроелек- тростанциянинг напорли қувиридаги сувнинг ҳаракати ва бошқалар.

Оқимнинг напорсиз ҳаракати деб, суюқликнинг фақат эркин тушши тезланиши таъсирида ҳаракатида айтилади. Бундай ҳаракатлар суюқликларнинг сатҳлари очик бўлиши билан ҳарактерланади. Бу очик сув сатҳларига илгари-дан маълум ва ўзгармас бўлган атмосфера босими таъсир этади. Суюқликларнинг напорсиз ҳаракатларига сувнинг дарё, канал, дренаж қувиридаги ва бошқа очик ўзан- лардаги ҳаракатини мисол қилиб келтириш mumkin. Суюқликнинг қаттиқ девор билан чегараланмаган ҳоладаги оқим эркин оқим деб айтилади. Эркин оқимга мисол тариқасида ўт учирувчиларнинг матодан ясалган қувириларнинг охи-
рида жойлашган тор тешикли брендспойтдан (катта тезлекла чиқадиган суюқлик учун мослланган қурилма) оти-наб чиқадиган суюқлик ҳаракатини келтириш мумкин.

3.9-§. ГОРИЗОНТАЛ ЖОЙЛАШГАН ҚУВУРДА ИДЕАЛ СУЮҚЛИКНИНГ ЭЛЕМЕНТАР ОҚИМ НАЙЧАСИ ҲАРАКАТИ УЧУН Д. БЕРНУЛЛИ ТЕНГЛАМАСИ

Физиканинг асосий қонуни бўлган энергиянинг сакла-ниш қонуни суюқликнинг оким ҳаракатини ўрганишда катта аҳамиятга эга. Д. Бернулли тенгламаси эса ҳаракатда-ни суюқлик энергиясининг саклашиш қонунини ифодаловчи аналитик қўрinishидир. Шунинг учун Д. Бернулли тенгламаси гидродинамикининг асосий тенгламаларидан бири ҳисобланади, яъни гидравликага суюқликнинг ҳаракат қонунини ўрганиш қисминнинг асосий бўлиб кирган. Идеал суюқлик ҳаракати учун энергиянинг сакданиш қонунининг умумий қўрinishи қуйидагида ёзилади:

\[
\text{кинетик энергия} + \text{потенциал энергия} = \text{const.} \quad (3.64)
\]

Назарий механикадан маълумки, барқарор текис ил-гариланма ҳаракат қилаётган жисминнинг кинетик энергияси \(\frac{M u^2}{2} \); бу ёрда \(M \) — ҳаракатдаги жисминнинг массаси; \(u \) — барқарор текис илгариланма ҳаракат қилаётган суюқ-лик окими қўндаланг кесимнинг майдони бўйича ўртача тезлита. Назарий механикадан шунингдек маълумки, бар-қарор текис илгариланма ҳаракатдаги жисминнинг массаси (бу ёрда суюқ жисм массаси назарда тутилади) унга қўйил-ган кучнинг тезланишга нисбатиға тент. Бу ёрда оғирлиқ кучи вакт бирлиги ичида ўзанинг берилиш қўндаланг кесими орқали оқиб ўтаётган ҳақим бирлигига қаратилган-да (В. Н. Евреинов «Гидравлика». — Л. 1930, 70-б.).

\[
M = \frac{\gamma}{g} \quad , \quad (3.65)
\]

бунда \(\gamma \) — ҳақим бирлигидағи суюқлик оғирлиги; \(g \) — эркин тушиш тезланиши. Бундаи ҳолда кинетик энергия:

\[
\frac{M u^2}{2} = \frac{\gamma u^2}{2g} \quad . \quad (3.66)
\]

9—К-24 129

www.ziyouz.com kutubxonasi
Горизонтал жойлашган кувурда ҳаракат қилаётган суюқликларнинг потенциал энергияси ўзанинг деворига ва оким ичилаги суюқлик заррачаларига таъсир этаётган босим орқали ифодаланиди. Ҳақиқатан ҳам суюқликнинг ҳажм бирлигига нисбатан потенциал энергияси \(\gamma h \) га тенг. Ўз ўрнида \(\gamma h = p \) босимга тенг:

\[
p = \gamma h. \tag{3.67}
\]

Шунинг учун потенциал энергияни суюқликнинг ҳажм бирлиги ичида, унинг деворининг бирлик майдонлидаги босими деб қабул қилса бўлади. Бундайдай бошим суюқлик ҳаракати пайтидаги гидродинамик бошим деб аталади. Шундай қилиб, (3.64) формула ўрнига унинг ифодаларини қўйиб чиқсак:

\[
\frac{\nu^2}{2g} + p = \text{const.} \tag{3.68}
\]

Бу тенгламанинг иккала томонини \(\gamma \) га бўлсак, у ҳолда

\[
\left(1\right) \quad \frac{\nu^2}{2g} + \frac{p}{\gamma} = H = \text{const (белги).} \tag{3.69}
\]

(3.69) тенглама горизонтал жойлашган кувурда идеал суюқликнинг элементар окими найчаси ҳаракати учун Д. Бернулли тенгламаси. Бунда \(H \) напор деб аталади. У, шу горизонтал ўзанда идеал суюқлик окими учун кинетик ва потенциал энергияларнинг йифиндинистдан ташқил топган.

3.10- §. НОГОРИЗОНТАЛ ЖОЙЛАШГАН КУВУРДА ИДЕАЛ СЬЮҚЛИКНИНГ ЭЛЕМЕНТАР ОКИМИ НАЙЧАСИ ҲАРАКАТИ УЧУН Д. БЕРНУЛЛИ ТЕНГЛАМАСИ

Нишаб кувурда унинг ҳар бир илтиёрй кўндаланг кесими учун ҳавзадаги суюқликнинг сатҳига нисбатан жойлашши бир хил эмас; бунинг учун (3.69) тенглама кўринишида

\[
\frac{\nu^2}{2g} + \frac{p}{\gamma} = H = \text{const} \tag{3.70}
\]

ёзиш учун нишаб кувурнинг ҳар хил кўндаланг кесимларида напорнинг қийматини ҳар хил ҳолли оlish керак (3.22- ва
3.23-расмлар). Масалан, 3.22-расмдан қувурнинг нишаби \(i > 0 \) бўлганда 1-1 кесим учун унинг пасайиши \(H + z_1 \); 2-2 кесим учун \(H + z_2 \); 3-3 кесим учун \(H + z_3 \) ва ҳоказо; бунда \(H \) қувурнинг бошлангич нуктасидан то ҳавзадаги суюқлик-нинг сатҳигача бўлган баландлик. Шу тарзда нишаб қувурнинг ҳар хил ихтиёрий кўндальанг кесими учун Д. Бернулли тенгламаси ҳар хил ёзилади; масалан, 1-1 кесим учун

\[
\frac{u_1^2}{2g} + \frac{p_1}{\gamma} + z_1 = H + z_1; \quad (3.71)
\]

2-2 кесим учун

\[
\frac{u_2^2}{2g} + \frac{p_2}{\gamma} + z_2 = H + z_2; \quad (3.72)
\]

3-3 кесим учун

\[
\frac{u_3^2}{2g} + \frac{p_3}{\gamma} + z_3 = H + z_3; \quad (3.73)
\]

ва ҳоказо.

Агар қувурнинг нишаби \(i < 0 \) бўлса (3.23-расм), у ҳолда Д. Бернулли тенгламаси кўйиндаги кўринишда бўлади:

1-1 кесим учун:

\[
\frac{u_1^2}{2g} + \frac{p_1}{\gamma} + z_1 = H - z_1; \quad (3.74)
\]
2—2 кесим учун

\[
\frac{u^2}{2g} + \frac{p}{\gamma} - z_2 = H - z_2; \quad (3.75)
\]

3—3 кесим учун

\[
\frac{u^3}{2g} + \frac{p}{\gamma} - z_3 = H - z_3; \quad (3.76)
\]

ва ҳоказо.

Амалда эса ҳар хил ҳодисага дуч келишимиз мумкин, масалан, қаралаётган қувурнинг узунлиги бўйича унинг
нишаби ҳам \(i > 0 \), ҳам \(i < 0 \) ва ҳам \(i = 0 \) (горизонтал) бўли-
ши мумкин. Бундай ҳолда қувурнинг ҳар ҳил қўндаланг
cесимлари учун Д. Бернулли тенгламасининг ўнг томони-
dаги иккинчи ҳади ва чап томонидаги учунчи ҳади ҳам
мусбат, ҳам манфий ва ҳам нол бўлиши мумкин. Бу ҳолда
амалда Д. Бернулли тенгламасини қўллаш анча мураккаб-
лашади. Бунинг учун суъюлик напорини ва Д. Бернулли
tенгламасидаги бошқа ҳақдари йиҳтёрий шартли гори-
zонтал 0—0 такқослаш текисликка нисбатан (шартли го-
ризонтал текислик 0—0 такқослаш текислиги деб атала-
dи) ва у текисликни ўзаннинг тубидан олинса, мақсадга
мувофік бўлади, аммо амалда шундай масалалар учрай-
dики, ўзаннинг ечимини олиш учун 0—0 такқослаш текис-
лигини фақат ўзаннинг тубидан эмас, балки бошқа жой-
lардан олишга тўғри келади. ЕчилаЬтан масалаларнинг
шартига қараб, 0—0 такқослаш текислиги қардан оли-
ниши аниқланади. Горизонтал 0—0 такқослаш текисли-
gини шундай жойдан олиш керакки, бунда Д. Бернулли
tенгламасидаги ҳақдари қўпчиллиги кискариб кетсин
(3.24-рasm). Ўзаннинг нишаби \(i > 0 \) ёки \(i < 0 \) бўлишидан
катъи назар, ногоризонтал жойлашган қувурда идеал су-
ъюликнинг оқими учун Д. Бернулули тенгламаси қўйндиги
умумий қўринишда бўлади

\[
\frac{u^2}{2g} + \frac{p}{\gamma} + z = H, \quad (3.77)
\]

бу ерда \(\frac{p}{\gamma} \) — пьезометрик баландлик, м; \(z \) — геодезик бал-
ландлик, м. Йиҳтёрий ҳолатда жойлашган қувурда ҳаракат

132

www.ziyouz.com kutubxonasi
3.24-рам.

қилаётган идеал суюқлик учун Д. Бернгули тенгламасини куйидаги кўринишда ёзиш мумкин:

$$\frac{u^2}{2g} + \frac{p}{\gamma} + z = H = \text{const},$$ \quad (3.78)

ёки ики кесим учун

$$\frac{u_1^2}{2g} + \frac{p_1}{\gamma} + z_1 = \frac{u_2^2}{2g} + \frac{p_2}{\gamma} + z_2 \quad (3.79)$$

Назарий механика нуктаси назаридан Д. Бернгули тенгламасининг маъноси кинетик энергиянинг ўзгариш қонунидан келтириб чиқарилиган ҳолда аникланади. Шунинг учун Д. Бернгули тенгламасини келтириб чиқаришда назарий механика фанида маълум бўлган кинетик энергиянинг ўзгариш теоремасини қўллаймиз.

Назарий механикадан маълумки, ҳаракатдаги суюқликнинг маълум бир қисқа вақт ўтиши билан кинетик энергияси (КЭ)нинг ўзгариши $\delta \left(\frac{Mu^2}{2}\right)$ шу элементар δt вақт ичидага суюқликка таъсир этадиган кучлар бажарган ишларининг йигиндисига тенг.

Кинетик энергиянинг ўзгариши қаралаётган ҳаракатдаги суюқликнинг инки ҳолатидағи кинетик энергиясининг фарқидан аникланади (3.25-рам): 1) суюқликнинг бошлангич вақтдаги кинетик энергияси, яъни оқимнинг 1–1 ва 2–2 қўндалган кесими билан чегараланг анорлики-
3.25-расм
dagi xoli учун; 2) δt вакт ўтиши билан 1–1 ва 2–2 кесим оралиқдағи суюқлик 1–1 кесимдан 2–2 кесимга ўтган ҳолатидаги кинетик энергияси (3.25-расмда бу ҳолат пунктир билан кўрсатилган). Шу кинетик энергиянинг ўзгариши-ни $\delta(K\mathcal{E})$, яъни $K\mathcal{E}$ 2–2... 2′–2′ ва $K\mathcal{E}$ 1–1... 1′–1′ ҳажмларнинг кинетик энергиясининг фарқи орқали ифодалаш мумкин, чунки 1′–1′ ... 2–2 суюқлик ҳажмининг иккала вақтдаги иккала ҳолатининг кинетик энергияси бир хил бўлади. Оқимнинг 2–2 ... 2′–2′ кўндаланг кесимлароро ҳажм-даги суюқликнинг кинетик энергияси

$$\frac{\gamma}{g} \delta Q \delta t \frac{u_i^2}{2},$$

(3.80)

бунда $\frac{\gamma}{g} \delta Q \delta t$ — δt элементар вакт ичида оқиб ўтган суюқлик массаси; δQ — элементар суюқлик сарфи, оқимнинг узуксизлик шартiga биноан $\delta Q =\text{const}$. 1–1... 1′–1′ кўндаланг кесимлароро ҳажмдаги суюқликнинг кинетик энергияси

$$\frac{\gamma}{g} \delta Q \delta t \frac{u_i^2}{2}.$$

(3.81)

Шунинг учун δt элементар вакт ичида кинетик энергия-нинг ўзгариши

$$\frac{\gamma}{g} \delta Q \delta t \frac{u_i^2}{2} - \frac{\gamma}{g} \delta Q \delta t \frac{u_i^2}{2},$$

(3.82)
$$\gamma g \delta Q \delta t \left(\frac{u_2^2 - u_1^2}{2} \right), \quad (3.83)$$

$$\gamma \delta Q \delta t \left(\frac{u_2^3 - u_1^3}{2g} \right). \quad (3.84)$$

δt элементар вақт ичида оқимнинг 1–1 ва 2–2 қўндаланг кесимидаги суюқликнинг бўлатига таъсир этактан қучларнинг бajarган ишлари қўйидагилардан иборат:

1) z_1 баландлиги ҳолатидан z_2 баландлиги ҳолатига ўтган суюқлик ҳажмининг оғирлиг қучининг бajarган иш (3.25-расм);

2) оқимнинг 1–1 ва 2–2 қўндаланг кесимлари май-дончалариға таъсир этувчи гидродинамиқ босим қучларнинг бajarган иш иши;

3) оқимнинг 1–1 ва 2–2 кесим орадиғида суюқлик ҳаракатига кувур деворининг кўрсатган қаршилик қучининг бajarган иши;

4) оқимнинг 1–1 ... 2–2 бўланген ён деворларнинг юзасига таъсир этувчи ташқи гидродинамиқ босим қучининг бajarган иши;

5) оқимнинг 1–1...2–2 бўлганинг ичидағи ички бо-сим қучларнинг бajarган иши.

Биз қараётган суюқлик идеал суюқлик бўлгани учун 3-бандда келтирилган қаршилик кучи нолга тенг бўлади; 4-бандда келтирилган ён деворларнинг юзасига таъсир этув-чи ташқи гидродинамиқ босим қучининг бajarган иш иши ҳам нолга тенг, чунки улар ҳаракатдаги суюқликнинг 1–1 ва 2–2 кесимлариға тик йўналган; 5-банддаги ички бо-сим қучларнинг бajarган ишлари ҳам нолга тенг, чунки бу қучлар қўшалок куч бўлиб, бири-бирига қарама-қарши йўналган ҳамда улар микдор жиҳатдан бири-бирига тенг. Шунинг учун бу қўшалок қучларнинг бajarган ишлари йиғиндиси ҳам нолга тенг бўлади. Шундай қилиб, юқорида кўрсатилган бандлардан 1 ва 2-бандларни қараб чиқа-миз.

1. Оғирлик қучининг бajarган иши. Бу δt элементар вақт ичида оқиб ўтган суюқликнинг оғирлиг қунинг вертикал бўйича ўтган йўлига, яъни $z_1 - z_2$ қўпайт-
масига тенг (3.25- расм). Шундай экан, оғирлик кучининг бажарган иши (ОКБИ) куйидагида бўлади:

\[\text{ОКБИ} = \gamma \delta Q \delta t (z_1 - z_2). \] (3.85)

2. 1–1 ва 2–2 кўндаланг кесимларнинг майдонига таъсир этувчи оқимнинг гидродинамики босим кучининг бажарган иши. Бу куйидагича аникланади:
 а) оқимнинг 1–1 кўндаланг кесимнинг майдончасига таъсир этиётган босим кучи \(P_1 = p_1 \delta \omega_1 \) (бу ерда \(p_1 = 1–1 \) кесимнинг майдонига таъсир этиётган гидродинамики босим);
 б) оқимнинг 2–2 кесимнинг майдонига таъсир этиётган гидродинамики босим кучи \(P_2 = -p_2 \delta \omega_2 \) (бу ерда манфий белги шу 2–2 кесимда суюкликнинг сиқилшишин ифодалайди). 1–1 кесимнинг \(\delta t \) элементар вакт ичида заррача босиб ўтган йўлининг узунлиги \(u_1 \delta t \) га тенг; 2–2 кесимнинг шу \(\delta t \) вакт ичида заррача босиб ўтган йўли эса \(u_2 \delta t \) бўлади. Гидродинамики босим кучининг бажарган иши (ГБКБИ) куйидаги тенг:

\[\text{ГБКБИ} = p_1 \delta \omega_1 u_1 \delta t - p_2 \delta \omega_2 u_2 \delta t, \] (3.86)

\[\text{ёки} \]

\[\text{ГБКБИ} = p_1(\delta \omega_1 u_1) \delta t - p_2(\delta \omega_2 u_2) \delta t, \] (3.87)

\[\text{ёки} \]

\[\text{ГБКБИ} = [p_1(\delta \omega_1 u_1) - p_2(\delta \omega_2 u_2)] \delta t. \] (3.88)

Узлуксизлик тенгламасидан

\[\delta \omega_1 u_1 = \delta \omega_2 u_2 = \ldots = \delta \omega u = \delta Q. \] (3.89)

(3.89) тенгламани (3.88) тенгламага қўйсак, гидродинамики босим кучининг бажарган иши

\[\text{ГБКБИ} = \delta Q \delta t (p_1 - p_2). \] (3.90)

Суюклик ҳаракатини, кинетик энергиясининг ўзгариш назарисига асосан, идеал суюклик учун

\[\frac{\gamma}{g} \delta Q \delta t \left(\frac{u_2^2 - u_1^2}{2} \right) = \gamma \delta Q \delta t (z_1 - z_2) + \delta Q \delta t (p_1 - p_2), \] (3.91)

136
тенгламанинг иккала томонини \(\gamma \frac{\partial Q}{\partial t} \) га бўлсак, яъни окимнинг кўндаланг кесим майдонидан \(\partial \) элементар вакт янида ўтган суюқлик ҳажмини огирлик бирдигига нисбатан оламиз. У холда (3.91) тенглама қуйидагича ёзилади

\[
\frac{u_1^2 - u_2^2}{2g} = (z_1 - z_2) + \frac{p_1 - p_2}{\gamma},
\]

\(\xi \) ки ҳар бир кесим учун ўзининг ифодаларини алоҳида ёзилб чиқсак,

\[
\frac{u_1^2}{2g} + \frac{p_1}{\gamma} + z_1 = \frac{u_2^2}{2g} + \frac{p_2}{\gamma} + z_2.
\]

Олинган 1—1 ва 2—2 кесимлар ихтиёрий бўлган учун тенгламани қуйидагича ёзиш мумкин:

\[
\frac{u^2}{2g} + \frac{p}{\gamma} + z = \text{const (окимнинг узунлиги бўйича)}
\]

Бу (3.94) тенглама юкорида келтирилган \(\xi \) Бернулли тенгламаси бўлиб, ун \(\xi \) Бернулли 1738 йилда ишлаб чиқган. Бу тенглама идеал суюқликнинг элементар оким найчаси ҳаракат учун олинган. \(\xi \) Бернулли тенгламасида қуйидагиларга катта эътибор бериш керак:

1) учала ҳаддарнинг, яъни суюқликнинг ихтиёрий нуктасида ҳаракатланаётган заррачанинг тезлиги, ундаги гидродинамик босим ва унинг вертикал координаталари бўйича ҳолатининг узаро боғланишини ўринатувчи суюқлик ҳаракати тенгламаси \(\xi \) Бернулли тенгламаси деб аталади. Айнаш шу хоссаси учун \(\xi \)Бернулли тенгламаси гидравликада асосий ўрин тутади;

2) идеал суюқлик учун учала ҳаднинг йиғиндиниси, берилиган элементар оким найчаси ҳаракати учун ўзгармас микдор ҳисобланади;

3) ҳар хил элементар оким найчаси ҳаракати учун уча-ла ҳаддар ҳар хил микдорга эга бўлади;

4) шу учала ҳад \(u, p, z \) лардан истаган иккитаси маълум бўлса, \(\xi \) Бернулли тенгламасидан фойдаланиб, учинчи ҳадини аниклаш мумкин.

(3.94) тенгламани, яъни \(\xi \) Бернулли тенгламасини худди шундай кўринишда \(\xi \) Эйлернинг дифференциал тенгламасидан ҳам олиш (чиқариш) мумкин. Гидромеханика-
да мәълум бўлган Л. Эйлер тенгламаси Д. Бернулли тенгламаси чоп этилгандан кейин ишлаб чиққанига қарамай, математик усулда иботлаш учун кўпинча Д. Бернулли тенгламаси Л. Эйлериинг дифференциал тенгламаси орқали чиқарилик, чунки бу усул содда бўлган учун Д. Бернулли тенгламасининг умумий кўринишини чиқариб оlish жуда осон. Мазкур усул ёрдамида Д. Бернулли тенгламасини ишлаб чиқиш қуйида келтирилади. Ўқрида келтирилган ике тинч ҳолатдаги суюқликкининг дифференциал тенгламаси Л. Эйлер томонидан 1775 йили ишлаб чиқилган [(2.14) формулага қаранг].

Агар шу суюқликкининг ҳажм бирлигидағи массаси ташқи кучлар таъсирида ўзининг тинч ҳолатини йўқотиб, ҳараматга қелса, яъни бириқ-бир тезланишта эга бўlsa, у ҳолда ташқи кучларнинг қийматлари билан суюқликкининг ҳажм бирлигидағи массасининг $F = Mu$ қаршилиги орасидаги фарқ бизга ўша ҳарыката келтирувчи кучни беради. У ҳолда биз идеал суюқликкининг дифференциал қўринишдаги ҳарамат тенгламасини оламиз (суюқликкининг ҳажм бирлигидағи массасига қисбатан):

$$
\begin{align*}
\phi_x - \frac{1}{\rho} \frac{\partial p}{\partial x} &= \frac{\partial u_x}{\partial t}, \\
\phi_y - \frac{1}{\rho} \frac{\partial p}{\partial y} &= \frac{\partial u_y}{\partial t}, \\
\phi_z - \frac{1}{\rho} \frac{\partial p}{\partial z} &= \frac{\partial u_z}{\partial t}.
\end{align*}
$$
(3.95)

Бу (3.95) тенглама Л. Эйлериинг гидродинамика тенгламаси дейилади ёки суюқликкинг ҳарқати тенгламаси (суюқлик ҳарқатининг динамика мувозанат тенгламаси) деб аталади.

Агар идеал суюқликдан реал суюқликка ўтадиган бўлсақ, у ҳолда (3.95) тенгламага янги ҳад қиришиш лоғим бўлди, у ишколаниш кучини назарда тутувчи ҳад бўлиб, суюқликкининг бирлик массасига қисбатан олинган бўлади.

Д. Бернулли тенгламасини келтириб чиқариш учун (3.95) тенгламадан фойдаланамиз. Бунинг учун шу тенгламаларнинг икки томонини:

биринчисини dx га кўпайтирамиз

$$
\phi_x dx - \frac{1}{\rho} \frac{\partial p}{\partial x} dx = \frac{\partial u_x}{\partial t} dx;
$$
(3.96)
ниқинчисини dy га кўпайтирамиз

$$\phi_y dy - \frac{1}{\rho} \frac{\partial p}{\partial y} dy = \frac{du_y}{dt} dy; \quad (3.97)$$

ъунчисини dz га кўпайтирамиз

$$\phi_z dz - \frac{1}{\rho} \frac{\partial p}{\partial z} dz = \frac{du_z}{dt} dz. \quad (3.98)$$

(3.96), (3.97) ва (3.98) тенгламаларни кўшиб чиқсак

$$\phi_x dx + \phi_y dy + \phi_z dz - \frac{1}{\rho} \left(\frac{\partial p}{\partial x} dx + \frac{\partial p}{\partial y} dy + \frac{\partial p}{\partial z} dz \right) =$$

$$= \frac{du_x}{dt} dx + \frac{du_y}{dt} dy + \frac{du_z}{dt} dz. \quad (3.99)$$

Суюқллик заррачасининг dt элементар вақт ичида босган dx йўли унинг шу x ўқи бўйича йўналган тезлиги u_x нинг ўтган вақт dt га кўпайтмасиға тенг

$$dx = u_x dt, \quad (3.100)$$

у ҳолда

$$\frac{du_x}{dt} dx = \frac{du_x}{dt} u_x dt, \quad (3.101)$$

деб ёзишимиз мумкин. (3.101) тенгламанинг ўнг томони-ни dt га қискартирсақ, у ҳолда x ўқи бўйича тенгламани ёзамиз

$$\frac{du_x}{dt} dx = u_x du_x = d \left(\frac{u_x^2}{2} \right). \quad (3.102)$$

Худди шундай усулда u ва z ўқлари бўйича тенгламаларни оламиз:

u ўқи бўйича

$$\frac{du_u}{dt} dy = u_y dy = d \left(\frac{u_y^2}{2} \right); \quad (3.103)$$

z ўқи бўйича

139
\[\frac{du_z}{dt} \, dz = u_z \, dz = d \left(\frac{u_z^2}{2} \right). \quad (3.104) \]

Агар суюқлик заррачаларининг ҳаракат тезликларини фа- зода \(u \) орқали ифодаласак, унинг координата ўқларига про- екциялари \(u_x, u_y, u_z \) бўлади, у ҳолда ўз-ўзидан маълумки
\[u^2 = u_x^2 + u_y^2 + u_z^2. \quad (3.105) \]

Шунинг учун юқорида келтирилган йигинди (3.99) тенг- ламадан
\[\frac{du_x}{dt} \, dx + \frac{du_y}{dt} \, dy + \frac{du_z}{dt} \, dz = \frac{1}{2} d(u_x^2 + u_y^2 + u_z^2) = \frac{1}{2} d \left(u^2 \right). \quad (3.106) \]

Шундай экан, (3.99) тенгламадан \(\phi_x \, dx + \phi_y \, dy + \phi_z \, dz \) нинг кўриниши бирор функциянинг \(W \) тўлик дифференциали, яъни
\[\phi_x \, dx + \phi_y \, dy + \phi_z \, dz = dW. \quad (3.107) \]

Бизга маълумки, гидродинамик босим окимда ихтиёрий олинган кўндаланг кесим учун гидростатик босим қону- нига бўйсунади
\[p = f(x, y, z), \quad (3.108) \]
вактга боғлиқ бўлмайди. Шуни назарда тутган ҳолда (3.99) тенгламадан кўйидағини оламиз
\[\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \, dx + \frac{\partial p}{\partial y} \, dy + \frac{\partial p}{\partial z} \, dz \right), \quad (3.109) \]
ва уни кўйидағи кўркинишда ёзамиз
\[\frac{1}{\rho} \left(\frac{\partial p}{\partial x} \, dx + \frac{\partial p}{\partial y} \, dy + \frac{\partial p}{\partial z} \, dz \right) = \frac{1}{\rho} dp. \quad (3.110) \]

(3.106), (3.107), (3.110) ларни (3.99)га ўринларига қўйиб чиқсак
\[dW - \frac{1}{\rho} dp = \frac{1}{2} du^2, \quad (3.111) \]
бундан
\[dW - \frac{1}{\rho} dp - \frac{1}{2} du^2 = 0, \quad (3.112) \]
\[\frac{1}{2} du^2 + \frac{1}{\rho} dp - dW = 0, \]
(3.113)

\[\frac{u^2}{2} + \frac{p}{\rho} - W = \text{const.} \]
(3.114)

Агар ҳаракатдаги суюқлик заррачаларига фақат оғирлиқ кучи таъсир этса, ў ҳолда
\[W = -gz, \]
(3.115)
бунда \(g \) — әркин тушиш тезланиши. Дарҳақиқат \(z \) ўқи вертикал юқорига йўналғани учун \(W \) функция қуйидаги бўлади

\[\frac{\partial W}{\partial x} = \phi_x = 0; \quad \frac{\partial W}{\partial y} = \phi_y = 0; \quad \frac{\partial W}{\partial z} = \phi_z, \]
(3.116)
бунда \(\phi_x, \phi_y, \phi_z \) — суюқликнинг ҳажм бирилидаги массасига таъсир этувчи кучлар бўлиб, \(x, y, z \) координата ўқулари бўйича йўналган бўлади. Шундан \(\phi_z = -1 \cdot g \) бўлади, ў ҳолда юқоридаги (3.107) тенглама
\[dW = \phi_x dx + \phi_y dy + \phi_z dz, \]
(3.117)
\[\phi_x = 0; \quad \phi_y = 0; \quad \phi_z = -1 \cdot g \]
(3.118)
бўлган ҳолда (3.117) тенглама қуйидаги ёзилади
\[dW = -gdz, \]
(3.119)
бундан
\[W = -gz. \]
(3.120)
(3.120) ни (3.114) га қўйсак қуйидаги бўлади:
\[\frac{u^2}{2} + \frac{p}{\rho} + gz = \text{const.} \]
(3.121)
(3.121) тенгламанинг икки томонини \(g \) га бўлсақ,
\[\frac{u^2}{2g} + \frac{p}{\rho g} + \frac{1}{g} gz = \text{const.} \]
(3.122)
ва \(\gamma = \rho g \) ни назарда тутсақ, ў ҳолда (3.122) тенглама қуйидаги ёзилади:
\[
\frac{u^2}{2g} + \frac{p}{\gamma} + z = \text{const}.
\] (3.123)

Бу (3.123) тенглама юқорида энергиянинг сакланиш қону-нидан аналитик усулда олинган Д. Бернули тенгламаси. Бу ерда шундан айтиб ўтиш керакки, Л. Эйлернинг диффе-ренциал тенгламасини интеграллаганда фақат оғирлиқ кучи қабул қилинган эди

\[dW = -gdz,\] (3.124)

бошқа кучлар әътиборга олинмagan эди, масалан, суюқ-ликнинг қовушоқлик кучи қабул қилинмagan эди, шунинг учун (3.123) тенглама

\[
\frac{u^2}{2g} + \frac{p}{\gamma} + z = \text{const}
\]

факат идеал суюқлик учун қўлланилиши мумкин. Навье-Стокс 1823 йилда Л. Эйлернинг бу тенгламасини [(3.95) тенгламага қаранг] суюқликнинг қовушоқлик хусусияти-ни ифодаловчи қўшимча ҳад, динамиқ қовушоқлик коэффициенти билан тўлдирган. Шундан кейин (3.95) тенгла-малар куйидаги қўшмадаган бўлди

\[
\phi_x - \frac{1}{\rho} \frac{\partial p}{\partial x} = \frac{du_x}{dt} - N_x, \quad (3.125)
\]

бунда

\[
N_x = \nu \left(\frac{\partial^2 u_x}{\partial x^2} + \frac{\partial^2 u_x}{\partial y^2} + \frac{\partial^2 u_x}{\partial z^2} \right), \quad (3.126)
\]

бу ерда \(\nu\) — кинематик қовушоқлик коэффициенти.

(3.125) тенглама фақат \(x\) үқи учун ёзилган. Худди шу усулда \(y\) ва \(z\) үқлари учун куйидаги тенгламаларни оламиз:

\[
\phi_y - \frac{1}{\rho} \frac{\partial p}{\partial y} = \frac{du_y}{dt} - \nu \left(\frac{\partial^2 u_y}{\partial x^2} + \frac{\partial^2 u_y}{\partial y^2} + \frac{\partial^2 u_y}{\partial z^2} \right); \quad (3.127)
\]

\[
\phi_z - \frac{1}{\rho} \frac{\partial p}{\partial z} = \frac{du_z}{dt} - \nu \left(\frac{\partial^2 u_z}{\partial x^2} + \frac{\partial^2 u_z}{\partial y^2} + \frac{\partial^2 u_z}{\partial z^2} \right). \quad (3.128)
\]
3.11-§. Д. БЕРНУЛЛИ ТЕНГЛАМАСИДАГИ УЧАЛА ХАДЛАРИНИНГ МАЪНОСИ

А. Гидравлик маъноси

1) \(\frac{u^2}{2g} \) ҳа д и — гидравликада тезлик напорининг баландлиги, унинг ўлчо в бирлиги,

\[\frac{u^2}{2g} = \frac{L^2}{T^2} : \frac{L}{T^2} = L, \]

бунда \(L \) — узунлик рамзи (символи), \(T \) — вакт рамзи (символи);

2) \(\frac{p}{\gamma} \) ҳа д и — гидравликада нуктадаги гидродинамик босимга жавоб берувчи пьезометрик баландликни англатади. Бундан бүён \(\frac{p}{\gamma} \) пьезометрик баландлик деб аталади. Унинг ўлчо в бирлиги, м;

3) \(z \) ҳа д и — координата, қаралаетган элементар окимнинг кўндаланг кесимидаги ихтиёрий олинган нуктанинг ўрни, ихтиёрий олинган горизонтал \(O—O \) таққослаш тецислигида элементар окимнинг кўндаланг кесими марказигача бўлган баландлик, у геодезик баландлик деб аталadi. Унинг ўлчо в бирлиги, м.

Д. Бернуlli тенгламасидаги учала ҳаднинг йигиндиси гидродинамики напор деб аталади ва \(H' \) шартли белги билан белгиланади:

\[\frac{u^2}{2g} + \frac{p}{\gamma} + z = H' \] \hspace{1cm} (3.129)

Д. Бернуlli тенгламасининг биринчи ҳади \(\frac{u^2}{2g} \) — тезлик напорининг баландлиги суюқлнинг напорли ва напор-сиз ҳаракатлари учун қуйидагича ўлчанади:

1. Напорли ҳаракат учун: \(\frac{u^2}{2g} \) нинг миқдори кувурга ўрнатиλган икки пьезометр (шишадан ясалган най-
ча) ёрдамида ўлчанади: биринчиси Π_1 — икки томони очик тўғри найча, иккинчиси Π_2 — икки томони очик, лекин пастки томони 90° бурилган найча бўлиб, у оқим тезлигини ўлчайдиган нуктада, масалан, A нуктасида оқим йўналишига қарши ўрнатилган бўлади, чунки тезлик вектори ўй шу найчанинг очик тешитига тўғри йўналган бўлиши керак. 3.26- расмдан кўриниб турлибдики, сувнинг сатъи Π_2 найчадан Π_1 найчага қараганда юқори жойлашган, уларнинг фарқи тезлик напори дейилади ва у қуйидагича ёзилади:

$$h_u = \frac{u^2}{2g}$$ \hspace{1cm} (3.130)

Шу найчалар ёрдамида h_u ни ўлчаб, қараляётган A нуктадаги u тезликни аниқлаймиз:

$$u = \sqrt{2gh_u}.$$ \hspace{1cm} (3.131)

(3.131) тенглама тезликни напор орқали аниқлаш тенгламаси, у, биринчи марта Э. Торичелли томонидан 1643 йили кичик тешитданд оқиб чиқаётган суюқликни ўрганишда, тажриба йўли билан олинган. Д. Бернулли эса Э. Торичелли тенгламасини назарий йўл билан исботланди ва уни амалда қўллаш йўлларини кўрсатди. Д. Бернулли тенгламасидаги биринчи хаал X. Пито трубкаси ёрдамида тўғридан-тўғри ўлчаниши мумкин. Бу асоббой X. Пито имли олим ихтиро қилгани учун (бу суюқлик тезлигини ўлчайдиган асоббой) унинг номи билан юргизиладиган бўлиш. Бу асоббой X. Пито найчаси деб аталади, у биринчи марта 1732 йилда ишлатилган (3.26- расм).

(3.131) тенглама назарий бўлиб, амалда қуйидагича ёзилади:

$$u = \phi \sqrt{2gh_u},$$ \hspace{1cm} (3.132)

бунда ϕ — тезлик коэффициенти, у X. Пито найчасини текширишда (тарировка қилишда) келиб чиқади. $\phi<1,0$.

144
Напорсиз ҳаракат учун. Очиқ ӱзанларди یرдамида ӱчиналади. Гидрометрик ниячанинг ишлаш принципи Х. Пито нийчасиникдек бўлиб (бир оз бошқачароқ кўринишда бўлади), یرчаннинг диаметри \(d = 1,0 \) см (3.27-расм), пастки томони тўғри бурчак билан бўкилган, иккала томони очик, Агар шу гидрометрик нийчанинг эгилган томонининг охирини, масалан, \(A \) нуктага, ӊим йўналишита қарши кўйилса, иккичи очик томонида сув ӱзансидаги сув сатқўдан қўтарилиб туради. Шу нийчада суёқлик маълум баландликка қўтарилади (ӱзандаги сув сатқўдан юқори), бу нийчадаги суёқликнинг баландлиги очик ӱзандаги суёқликнинг ҳаракат тезлигига боғлиқ (3.27-расм).

\[
h_u = \frac{u^2}{2g}.\] \hspace{1cm} (3.133)

(3.133) дан \(A \) нуктадаги тезлик

\[
u = \sqrt{2gh_u}. \hspace{1cm} (3.134)

Тезлики ўлча шарабининг тарировка этиш коэффициентини назарда тутсақ, у ҳолда

\[
u = \varphi \sqrt{2gh_u}. \hspace{1cm} (3.135)

Б. Геометрик маъноси

3.28-расмда қелтирилган идеал суёқликнинг элементар оқим нийчасини қараб чиқамиз. Унда оқимнинг 1-1 ва 2-2 қўндалган кесимларини оламиз, улар горизонтал \(O-O \) такқослаш текислигидан \(z_1 \) ва \(z_2 \) баландликда жойлашган, шу кесимларда элементар оқим нийчасининг ичида
a₁ ва a₂ нукталарни белгилаб, уларга Π₁, Π₂ пьезометрлар ўрнатамиз. Суюқлик бу пьезометрларда, масалан, b₁ ва b₂ нуктагача баландликка кўтарилади, шу b₁ ва b₂ нукталарадан юкорига тезлик напорини қўйиб чиқсак, c₁ ва c₂ нукталарни ҳосил қиламиз. Энди элементар оким нийчасининг S ўқи бўйича қатор a нукталари (a', a'', a''' ...) ни тайинлаймиз, шу нукталарага тегишили қатор b нукталари (b', b'', b''' ...) ни ва c нукталари (c', c'', c''' ...) ни белгилаймиз (3.28-расм). Қуйида тўртта тушунтириш берамиз.

1. P—P чизиги b нукталари b', b'', b''' ... дап ўтказилган бўлиб, элементар оким нийчасининг ўқига нисбатан

\[\frac{P}{\gamma} \]

баландликда жойлашган, у, P—P чизиги, пьезометрлик чизик деб аталади. У эгри чизик бўлиб, элементар оким нийчасининг S ўқи бўйича ўрнатилган (3.28-расмда) a нукталари a', a'', a''', ... дан юкорида жойлашган.

2. E—E чизиги c нукталари c', c'', c''' ... дан ўтказилган бўлиб, P—P чизигидан юкорида тезлик напори \(\frac{u^2}{2g} \) ба-
ыпинингда жойлашган бўлади. \(U, E = E \) чизиги, напор чизиги деб аталади. Напор чизиги ҳам эгри чизик бўлиб, элементар оким найчасининг уъқи бўйича ўрнатилган (3.28-рохмал) \(a \) нуқталар \(a', a'', a''' \), ..., дан юкорида \(X \). Пито найчасили куюқликнинг сатҳлари дан ўтказилган чизик.

3. Пьеозометрик нишаб. Элементар оким найчасининг пьеозометрик нишаби \(J' \) деб, берилган кўндаланг кесимда \(P - P \) пьеозометрик чизикнинг элементар баландлиги \(d \left(\frac{P}{\gamma} + z \right) \) нинг унинг элементар узунлиги \(ds \) га нисбатанга айтилади

\[
J' = - \frac{d}{ds} \left(\frac{P}{\gamma} + z \right). \tag{3.136}
\]

4. Тўлиқ напор \(H'_e \). Тўлиқ напор Д. Бернулли тенг-ламасидаги учала ҳаднинг йифиндиси бўлиб, қуйидагича ёзилади

\[
\frac{u^2}{2g} + \frac{P}{\gamma} + z = H'_e. \tag{3.137}
\]

Тўлиқ напор нишаби гидравлик нишаб деб аталади

\[
\frac{d}{ds} \left(\frac{u^2}{2g} + \frac{P}{\gamma} + z \right) = \frac{d}{ds} H'_e = J'_e. \tag{3.138}
\]

Идеал суюқликлар учун \(E - E \) напор чизиги \(O - O \) тақ-кослаш текислигига паралел текисликда ётади, яъни

\[
H'_e = \text{const} \ (окимнинг узунлиги бўйича). \]

B. Энергетик маъноси

Маълумки, Д. Бернулли тенгламасининг учала ҳади йифиндиси тўлиқ напорни, бошқача қилиб айтганда, тўлиқ солиштирма энергияни беради [(3.137) тенгламага қаранг]. Энди бу учала ҳадни энергетик нуқтада назардан қараб чиқамиз. Тўлиқ напорнинг энергетик тушунчасини қуйидагича ёзиш мумкин.
Шундай қиғиб, \(H'_f \) нинг микдорини ҳаракатдаги суюқликнинг тулиқ солиштирма энергияси деб қараш керак. Д. Бернуlli тенгламасита асосан тулиқ солиштирма энергия идеал суюқлик учун элементар оқим нажаси учунлиги бўйича ўзгармас бўлади. Бундан кўринадики, Д. Бернулли тенгламаси идеал суюқлик ҳаракати учун энергиянинг сакланиш қонунини ифодалайди.

3.12- §. ЎЗАНДА РЕАЛ СУЮҚЛИКНИНГ ЭЛЕМЕНТАР ОҚИМ НАЙЧАСИ ҲАРАКАТИ УЧУН Д. БЕРНУЛЛИ ТЕНГЛАМАСИ

Идеал суюқлик қовушқоқлик хусусиятliga эга бўлмагани учун суюқлик ҳаракати жараёнида ишқаланиш кучи нолга тенг бўлади, яъни ишқаланиш кучи ҳосил бўлмайди. Реал суюқлик қовушқоқлик хусусиятliga эга бўлгани сабабли у суюқлик ҳаракат жараёнида ишқаланиш кучи борлиги билан характерланади. Реал суюқлик окимида унинг механик энергийасининг бир қисми ишқаланиш кучини енгис жараёнида иссиқликка айлананиб, йўқ бўлиб кетади. Агар элементар оқим найдасининг 1—1 ва 2—2 кесимлараро ҳаракатида суюқликнинг оғирлик (ҳажмий) бирлиги сарфланган механик энергийасини \(h'_f \) билан белгиласак, у ҳолда реал суюқликнинг элементар оқим найдаси учун Д. Бернуlli тенгламаси қуйидагича ёзилади:

\[
\frac{u^2}{2g} + \frac{\rho \gamma}{\gamma} + z_i = \frac{u_2^2}{2g} + \frac{\rho_2 \gamma}{\gamma} + z_2 + h'_f, \quad (3.140)
\]

бунда \(h'_f \) — ишқаланиш натижасида йўқотилган солиштирма энергия (напор). Бу \(h'_f \) микдор тулиқ йўқотилган напор деб аталади.
Шундай қилиб, реал суюқликнинг элементар оким най-часи учун (3.140) Д. Бернули тенгламасини олдик. Энди (3.140) тенгламадан фойдаланиб, реал суюқликнинг тўлк окимини қараб чиқамиз. Бундай масалани ечиш учун, аввало элементар оким найчасидан тўлк окимга ӯтишда кўлланиладиган икки қўшимча ҳолни қараб чиқамиз, улар: окимнинг қўндаланг кесими майдони бўйича нуктадаги босимларнинг ва ўрталаштирилган тезликларнинг нотекис тақсимланиши ва уларнинг суюқлик массасининг ҳаракат миқдорига ва кинетик энергиясига таъсири.

3.13- §. ОКИМНИНГ ҚЎНДАЛАНГ КЕСИМИНИНГ МАЙДОНИ БЎЙИЧА БОСИМЛАРНИНГ НОТЕКИС ТАҚСИМЛАНИШИ (БИРИНЧИ ҚЎШИМЧА ҲОЛ)

Бу ерда суюқликнинг барқарор ҳаракатини қараб чиқа-миз. Суюқликка таъсир этаётган ҳамий кўчлардан бири — огирлик қучини қабул қиламиз. Маялумкиси, текис ӯзгарув-чан ҳаракат учун окимнинг қўндаланг кесими текис бўлади (3.4-§, 1- банд). Текис ӯзгарувчан суюқлик ҳаракатини расмда кўрсатилгандек оламиз ва унда икки қўндаланг кесим 1—1 ва 2—2 ни белгилаб, уларнинг ихтиёрли нукталари пьезо-метрлар ўрнатамиз. Бу ҳолда берилган кесимнинг (масalan, 1—1 кесим) ихтиёрли олинган барча нукталарида ўрнатилган пьезометрлардаги сув сатҳи бир текисликда жойлашган бўлади. Шу 1—1 кесимнинг ҳар хил нукталари учун $\frac{p}{\gamma}$ ларнинг миқдорлари ҳар хил қийматга эга, аммо уларнинг йифиндиси ўзгармас:

$$\frac{p}{\gamma} + z = \text{const}$$

(3.141) қўндаланг кесими учун),

бу шарт фақат текис ӯзгарувчан ҳаракатга ёки параллел окимли ҳаракатга тегишили.

Бошқа қўндаланг кесим (масалан, 2—2 кесим) да $\frac{p}{\gamma} + z$ йифиндиси ўзгармас, аммо микдори бошқа кесимлар (масалан, 1—1 кесим) га нисбатан бошқача бўлади.

Шуни эслатиб ўтиш қеракки, юқорида «Гидростатика» қисмида $\frac{p}{\gamma} + z$ ний потенциал напор деб H билан белгиланган эдик (тинч ҳолатдаги суюқлик учун).
\[\frac{P}{\gamma} + z = \text{const} \] (сувнинг тўлиқ ҳажми бўйича). (3.142)

Бу (3.142) тенглама гидростатиканинг қонуни. Бундан кўринадики, гидростатиканинг қонуни гидродинамикада окимнинг фақат кўндаланг кесимига тегишили. Бошқача қилиб айтганда суъқликнинг параллел окимли ва текис ўзгарувчан ҳаракати пайтида окимнинг берилиган кўндаланг кесими бўйича босимларнинг таксимланпиши гидростатиканинг қонунига бўйсунади. Бу биринчи қўшимча ҳол бўлади.

3.14- §. ОКИМНИНГ КЎНДАЛАНГ КЕСИМИНИНГ МАЙДОНИ БЎЙИЧА НУҚТАЛАРДАГИ ЎРТЛАШТИРИЛГАН ТЕЗЛИКЛАРНИНГ НОТЕҚИС ТАКСИМЛАНИШИНИ СУЪҚЛИК МАССАСИНИНИ ҲАРАҚАТ МИҚДОРИ (ҲМ) VA КИНЕТИК ЭНЕРГИЯСИ (ҚЭ)ГА ТАЪСИРИ (иқкинчи қўшимча ҳол)

Кўндаланг кесими текис бўлган икки ҳар хил оким схе- масини қараб чиқамиз: а) схема (3.29- расм) да ҳақиқий окимнинг AB кўндаланг кесими бўйича нуқталардаги ўрта- лаштирилган тезликларнинг нотекис таксимланши ва б схема (3.29- расм) да шартли (расчетный) окимнинг A'B' кўндаланг кесими бўйича тезликлар текис таксимланган, яъни A'B' вертикали бўйича нуқталардаги ўртлаштирилган тезликлар бир хил бўлиб, ўртача тезликка тенг \(u = v \) (иққал а) кўндаланг кесимнинг ўлчамлари ва у кесимлардан ўтаётган сув сарфлари бир-бирига тенг).

3.29- расм.
dt вакт ичида \(AB \) кўндаланг кесимдан ўтаётган суюқлик \(M \) массасининг ҳаракат миқдорини \(X M (M) \) билан ва кинетик энергиясини \(K \mathcal{E}(M) \) билан ифодалаймиз (3.29 рам \(a \) схемага қаранг), шу \(dt \) вакт ичида \(A'B' \) кўндаланг кесимдан ўтаётган суюқлик \(M \) массасининг ҳаракат миқдорини \([X M (M)]_{yurta} \) ва кинетик энергиясини \([K \mathcal{E}(M)]_{yurta} \) билан ифодалаймиз (3.29 рам \(b \) схемага қаранг). Мак'сад \(a \) ва \(b \) схемалар учун ҳисобланган \(X M(M) \) ва \(K \mathcal{E}(M) \) қийматларини солиштириб кўриш. Бошқача қилиб айтганда, биз шу берилиган кўндаланг кесимлар \(AB \) ва \(A'B' \) да сувнинг чукурлиги бўйича нукталардаги ўртдаги қишилган ғириғил тезликларнинг нотекис таксимланишини (3.29 рам \(a \) схема) суюқлик \(M \) массасининг \(X M \) ва \(K \mathcal{E} \) га (3.29 рам \(b \) схема) таъсирини ўрганиб чиқиш.

Масалани хал этиш учун қуйидаги ҳисобларнинг қийматларини анйқлаши миз керак бўлади:

\[
\frac{X M (M)}{[X M (M)]_{yurta}} \text{ ва } \frac{K \mathcal{E}(M)}{[K \mathcal{E}(M)]_{yurta}}.
\]

Юқорида қуйилган масалани қараб чиқиш учун ва унинг ечими анйқ бўлиши учун сув сарфи, тезлик, ҳажм ва массаларни ҳисоблаб формуласини қуйидаги кўринишда келтирамиз:

\[
d Q = u \, d \omega; \quad Q = \int_{\omega} u \, d \omega = \nu \omega; \quad (3.143)
\]

\[
d V = d Q \, d t; \quad V = dt \int_{\omega} u \, d \omega = \nu \omega \, d t; \quad (3.144)
\]

\[
d M = \rho \, d V = \rho \, u \, d \omega \, d t; \quad (3.145)
\]

\[
M = \rho \, dt \int_{\omega} u \, d \omega = \rho \nu \omega \, d t. \quad (3.146)
\]

Бунда \(d \omega \) — кўндаланг кесим майдонидаги элементлар майдонча; \(\nu \) — ўртача тезлик; \(V = dt \) вакт ичида кўндаланг кесимдан ўтган сув ҳажми; \(M \) — шу сув ҳажмининг массаси.

1. Окимнинг кўндаланг кесими бўйича тезликларнинг нотекис таксимланишини суюқлик \(M \) массасининг ҳаракат миқдори \(X M \) га таъсир.

Суюқлик массаси \(d M \) нинг ҳақиқий ҳаракат миқдори:

\[
X M (dM) = u \, d M = \rho \, u^2 \, d \omega \, d t. \quad (3.147)
\]
Суюқлик массаси M нинг ҳақиқий ҳаракат микдори:

$$X M(M) = \int_{\omega} X M(dM) = \rho dt \int u^2 d\omega.$$ (3.148)

Булар а схема (3.29-расм) учун, яъни ҳақиқий суюқлик окими учун олинган. Энди суюқлик массаси M нинг «ўртача» шартли ҳаракат микдори б схема (3.29-расм) учун:

$$[X M(M)]_{ырга} = v M = v (\rho v \omega dt) = \rho v^2 \omega dt.$$ (3.149)

Шуниси мухимки,

$$X M(M) > [X M(M)]_{ырга}$$ (3.150)

(3.148) тенгламанинг (3.149) тенгламаға нисбатини олсак:

$$\frac{X M(M)}{[X M(M)]_{ырга}} = \frac{\int u^2 d\omega}{v^2 \omega} = \alpha_0$$ (3.151)

(3.151) ни қўйидагича ёзишимиз мумкин:

$$\int u^2 d\omega = \alpha_0 v^2 \omega$$ (3.152)

$$X M(M) = \alpha_0 [X M(M)]_{ырга} = \alpha_0 \rho v^2 \omega dt = \alpha_0 \rho v Q dt.$$ (3.153)

Бунда α_0 — суюқлик массаси M нинг ҳақиқий ҳаракат микдорининг «ўртача» ҳаракат микдорига нисбати ёки ҳаракат микдорининг ўзгаришини ифодаловчи коэффициент, у Ж. Буссиниск коэффициенти деб аталади. Унинг қиймати $\alpha_0 = 1,03 \pm 1,05$.

2. Оқимнинг қўндаланг кесими бўйича тезликларни нотекис таксимланшишнинг суюқлик массаси M нинг кинетик энергияси $K\Theta$ га тасири.

Суюқлик массаси dM нинг ҳақиқий кинетик энергияси $K\Theta$:

$$K\Theta(dM) = \frac{u^2}{2} dM = \frac{1}{2} \rho u^3 d\omega dt.$$ (3.154)

Суюқлик массаси M нинг ҳақиқий кинетик энергияси:
$$K\Theta(M) = \frac{1}{2} \rho \int_{\omega} u^3 d\omega. \quad (3.155)$$

Суюқлик массаси M нинг «ўртача» шартли кинетик энергияси:

$$[K\Theta(M)]_{\text{yrt}} = \frac{M v^2}{2} = \frac{1}{2} \rho v^3 \omega dt. \quad (3.156)$$

Шуниси мухимки, бу ёрда

$$K\Theta(M) > [K\Theta(M)]_{\text{yrt}}. \quad (3.157)$$

(3.155) тенгламанинг (3.156) тенгламага нисбатини олсак, у ҳолда

$$\frac{K\Theta(M)}{[K\Theta(M)]_{\text{yrt}}} = \frac{\int u^3 d\omega}{v^3 \omega} = \alpha \ (бегли). \quad (3.158)$$

(3.158) тенгламадан

$$\int_{\omega} u^3 d\omega = \alpha v^3 \omega; \quad (3.159)$$

$$K\Theta(M) = \alpha [K\Theta(M)]_{\text{yrt}} = \alpha \frac{1}{2} \rho v^3 \omega dt. \quad (3.160)$$

Бунда α суюқлик массаси M нинг ҳақиқий кинетик энергиясининг «ўртача» кинетик энергиясига нисбати ёки кинетик энергиясининг ўзгаришини ифодаловчи коэффициент, у Г. Кориолис коэффициенти деб аталади. Унинг қиймати $\alpha=1,10\div1,15$.

3.15-§. ЎЗАНДАГИ РЕАЛ СУЮҚЛИКНИНГ ТЎЛИК ОКИМИ УЧУН Д. БЕРНУЛЛИ ТЕНГЛАМАСИ

Бу ёрда напорли кувурлар ва очик ўзанлар учун суюқликнинг тўлиқ окимини қараб чиқамиз. Маълумки, реал суюқликларда ишқаланиш кучи мавжуд. Унинг таъсирида
суяқликнинг тўлиқ солиштирма энергияси H_e окимнинг узунлиги бўйича камайиб боради. Шу сабабли

$$H_{e_1} > H_{e_2} > \ldots > H_{e_n},$$

(3.161)

бунда 1, 2, 3, ..., n — кесиимларнинг номерларини билдириди (3.30- расм). Юқорида айтилган фикрлар ва киритилган икки қўшимча ҳоллар асосида суяқликнинг тўлиқ окими учун солиштирма энергиянинг баланс тенгламаси (Д. Бернули тенгламаси)ни қуйидагида ёзиш мумкин:

$$\frac{\alpha_1 v_1^2}{2g} + \frac{p_2}{\gamma} + z_1 = \frac{\alpha_2 v_2^2}{2g} + \frac{p_3}{\gamma} + z_2 + h_f,$$

(3.162)

бунда

$$h_f = H_{e_1} - H_{e_2},$$

(3.163)

h_f — тўлиқ йўқотилган напор, бу ички ва ташк ишқаланиш кучларнинг таъсирида суяқлик окимнинг ўртача бирлик ҳажм оғирлигининг биринчи қўндаланг кесимдан
никкинчи кўндаланг кесимгача ўтиш учун тўлиқ йўқотилган напор (энергия). Реал суюқликнинг тўлиқ оқими учун J. Бернули тенгламасининг геометрик маъноси (3.162) тенгламага нисбатан қўйидагиқа (3.30- расм): $P - P$ пьезометрик чизик (кўп ҳолларда у ҳар қизик қўринишда бўлади) ва $E - E$ напор чизиги, реал суюқликнинг тўлиқ оқими учун $E - E$ чизиги, идеал суюқлик оқимидан фарқли ўлароқ, горизонтал жойлашмайди. Бу $E - E$ чизиги оқим узунлиги бўйича ҳар доим пасайиб боради, масалан, 1—1 кесимдан 2—2 кесимгача, бу пасайиш шу ораликдаги йўқотилган напор h_f ни беради. $E - E$ напор чизигининг биронбир элемантар миқдорга пасайишни қўйидагича ёзиш мумкин

$$dH_e = d\left(\frac{gu^2}{2g} + \frac{P}{\gamma} + z\right),$$ (3.164)

унинг элемантар узунлик ds га нисбати гидравлик нишаб деб аталади ва J_e шартли белги билан белгиланади:

$$J_e = -\frac{dH_e}{ds};$$ (3.165)

ёки

$$J_e = \frac{d}{ds}\left(\frac{gu^2}{2g} + \frac{P}{\gamma} + z\right);$$ (3.166)

ёки

$$J_e = -\frac{dh_f}{ds}. $$ (3.167)

Бу гидравлик нишаб J_e умуман окимнинг узунлиги бўйича ўзгарувчан, аммо ҳар доим $J_e > 0$, фақат идеал суюқлик оқими учун $J_e = 0$. Пьезометрик нишабга келсак, бу $P - P$ чизигида олиннаб, тўлиқ оқим учун J билан белгиланиб, қўйидагича ёзилади:

$$J = -\frac{d}{ds}\left(\frac{P}{\gamma} + z\right).$$ (3.168)

3.30- расмдан биз суюқлик ҳаракати пайтида тўлиқ гидродинамики жараёнларни қўришмиз ва қўйидаги хўлосага

155
қелишимиз мумкин: а) \(P - P \) чизиги билан суюқлик окими-нинг ўқи \(S \) оралги шакли оким узунлиги бўйича босим напори \(\frac{P}{\gamma} \) нинг ўзгаришини беради; б) \(P - P \) билан \(E - E \) чизиклари оралги шакли тезлик напори \(\frac{\alpha v^2}{2g} \) эпюрасининг ўзгаришини билдиради, бундан келиб чиқадики, у, оким узунлиги бўйича тезликнинг ўзгариш характеристини кўрсатади; в) \(P - P \) чизиги билан \(O - O \) такқослаш текислиги чизиги оралги, шакли оким узунлиги бўйича потенциал напор эпюрасининг ўзгаришини беради; г) \(E - E \) чизиги билан \(O - O \) такқослаш текислиги оралги шакли оким узунлиги бўйича тўлиқ напор эпюрасининг ўзгаришини беради. Д. Бернулли тенгламаси окимнинг иктиёрний икки кўндаланг кесимнинг гидродинамики элементларининг боғланишини ифодалайди.

3.16- §. Д. БЕРНУЛЛИ ТЕНГЛАМАСИНИ АМАЛДА КЎЛЛАШ ШАРТЛАРИ ВА ШУ ТЕНГЛАМА АСОСИДА ИШЛАБ ЧИҚИЛГАН ГИДРАВЛИК АСБОБЛАР

Д. Бернулли тенгламаси ёрдамида гидравликада қўлдан-қўп мухандислик гидравликасига оид масалалар ечилади. Бу амалий масалалар суюқликнинг қувурларда ва очик ўзанлардаги ҳаракатини ҳисоблашни ўз ичига олади. Шундай экани, Д. Бернулли тенгламасини амалда тўгри қўллаш учун уни қўлланиш шартларини билишимиз зарур (Буларда иккита асосий шарти бир вактда бажарилиши лозим). Улар қўйидагича:

1. Биринчи шарт. Юқорида Д. Бернулли тенгламаси текис ўзгарувчан ҳаракат ва параллел чизикли ҳаракат-лар учун олинганлиги сабабли, фақат шундай окимлар учун қўлланиши мумкин деб қабул қилган эдик. 3.31-расмнинг қараб чиқсак, унда Д. Бернулли тенгламасини фақат 1—1 ва 7—7 кесимлар учун қўллаш мумкин, 2—2 ва 3—3 кесимлар учун эса мутлақ мумкин эмас, чунки у жойларда ҳаракат тез ўзгарувчан бўлиши мумкин (Унинг кўндаланг кесимнинг майдони текис бўлмайди, эгри бўлади).

www.ziyouz.com kutubxonasi
2. Иккичи шарти. Д Бернулли тенгламасида гидродинамики боиси p ва z, яъни $\frac{p}{\gamma} + z$ ни окимнинг иккала кўндаланг кесими майдоннинг ҳоҳлаган нуктасидан олишиш их умумий. Шу иккала I—I ва II—II кесимларда нукталарни ҳар хил жойлардан олишиш их умумий. Агар 3.32-расмдаги I—I кесимда p билан z ни қувурдаги окимнинг ўқидан олсак, II—II кесимда пастки деворга яқин жойдан, III—III кесимда эса, юкори деворга яқин жойдан олсак, у ҳолда уччала кесим учун ҳам Д. Бернулли тенг-
ламасини қўллаш мумкин. Амалда масалалар ечимини сод-
dalaštiриш маъносида Д. Бернулли тенгламасиздаги ҳа
dlarни кувур ҳўқидаги нукталарга нисбатан (3.32- расмда-
ги I—I кесимга қараб), очик ўзанларда эса, сув сатҳида-
dи нукталарга ёки ўзан тўбидаги нукталарга нисбатан
олинади (3.32- расмга қараб).

Д. Бернулли тенгламаси асосида ишлаб
чиқилган гидравлик асбоблар. Д. Бернулли тенг-
ламаси асосида қўллаб асбоблар ишлаб чиқилган, ular-
dan: пьезометрли сув ўлчагич асбоби (Г. Б. Вентури асбоби
3.33- расм), сувпуркачи насос, инжектор ва бошқалар. Ми-
sол учун, пьезометр сув ўлчагич асбобни қўринишни
чизмада келтирамиз. Бу асбоб, амалда, гидрометрияда ва
сув кувурларида, сув сарфиини ўлчашида кенг қўлланилади.
Бу асбоб кувурларда суюқлик оқимининг тезлиги ва сар-
фини ўлчашида ишлатилади.

3.17- §. ЎЗАНЛАРДА НАПОРЛИ ВА НАПОРСИЗ БАРҚАРОР
ТЕКИС ВА НОТЕКИС ИЛГАРИЛМА ҲАРАКАТ УЧУН P—P
ПЬЕЗОМЕТРИК ВА E—E НАПОР ЧИЗИҚЛÂРИНИНГ
ШАКЛЛАРИ ТЎФРISIDA УМУМӢӢ КЎРСАТМАЛАР

1. Суюқликнинг барқарор текис илгарилан-
ма ҳаракати. Буерда напорли ва напорсиз ҳаракатни қараб
чиқамиз.

Напорли ҳаракат. 3.34- расмда кўрсатилгандек, доира-
вий кувурнинг D диаметри ва l узунлиги берилиган. Қувур-
da барқарор текис илгариланма ҳаракат бўлгани учун қувур-
нинг ҳар бир узунлик бирлигида йўқотилган напор бир
хил, шундай экан, у ҳолда E—E напор чизигининг ниша-
би ҳам ҳар бир узунлик бирлигида бир хил бўлади.
$J_e = \text{const} \ (\text{оқимнинг узунлиги бўйича}). \ (3.169)$

Бундай шундай хулоқа чиқадики, узанда барқор тексилариланма ҳаракат бўлса, $E - E$ напор чизиги ного- ризонтал тўғри чизик бўлади. Барқор тексиларилан- ма ҳаракат учун

$$\frac{\omega^2}{2g} = \text{const} \ (\text{оқимнинг узунлиги бўйича}), \ (3.170)$$

бу ҳолда $P - P$ пьезометрик чизик ҳам ного- ризонтал тўғри чизик бўлиб, $E - E$ напор чизигига параллел бўлди: $P - P \parallel E - E$. Напор чизигининг пасайиши, унинг узунлиги бўйича йўқотилган напорни беради.

Барқор тексилариланма ҳаракат учун $P - P$ пьезо- метрик чизикнинг пасайиши ҳам, ўша йўқотилган напорни беради, бундан кўринадики,

$$a = h_f, \ (3.171)$$

Напорли тексилариланма ҳаракат бўлса

$$J_e = J = \frac{h_f}{l} = \frac{a}{l}. \ (3.172)$$

159
Напорсиз ҳаракат. 3.35-расмда қўрсатилганидек, очик ўзанлардаги (канал, дарё ва бошқалар) напорсиз ҳаракатларда $P-P$ пьезометрик чизик, сувнинг сатҳи билан бир чизикдага ётади. Бу ерда барқарор текис илгариланма ҳаракат бўлгани учун $E-E$ сув сатҳига (ъъни $P-P$ чизигига) паралел бўлади, у ҳолда

$$J_e = J = J_{сyv \text{ сатҳи}} = i_{тубн} = \frac{h_f}{l} = \frac{a}{l}, \quad (3.173)$$

бунда J_e — гидравллик нишаб, $E-E$ чизигидан олинади; J — пьезометрик нишаб, $P-P$ чизигидан олинади; $i_{тубн}$ — ўзан тубн, ўзан тубн чизигидан олинади; h_f — йўқотилган напор, $E-E$ чизигидан олинади; a — йўқотилган напор, сув сатҳидан олинади, факат очик ўзандага суюқлик ҳаракати текис илгариланма ҳаракат бўлганда.

2. Суюқликнинг барқарор нотекис илгариланма ҳаракат (3.36-расм). Бу ерда факат очик ўзандаги напорсиз суюқлик окимини келтиramidiz. Бу ҳолда

$$J_e \neq J_{сyv \text{ сатҳи}} = J \neq i. \quad (3.174)$$

160

www.ziyouz.com kutubxonasi
3.36-рам.

Амалий машғулот ўтказиши учун гидродинамикидан материдалар. Усулбий характерга эга бўлган масалаларнинг ечилиш усуллари намуна сифатида келтирилган

3.1- масала. Горизонтал жойлашган қувурда сувнинг сарфини аникланг. Қувур пьезометрлі сув ўлчагич билан таъминланган (3.33- рам). Қувурларнинг ички диаметрлари \(D=0,10 \) м, \(d=0,05 \) м, пьезометр кўрсаткичларининг фарқи \(\Delta h=0,5 \) м.

Ечиш. Оқимнинг I—I ва II—II қўндаланг кесимларида қувурнинг ўқида жойлашган нукталарга нисбатан Д. Бернулли тенгламасини ёзамиз. Кейин қуйидаги тартибда масалани ечамиз.

1. Оқимнинг берилган инклава қўндаланг кесими I—I ва II—II ни Д. Бернулли тенгламаси билан бирлаштирамиз. Бу ҳолда сундай кесмаларни олиш керакки, ularда илқи бориқа қўпроқ гидродинамиқ элементлар берилган бўлиши керак. Щу қерда Д. Бернулли тенгламасидан ташкарни яна қўшимча, узлуксизлик тенгламасини ҳам қўллашга тўғри келади.

2. Ихтиёрйгоризонтал 0—0 такқослаш текислигини оламиз. Бу текисликни ихтиёрий дейишларив сабаби, уни шундай жойда белиллаш керакки, унда Д. Бернулли тенгламасидаги \(z_1, z_2 \) ва бошқа қўпчилик ҳадлар нолга айланган.

1 Агар ноанник ҳадлар сони тенгламалар соиндан кўп бўlsa, у ҳолда гидродинамикининг бошқа асосий тенгламаларини қўллаш керак бўлadi.
син (бундай усулуда Д. Бернулли тенгламасини қўллаш ҳар бир мухандис ва талабаларнинг қобилияти ва билим давражасига боғлиқ).

3. Д. Бернулли тенгламаси тўлиқ кўринишда ёзилади \((3.162)\) тенгламага қараб.

4. \((3.162)\) тенгламадаги ҳар бир ҳаддиринг қийматларини масалада берилган шартларга биноан аниклаб чиқа-миз.

5. Аниқланган ҳадларни \((3.162)\) тенгламага қўйиб, уни ҳисоблаш учун қулай ҳолга келтирамиз.

6. Аниқларини бир томонга, ноаниқларини иккинчи томонга ўтказиб, масалани ечамиз. Қувурнинг кенг жойида \(I-I\) кесимни ва унинг топ жойида \(II-II\) кесимни, горизонтал \(O-O\) такқослаш текислигини кувурнинг ўқида олиб, ўшўқда жойлашган нукталар учун Д. Бернулли тенгламасини ёзамиз

\[
\frac{\alpha_1 v_1^2}{2g} + \frac{p_1}{\gamma} + z_1 = \frac{\alpha_2 v_2^2}{2g} + \frac{p_2}{\gamma} + z_2 + h_f. \tag{3.175}
\]

Масаланинг берилган шартита асосан \(z_1 = z_2 = 0\), кувурда оким ҳаракати текис ўзгарувчан бўлгани учун Г. Кориолис коэффициентини иккала кесим учун \(\alpha_1 = \alpha_2 = 1,0\) деб, \(I-I\) ва \(II-II\) кесим оралигидағи йўқотилган напор \(h_f\) ни эса нолга тенг деб қабул қиламиз\(^*\). Берилганларга асосан Д. Бернулли тенгламасини қуйидаги кўринишда ёзамиз:

\[
\frac{\alpha_1 v_1^2}{2g} + \frac{p_1}{\gamma} = \frac{\alpha_2 v_2^2}{2g} + \frac{p_2}{\gamma}. \tag{3.176}
\]

ёки

\[
\left(\frac{p_1}{\gamma} - \frac{p_2}{\gamma}\right) = \left(\frac{\alpha_2 v_2^2}{2g} - \frac{\alpha_1 v_1^2}{2g}\right). \tag{3.177}
\]

3.33- расмдан кўринадик, \(\frac{p_1}{\gamma} - \frac{p_2}{\gamma} = \Delta h. \tag{3.178} \)

\(^*\) Бундай қиліб олишга ҳақимиз бор, чунки I—I ва II—II кесим оралиги жуда ҳам кичик. Бу ҳарда \(h_f\) нинг миқдори бошқа ҳадларининг миқдорига нисбатан ниҳоятда кичик. Шунга карама-да масаланинг ечилиши қирида \(h_f\) нинг қийматини аниклаймиз.
Агар (3.177) тенгламанинг чап томони Δh га тенг экан, у қолда унинг үйнг томони ҳам Δh га тенг бўлиши шарт, у қолда

$$\frac{\alpha_2 v_2^2}{2g} - \frac{\alpha_1 v_1^2}{2g} = \Delta h. \quad (3.179)$$

Bu ёрда бир тенгламада икки номаълум ҳосил бўлди. Но- маълум v_1 ва v_2 ларни аниклаш учун окимнинг узлуксиз- lik тенгламасидан фойдаланамиз

$$v_1 \omega_1 = v_2 \omega_2, \quad (3.180)$$

бунда

$$\omega_1 = \frac{\pi D^2}{4}; \quad \omega_2 = \frac{\pi d^2}{4}. \quad (3.181)$$

(3.181) тенглами (3.180) тенгламага қўйсак:

$$\frac{v_2}{v_1} = \frac{\omega_1}{\omega_2} = \frac{D^2}{d^2}. \quad (3.182)$$

(3.182) тенгламани v_2 га нисбатан ечсак:

$$v_2 = v_1 \frac{D^2}{d^2}. \quad (3.183)$$

v_2 ни (3.183) тенгламадан (3.179) тенгламага қўйсак, қуй- ӣдагини оламиз:

$$\Delta h = \frac{v_1^2}{2g} \left(\frac{D^4}{d^4} - 1\right). \quad (3.184)$$

(3.184) тенгламадан v_1 ни аниклаймиз

$$v_1 = \sqrt{\frac{1}{\left(\frac{d^4}{d^4} - 1\right)}} \sqrt{2g \sqrt{\Delta h}}. \quad (3.185)$$

Суюқдик сарфи узлуксизлик тенгламасидан

$$Q = v_1 \omega_1, \quad (3.186)$$

қуйидагини оламиз:

163
\[Q = \frac{\pi D^2}{4} \sqrt{\frac{2g}{\left(\frac{d^4}{d^4} - 1 \right)}} \sqrt{\Delta h}. \]
(3.187)

Берилган пьезометрли сувлчагич асбоби учун (3.187) тенгламадан унинг ўзгармас қисмини \(A \) билан белгиласак

\[\frac{\pi D^2}{4} \sqrt{\frac{2g}{\left(\frac{d^4}{d^4} - 1 \right)}} = A. \]
(3.188)

Натижада сувлчагич ёрдамида суъъоқлик оқимининг сарфини ҳисоблаш учун қуйидаги содда формулани оламиз

\[Q = A \sqrt{\Delta h}. \]
(3.189)

Шунингдаги тутин қерак, масалани ечишда пьезометрли сувлчагичда йўқотилган напор эътиборга олинмаған (юқорида ун нолга тенг деб олинган) эди. Энди йўқотилган напорни эътиборга олсақ, пьезометрли сувлчагич учун суъъоқлик сарфини ҳисоблаидиган формула қуйидагида бўлади:

\[Q = \mu A \sqrt{\Delta h}, \]
(3.190)

бу қисми \(\mu \) — сув сарф коэффициенти, пьезометрли сувлчагич учун \(\mu = 0,980 - 0,985; \mu \) ни 0,98 деб қабул қилам, (3.190) тенгламадан суъъоқлик сарфини аниклаишимиз; \(A \) — пьезометрли сувлчагич коэффициенти, у (3.188) назарий формула ёрдамида ҳисобланади. Амалда эса, асосан коэффициент \(A \) тажриба ўтказиш усули билан аникланади. Бунинг учун (3.188) тенгламадан берилган пьезометрли сувлчагичнинг ўзгармас хади \(A \) ни ҳисоблаяймиз.

\[A = \frac{\pi D^2}{4} \sqrt{\frac{2g}{\left(\frac{d^4}{d^4} - 1 \right)}} = \frac{3,14 \cdot 0,02^2}{4} \sqrt{\frac{2 \cdot 9,81}{\left(\frac{0,10^4}{0,05^4} - 1 \right)}} = 0,0090 \text{ M}^{2,5} \text{ c}. \]
Пьезометрические коэффициенты в кувурдагы сүюклик сарфи (3.190) тенглаганда аникланады:

\[Q = \mu A \sqrt{\Delta h} = 0,98 \cdot 0,009 \sqrt{0,5} = 0,00624 \, \text{м}^3/\text{с} \]

3.2- масала. Пьезометрические уланган кувурдан утаётган сүюклик сарфиани аникланб (3.33- расмга қаранғ). Пьезометр кұрсаткычларынинг фарқи \(\Delta h = 1,2 \) м. Кувурнинг пьезометр ўрнатилган I—I ва II—II күндаданғ кесим майдонларыннг нисбати \(\frac{\omega_1}{\omega_2} = 12,0 \). Биринчи кесимдаги оким күндаданғ кесиминнг майдони — \(\omega_1 = 0,000314 \) м² ва сүюклик сарфи коэффициенти \(\mu = 0,92 \).

Жавоб. \(Q = 0,0117 \) м³/с.

3.3- масала. Насос құдукдан сувни құтариш учун, уни сүріп оладын баланддығы \(h_1 \) (сув сатылған насос ұқыға-ча)ны аникланб (3.37- расм). Насоснің сув тәрізді кобіліятті сүюклик сарфи билан ифодаланады, яны \(Q = 0,030 \) м³/с; насоснің сүрувчы кувурнинг диаметрі \(d = 0,15 \) м. Насоснің ұзын косил қыладын вакуум \(p_v = 0,68 \) атмосфера ва сүрувчы кувурдагы йүкотилган напор \(h_{sf} = 1,0 \) м.

Жавоб. \(h_1 = 5,65 \) м.

3.4- масала. Горизонтал жойлашган, кетма-кет уланган қыр хил диаметрлі кувур қрағы сув қауздан окіб чиқады (3.38- расм). Сүюклик сарфи \(Q \) хамда кувурнинг I—I ва II—II кесімділеріда окимнің ұртасын тезлікпен \(v_1 \) ва \(v_2 \) хамда гидродинамикалық босқыларыны аникланды. Идіштап екі сүюклик-кесімнің напори \(H = \text{const}, \) сүюк-дик-кесімнің сарфи хам \(Q = \text{const}. \) Берилген әдіс: \(H = 2,0 \) м, \(d_1 = 0,075 \) м, \(d_2 = 0,25 \) м, \(d_3 = 0,10 \) м, \(v_1 = v_0 = 0, v_2 = 6,27 \) м³/с, \(p_3 = p_a. \)

Жавоб. \(Q = 0,0492 \) м³/с, \(v_1 = 11,10 \) м³/с, \(v_2 = 1,0 \) м³/с, \(p_1 = 5,591 \cdot 10^4 \) Па, \(p_2 = 0,00 \) Па.
3.38-расм.

Такрорлаш учун саволлар

3.1. Гидродинамика тушунчаси ва амалиётда унинг ўрни қандай?
3.2. Барқарор ва бекар ҳаракат нима? Օким чизиги ва траектория қандай ўлчанади?
3.3. Ơким найчаси ва тўлиқ қандай нима?
3.4. Ơкимнинг кўндаланг кесими майдони, гидравлик радиусни ту-шунтирб беринг.
3.5. Текис ва нотекис илгариянма, напорли ва напорсиз ҳаракат қандай бўлади?
3.6. Узлуксизлик тенгламаси деб нимага айтилади?
3.7. Бернулли тенгламаси, унинг гидравлик ва энергетик маъноси қандай?
3.8. Бернулли тенгламасини қўллаш шартли қандай?
ТУРТИНЧИ БОБ

ГИДРАВЛИК ҚАРШИЛИКЛАР ВА СУЮҚЛИК ОҚИМИНИНГ БАРҚАРОР ҲАРАКАТИ ПАЙТИДА ИШҚАЛАНИШ ТАЪСИРИДА ЙЎҚОТИЛГАН НАПОР

41-.§. АСОСИЙ ТУШУНЧАЛАР

Ўзнанларда суюқлик ҳаракати пайтида оқимга тескари йўналган ҳолда ишқаланиш кучлари пайдо бўлади, улар гидравлик ишқаланиш деб аталади. Юқорида айтилганидек, шу гидравлик ишқаланишни камайтириш учун ҳаракатларга суюқликнинг солиштirma энергияси карфла-нади, уни йўқотилган солиштirma энергия йoki йўқотилган напор деб аталади. Биз юқорида Д. Бернулли тенгламасини келтириб чиқарабетганда, ана шу йўқотилган солиштirma энергияни, яъни йўқотилган напорни назарда тутган эдик. Шундай қилиб, суюқлик оқимнинг йўқотилган солиштirma энергияси йеки йўқотилган напор йўша гидравлик ишқаланиш кучини ифодалайдиган ўлчам бўлади. Асосий мақсадга ўт илгари гидравлик ишқа-ланышлар ва улар натижасида йўқотилган энергия тўғри-сида қисқа тушунча бериб ўтамиз. Гидравлик ишқаланиш-лар икки хил кўринишида бўлади.

1. Ўзаннинг узунлиги бўйича гидравлик ишқаланиш.

2. Маҳаллли гидравлик ишқаланиш.

Ўзаннинг узунлиги бўйича гидравлик ишқаланиш ўзаннинг узунлиги ва унинг гадир-будурлигига ҳамда оқимнинг ҳаракат тартиби: ламинар ёки турбулент бўлшига боғлик. Маҳаллли гидравлик ишқаланиш эса, масалан, қувуннинг кенгайишли, торайишли, ундағи жўмрак, қувурнинг бурилиши ва бошқа маҳаллли қаршиликлар таъсирида пайдо бўлади. Улар тайинли бир жойда бўлиб, ўзаннинг узунлиги боғлик бўлмайди.

Йўқотилган напор (йўқотилган солиштirma энергия) ёхм гидравлик ишқаланиш қаби икки хил кўринишида бўлади.

1. Ўзаннинг узунлиги бўйича йўқотилган напор (энергия), у оқимнинг узунлиги бўйича гид-
равлик ишқаланиш натижасида пайдо бўлади ва \(h_i \) билан белгиланади.

2. Махаллий каршиликлар таъсирли ۳ йўқотилган напор, у \(h_f \) билан белгиланади.

Тўлиқ йўқотилган напор, юқоридаги икки бандда кўрсатилган йўқотилган напорларнинг йиғиндисига тенг, яъни

\[
h_f = h_i + \Sigma h_j. \tag{4.1}
\]

4.1-расс.

Суюқлик қарақати пайтида тўлиқ йўқотилган напорни назарий, ҳам тажриба усулида ўрганилади. Биз бу ерда асосан тажриба усули тўғрисида тўхтабиб ўтамиз. Бунинг учун Д. Бернулли тенгламасidan \(h_f \) ни аниклаямиз (4.1-рассм)

\[
h_f = \left(\frac{\alpha_i v_i^2}{2g} + \frac{P_i}{\gamma} + z_i \right) - \left(\frac{\alpha_2 v_2^2}{2g} + \frac{P_2}{\gamma} + z_2 \right). \tag{4.2}
\]

Бу тенгламадан кўринади, \(h_f \) ни аникилаш учун окимнинг 1—1 ва 2—2 кесимлар оралигидаги иккела кесимлар гидродинамик напорлари баландлигини ўлчаб оламиз

\[
H_{e_1} = \frac{\alpha_i v_i^2}{2g} + \frac{P_i}{\gamma} + z_i; \tag{4.3}
\]

\[
H_{e_2} = \frac{\alpha_2 v_2^2}{2g} + \frac{P_2}{\gamma} + z_2. \tag{4.4}
\]

Бу гидродинамик напорларнинг фарқини

\[
H_{e_1} - H_{e_2} = h_f \tag{4.5}
\]

ҳисоблаб чиксак, бу фарқ бизга 1—1 ва 2—2 кесимлар оралигидаги масофада тўлиқ йўқотилган напорни беради. Агар каралаётган ўзан нишабга эга бўлиб, ундаги суюқлик ҳара-
кати текис илгариланама ҳаракат бўlsa, яъни \(v_1 = v_2 = v = \text{const} \) ва \(\alpha_1 = \alpha_2 = \alpha \), у ҳолда тулиқ йўқотилган напор қуйидагича аникланади (4.2-расм)

\[
h_f = \left(\frac{P_1}{\gamma} + z_i \right) - \left(\frac{P_2}{\gamma} + z_2 \right). \tag{4.6}
\]

Бундан келиб чиқадики, ногоҳизон-таль ўзанда суюқлик ҳаракати текис илгариланама бўlsa, икки иктёрий кесим оралигида йўқотилган напор шу кесимлардаги пьезометрик баландлик билан қараляётган нуктан-нинг ҳолат баландлигининг йифин-диларининг айирмасиға тенг.

Агар ўзан горизонтал бўласа, \(z_1 = z_2 = z \), у ҳолда (4.6) тёндлама қуйидаги кўринишни олади (4.3-расм)

\[
h_f = \frac{P_1}{\gamma} - \frac{P_2}{\gamma}, \tag{4.7}
\]

яъни икки кесим орасида йўқотилган напор (ўзан горизонтал ҳолда бўлиб, ундаги суюқлик ҳаракати текис илгари-ланама бўлса) шу иккита кесимларға пьезометрик баландликлар айирмасиға тенг. Суюқлик оқими-нинг ҳаракати пайтида напорнинг йўқолиши суюқликнинг қовушқили-ги ва ўзан деворларининг ғадир-бу-дурллиги бўлиб, маълумки, сую-қликнинг ҳаракат тартиби унинг қовушқили хоссасиға бўлиб, шундай эка, очиқ ўзанларда (4.4 ва 4.5-расмлар) ва напорли қувирларда суюқ-лик ҳаракати пайтида йўқотилган напорни ўрганаётганда ҳаракат тартиб-ларига алоҳида эътибор бериш керак, чунки йўқотилган напор асосан юқорида айтилгандек O. Рейнольдс сони \(Re \) ва ўзаннинг ғадир-будурли-гига бўлиб,
4.2- §. РЕАЛ СУЮҚЛИК ОҚИМИНИНГ ЙККИ ХИЛ ҲАРАКАТ ТАРТИБИ: ЛАМИНАР ВА ТУРБУЛЕНТ ҲАРАКАТ. О. РЕЙНОЛЬДС СОНИ ВА УНИНГ КРИТИК МИҚДОРИ

Гидравлик ишқаланиши тажрибада ўрганиш натижа-лари шуни кўрсатдики, суюқлик оқими пайтида йўқотил-ган напор (энергия), шу оқим қандай тартиба (ламинарми ёки турбулентми) ҳаракатланишига бойлик. Ламинар ҳаракатда суюқлик қатлам-қатлам бўлиб оқиб, шу суюқлик зар-рачалари босиб ўтган йўлларининг излари бир-бирига нис-батан параллел бўлади. Ламинар сўзи лотин тилидан олинган бўлиб, lamina — қатлам маъноси (4.6 а, 4.6 б- расмлар) англатади. Табиатда суюқлик оқимининг ламинар ҳаракати, асосан, ер ости суюқликлари ҳаракатида, ингич-ка капилляр нийчалар ичидағи суюқлик ҳаракатида ва катта қовушқоқликка ега бўлган суюқликлар, масалан, нефть, ва-зелин ва ҳар ҳил ёғлар ҳаракатида учрайди. Турубулент ҳаракат деб, суюқлик оқим қатлам-қатлам бўлиб оқиш бузилб, шу суюқлик заррачалари босиб ўтган йўлларининг из-лари жуда мураккаб шаклда бўлиб, бир-бирига чалкашшиб ўралиб кетадиган ҳаракатга айтилади. Турубулент сўзи лотин тилидан олинган бўлиб, turbulentus — тартибсиз деган маъ-нони билиради (4.6 а, 4.6 в- расмлар).

Табиатдаги барча суюқлик ҳаракати асосан турубулент ҳолатда бўлади. Суюқлик оқимининг ламинар ва турубулент ҳаракатини биринчи марта рус олими Д. И. Менделеев 1880 йилда айтиб ўтган. Кейинчалик Д. И. Менделеевнинг фик-
рини англис физиги O. Рейнольдс тажрибада 1883 йили тасдиклали. O. Рейнольдс биринчи бўлиб шу ҳаракат тартиблининг ҳоссаларини тажрибада тушунтириб берди. Суъоқликнинг ҳаракат тартибини анниловчи шартнинг физик характеристикаларини назарий ва тажрибавий усуллар ёрдамида ишлаб чиқди.

2) Тажриба ўтказаётганда сукъолик ичига юборилаБ тан буёқ ҳаракати ташқаридан кўриниб туриши учун шиша кувур олинади.
орқали бўёқ юборайлик. Бу пайтда бўёқ T қувурда ҳаракатланан ҳаволик қўликни ичида, шу суъқлик билан аралашмаидан ҳавоқ заррачатарининг ҳаракатлананган чизингдек алоҳида ҳаракатлансан (4.6 б- расм), бундай ҳаракат ламинар ҳаракат деб аталади. Бўёқ шу суъқлик билан аралашкиб, ҳавоқ ичида бўёқ чизиғи қўринмай кетса, бундай ҳаракат турбулент ҳаракат деб аталади (4.6 б- расм). Агар шиша қувурдаги Ж жўмракчи аста очсак, A идишдан суъқлик қўлиб чиқа бошлайди. T қувурда унинг қўндаланг кесими бўйича қандайдир ўртача ҳавда тезлик пайдо бўлади, бу пайтда сув сарфиға ва қувурнинг қўндаланг кесимига тегишили A идишда сув сатҳи ўзгармас, яъни $H = \text{const}$ бўлиши керак. Энди M нийчанинг N жўмрагини бир оз очсак, T қувурга бўёқ ўта бошлайди ва ундағи суъқлик ҳавоқ ичида ингичка тўғри қизиқли, атрофдаги суъқликлардан яъқол аҳралиб турадиган ҳавоқ чизиғини ҳосил қилади. Бундан қўриндалики, бўёқ атрофдаги суъқликлар билан аралашмаган ҳолда ҳаракат қилинти. Бошланишда шундай хаёлга келамизки, шу бўёқдан ҳосил бўлган ҳавоқ чизиғи (элементар ҳавоқ нийчаси) худди шу T қувурнинг ичида қотиб қолганда туяда (4.6 б- расм). Бундай ҳаракат ламинар ҳаракат деб аталади. Агар шу тартибда T қувурдаги суъқлик ичида бўёқдан танг бир неча элементар ҳавоқни ташкил этсак, унда улар бўлак-бўлак элементар ҳавоқ нийчаси шаклида атрофдаги суъқлик массалари билан аралашмасdan, алоҳида ҳаракат қилади. Шундай қилиб T шиша қувурда ҳамма суъқлик бўлак-бўлак ва қаватма-қават ҳолда бир-бири билан ва атрофдаги бошқа суъқликлар билан аралашмасдан ўз ҳолича ҳаракат қилаверади, унда ҳавоқ чизиғи тўғри қизиқли шаклда бўлиб, узунлиғи бўйича ўзгармайди. Агар Ж жўмракчи яна озгина очсак, унда v тезлик ва Q сув сарфи кўпайди. Бошланишда сифат жиҳатида бу ҳодиса ҳеч ўзгармайди. Оддийгидек бўлган ҳавоқ нийчаси атрофдаги суъқликлар билан аралашмасдан ўз ҳолича ҳаракат қилаверади. Аммо шу жўмракчи очишида давом этириб бора-версак, бирдан қандайдир бир элементар вақт ичида бўлган ҳавоқ нийчаси қийиш ва бошлайди, шунда ҳавоқ чизиғи илон изи бўлиб қолади. Элементар ҳавоқ нийчаси эса тёбрана бошлайди. Бу ҳодиса факат фазода ихтиёрий нуктадаги вектор тезлигининг вақт ўтиши билан тўхтамасдан ўзгарганни сабабли рўй бериш мумкин. Шу тез-
ликлар бетўхтоб ўзгаришларининг кучайиш пи натижасида бўялган элеменлар оқим ныйча-сиз атрофидаги суюқлик массаси билан аралаша бошлайди ва оқим чи-зиклари жуда ҳам кичик вакт ичида ўз шаклини йўқотиб, бутун \(T\) кувурдаги оқимнинг кўндаланг кесими бўйича майда гирдоб-чалар кўринишига айланиб кетади дар ва тартибдир ва тартибсиз равишда ҳаракатлана бошлайди (4.6в- рasm). Бундай ҳаракат турбулент ҳаракат деб аталади. Агар шу юқорида ўтказилган тажрибани тесқари йўналишда так-орласак, яъни \(K\) жўмракни (у тўлқ очилган қайд-ин) секин-аста беркита бошласак, у ҳолда турбулент ҳаракатдан ламинар ҳаракатга ўтиш ламинар ҳаракатдан тур-булент ҳаракатга ўтишга қараганда анча кичик тезликда таъминланади. Шундай қилиб «ўтиш зонаси» вурузда келади. Бу «ўтиш зонасида» тартиб ҳаракати мустақкам эмас ва бирор қутилмagan омил таъсирида ламинар ҳаракат турбулентга ўтиши ёки турбулент ҳаракат ламинарга ўти-ши мумкин. Бундан шундай ҳулоса қелиб чиқадики, су-юқлик оқимнинг ҳаракати ҳайтида йўқотилган натор ҳара-кат тартиби дар тезликларида боғлик экан. Бундай таж-рибалар натижаларини чизмада кўрсатиш мақсадида куй-ндаги боғланиш графигини қараб чиқамиз (4.7- расм):

\[
\lg h_f = f (\lg v) \tag{4.8}
\]

4.7-расмда ордината ўқига \(\lg h_f\), абсцисса ўқига \(\lg v\) мик-дорларини қўйиб чиқсак, чизмада бир-бирли билан кеси-шувчи иккита тўғри чизик ҳосил бўлади. Бундай тўғри чи-зикларининг тенглагмаси қуйидагича бўлади

\[
\lg h_f = \lg k + m \lg v. \tag{4.9}
\]

Бу ерда \(m = \lg \theta; \theta = ab\) ва \(bc\) тўғри чизикларнинг абсцис-са ўқи билан ташкил этган бурчак. (4.9) тенглагмадан

173

www.ziyouz.com kutubxonasi
$$h_f = k v^m, \quad (4.10)$$

бу ерда k — ўзанинг ўлчамларини ва суюқлиқнинг харакат турларини ифодаловчи коэффициент; m — дараха кўрсаткич, суюқлик оқимнинг ўртача тезлигини йўқотилган напор (солиштирма энергия)га таъсирини ифодалайди. $\lg h_f = f(\lg v)$ графикдан (4.7-расм) қуйидаги хуло-сани олимаз:

1) ab туғри чизиг суюқлиқнинг ламинар ҳаракати ни ифодалайди; ab туғри чизиг абсцисса ўқи билан $\theta_1 = 45^\circ$ бурчакни ташкил этади. У ҳолда $m = \frac{\tan \theta_1}{\tan 45^\circ} = 1,0$ га тенг; ламинар ҳаракатда ўзанинг узунлиги бўйича h_i йўқотилган напор оқим тезлигининг биринчи дарахалари кўрсаткичиға туғри пропорционал, яъни $h_i = k_i v^n$, бу ерда $m = 1$;

2) bc туғри чизиги суюқлиқнинг турбулент ҳаракатини ифодалайди; bc туғри чизиги абсцисса ўқи билан θ_2 ($\theta_2 > 45^\circ$) бурчакни ташкил этади; (4.10) формуласида $m >> 1$; турбулент ҳаракатда оқимнинг узунлиги бўйича йўқотилган напор h_p в тезликтан м дараха кўрсаткичиға туғри пропорционал, яъни $h_i = k_i v^n$, бу ерда $m = 1,75 \div 2,0$.

О. Рейнольдс сони ва унинг критик миқдори. Юкорида кўрсатилганидек, суюқлиқнинг ҳаракат тартиби ундағи оқимнинг узунлиги бўйича йўқотилган напор (энергия)га таъсир этади. Тажрибалардан маълумки, суюқлиқнинг ҳаракат тартибли суюқлиқнинг μ қовушқоллигита, унинг ρ зичлиги, оқимнинг кўндаланг кесими бўйича ўртача v тезлигита ва ўзанинг геометрик ўлчамлари l га боғлиқ. Бу ерда l ўзанинг геометрик ўлчамлар деб, ўзанинг (ёки оқимнинг) бирор характерли геометрик элементи, масалан, доирравий кувур учун — унинг D диаметри, очик ўзан учун суюқлик оқимнинг h чукурлиги ёки унинг R гидравлик радиуси қабул қилинган. Оқимнинг ҳаракат тартибини характерловчи, ўлчам бирлигига эга бўлмаган, тўртта μ, ρ, v, l параметрдан ташкил этилган комплекс сон аникланган. Шу тўртта параметрнинг бир-бирига боғликлсиздашундай ўлчам бирлигига эга бўлмаган ҳамда суюқлик ҳаракати қонундаги бирор маънони тушунтирадиган бир комплекс сон тузиш керак. Бундай комплекс сон қуйидагида эўилади

$$\frac{v_f}{\mu / \rho}, \quad (4.11)$$

174

www.ziyouz.com kutubxonasi
$\frac{\mu}{\rho} = v$ — кинематик қовушоклик коэффициенти, уни (4.11) тенгламаға кўйсак, у ҳолда комплекс сон қўйидаги қўринишда бўлади

$$\frac{vl}{v},$$
(4.12)

Юқоридаги бажарилган тажрибалар ва тажриба ўтказилган қўрилма ҳамда (4.12) комплекс сон О. Рейнольдс томонидан ихтиро этилган. Шунинг учун у сон О. Рейнольдс сони дейилади ва О. Рейнольдс номининг биринчи икки ҳарфи билан белгиланади

$$Re = \frac{vl}{v},$$
(4.13)

бу ерда l ўрнига қандай миқдор олинганига қараб Re белгига тегишили индекс қўйилади. Масалан, l ўрнига кувурда унинг D диаметри қабул этилса

$$Re_D = \frac{vD}{v},$$
(4.14)

агар гидравлик радиус $R = \frac{w}{\lambda}$ қабул этилса

$$Re_R = \frac{vR}{v};$$
(4.15)

очик ўзанларда сувнинг h чукурлиги қабул этилса

$$Re_h = \frac{vh}{v},$$
(4.16)

ва ҳоказо.

Шунинг эслатиб ўтиш керакки, фақат кувурдаги суюқлик оқими ҳаракатини гидравлик ҳисоблашида О. Рейнольдс сонининг Re белгисида D индекси қўйилмасдан ёзилishi мумкин

$$Re = \frac{vD}{v}.$$

Кувурдан бошқа ҳар хил ўзанлар учун Re белгисида тегиши индекслар қўйилади. Суюқликнинг ҳаракатини доиравий гидравлик силлик кувурларда ўрганиш натижасида ўрнатилган О. Рейнольдс сонининг қиймати $Re \leq 2320$

175
булса, у ҳолда суюқлик ҳаракати мутлақо ламинар ҳаракат бўлади. Очиқ ўзанлар учун эса О. Рейнольдс сони \(\text{Re} \leq 580 \) бўлганда суюқлик окимининг ҳаракати ламинар бўлади. Буну исботлаш учун кувурнинг \(D \) диаметрини унинг \(R \) гидравлик радиуси билан алмаштирсак кифоя, масалан,

\[
\text{Re}_D = \frac{vD}{v} = \frac{v(4R)}{v} = 4 \frac{vR}{v} = 4 \text{Re}_R;
\]

\(\text{Re}_D = 4 \text{Re}_R = 2320, \) унда \(\text{Re}_R = \frac{1}{4} \text{Re}_D = \frac{2320}{4} = 580. \) Бу \(\text{Re}_D = 2320 \) сони О. Рейнольдснинг критик сони деб аталади ва \((\text{Re}_D)_{kr} \) шартли белги билан белгиланади.

\[
(\text{Re}_D)_{kr} = \frac{v_{kr}D}{v}. \tag{4.17}
\]

Шу критик ҳолга тегишли окиминг ўртача тезлиги критик тезлик деб аталади

\[
v_{kr} = \frac{(\text{Re}_D)_{kr}v}{D}. \tag{4.18}
\]

Янги тушунча киритамиз:

1) агар \(\text{Re}_D < (\text{Re}_D)_{kr} = 2320 \) бўлса, ҳаракат ламинар бўлиши шарт;

2) агар \(\text{Re}_D > (\text{Re}_D)_{kr} = 2320 \) бўлса, ҳаракат турбулент бўлади.

Юқорида келтирилган гидродинамикианинг асосий тенгламалари, чунончи узлуксийлик тенгламаси, Д. Бернулли тенгламаси, текис илгарилмана ҳаракатнинг асосий тенгламаси суюқлик окимининг ламинар ва турбулент ҳаракатлари учун баробар қўллашаверади. Аммо, Д. Бернулли тенгламасидаги \(h \), тўлиқ йўқотилган напор эса, ламинар ҳаракат учун бошқа, турбулент ҳаракат учун бошқа формулалар орқали аниқланади, чунки хил ҳаракат тартиби учун окимнинг ўртача тезликларининг даража кўрсаткичлари ҳар хил бўлади. Масалан, ҳуқорида тушунтирилган идея, ламинар ҳаракат учун \(m \) даража кўрсаткичи фаят 1,0 га тенг, яъни \(m = 1 \) (4.7-рамс, \(ab \) чизик); турбулент ҳаракат учун шу даража кўрсаткич \(m = 1,75 \div 2,0 \) (4.7-рамс, \(bc \) чизик). Амалий гидравликада О.Рейнольдс сонининг
шу 2320 критик қиймати асос деб қабул қилинган. Аммо таж-риба пайтида қурилмaga «идеал» шароит тугдириб берил, яъни қурилмaga ташқари-дан таъсир этадиган омилларни мутлақо йўқ қилиб, \(T \) жўм-ракни шундай эҳтиётлик билен очиб борсак, яъни кувурдаги ламінар ҳаракатни \(v_{kr} \) критик тез-лигидан бириқ (табиий) критик \(v'_{kr} \) тезликка «чўзиб» олиб борсак, бу ерда \(v'_{kr} > v_{kr} \) бўлади, у ҳолда Рейнольдс сони-нинг қандайдир бошқа критик (Re)\(_{kr} \) микдорини оламиз. Бу ламінар ҳаракат шу критик тезликлар оралфида мус-таҳкам эмас, чунки тажрибага ташқарида бириқ омил таъ-сир этса, ламінар ҳаракат шу ондалёқ бузилиб кетиб, тур-болент ҳаракатга айланиши мумкин. Суъқллик оқимининг \(v'_{kr} \) тезлигини юқори критик тезлик деб аталади ва (\(v'_{kr} \) юқори) орқали белгиланади. Энди юқорида айтилганлар-ни 4.8-расм орқали тушунтирамиз. Расмда ордината ўқи бўйича \(v \) тезлик қўйилган. Агар биз шу ординатада ўқи бўйи-ча пастдан юқорига ҳаракат қилсак, яъни \(v \) тезликни қат-талаштириб борсак, у ҳолда ламинар ҳаракат тезлик \(v'_{kr} \) бўлгунча давом этиб, тезлик \(v'_{kr} \) бўлганда турбулент ҳаракатга ўтади; агар ординатада ўқи бўйича юқоридан пастга ҳаракат қилсак, яъни тезликни камайтириб борсак, тез-лик \(v'_{kr} \) бўлганда турбулент ҳаракат ламинар ҳаракатга ўтади, бу ерда \(v_{kr} \) тезлик пастки критик тез-лик деб аталади ва (\(v_{kr} \) пастки) билан белгиланади. Тезликлар зонаси (\(v_{kr} \) пастки < \(v < (v'_{kr}) \) юқори) қўрингиди бўлса, бундай зона номустаҳкам зона ёки «алмашиш» * зонаси деб аталади. Шу тезликларга тегишили Re O. Рейнольдс сонлари суъқлик

* «алмашиш» сўзининг маъноси бу — зонада бир шароитда вақт ўти-ши билан ҳам ламинар, ҳам турбулент ҳаракат мавжуд бўлиши мумкин, бундан ҳаракат қурилмадаги ўтказилаётган тажрибанинг муҳимлигига, яъни аниклик даражасига боғлиқ.
окимининг тезликларига қараб қуйидагича номланади: масалан, \(v_{kr} \) га тегишили \(\text{Re}_{kr} \) сони — пастки критик O. Рейнольдс сони дейилади ва \((\text{Re}_{kr})_{дисти} \) орқали белгиланади; \(v'_{kr} \) га тегишили \(\text{Re}'_{kr} \) — қочори критик O. Рейнольдс сони деб аталади ва \((\text{Re}'_{kr})_{кмпор} \) билан белгиланади. Гидравлизда, амалий ҳисоб-қитобларда бу \(v_{kr} < v < v'_{kr} \) тезликлар зонасида суюқлик ҳаракати турбулент ҳаракатда бўлади деб қабул қилинади.

4.1-масала. Кувурнинг диаметри \(D = 0,01 \) м, унда 1,0 м/с тезликда текис илгариланма ҳаракат қилаётган суюқликнинг ҳаракат тартибини аниқлант. Суюқликнинг ҳаро-рати \(T^\circ C = 20^\circ C \).

A. Суюқлик окимининг ҳаракат тартибини аниқлаймиз.

1. Кувурда сув ҳаракат қиляпти (унинг кинематик қовушқлик коэффициенти \(v = 1,01 \cdot 10^{-6} \) м\(^2\)/с, 1.2-жавдвалга қаранг)

\[
\text{Re}_D = \frac{vD}{v} = \frac{1,0-0,01}{1,01 \cdot 10^{-6}} = 10000 \gg 2320,
\]

бундан кўринадики, суюқлик окимининг ҳаракат тартиби — турбулент.

2. Кувурда газсимон суюқлик ҳаракат қиляпти (унинг кинематик қовушқлик коэффициенти \(v = 15 \cdot 10^{-6} \) м\(^2\)/с)

\[
\text{Re}_D = \frac{1,0-0,01}{15 \cdot 10^{-6}} = 670 < 2320.
\]

Бу ҳолатда газсимон суюқлик ҳаракатининг тартиби — ламинар.

3. Кувурда нефть ҳаракат қиляпти (унинг кинематик қовушқлик коэффициенти \(v = 80 \cdot 10^{-6} \) м\(^2\)/с)

\[
\text{Re}_D = \frac{1,0-0,01}{80 \cdot 10^{-6}} = 125 \ll 2320,
\]

бу шароитда эса суюқлик окимининг ҳаракат тартиби — мутлақо ламинар.

178
Б. Суюқлик окимининг критик тезлиги, \(v_{kr} \) нии, яъни бир тартибдан иккинчи тартибга ўтишдаги чегара тезлиги \(v_{kr} \) нии андалиймиз (юкорида берилиган шартларга биноан).

1. Су в учун

\[
v_{kr} = \left(Re_D \right)_{kr} \frac{v}{D} = 2320 \cdot 1.01 \cdot 10^{-6} = 0.232 \text{ м/с.}
\]

2. Газ учун

\[
v_{kr} = 2320 \frac{1.5 \cdot 10^{-6}}{0.01} = 3.48 \text{ м/с.}
\]

3. Нефть учун

\[
v_{kr} = 2320 \frac{80 \cdot 10^{-6}}{0.01} = 18.56 \text{ м/с.}
\]

Бундан кўриниб турибдикли, бир хил шароитда ҳар хил суюқликлар ўзини ҳар хил тутар экан. Бу амалиётда, гидротехник ва бошқа иншоотлар (кувур, канал ва бошқалар) ни гидравлик ҳисоблашда катта аҳамиятга эга.

4.3- §. СУЮҚЛИК ОҚИМИНИНГ БАРҚАРОР ТЕКИС ИЛГАРИЛМА НАҲАРАТИНИНГ АСОСИЙ ТЕНГЛАМАСИ

Юкорида кўрсатиляганидек реал суюқликларнинг ҳарқати пайтида ишқаланиш кучи пайдо бўлади. Суюқлик ҳарқатида шу ишқаланиш кучи қанча қўп бўлса, йўқотилган напор \(h_f \) шунча қўп бўлади. Суюқликдаги ишқаланиш кучи билан йўқотилган напор орасида маълум боғланиш мавжуд. Бу боғланишини барқарор текис илгарилмана ҳарқат учун суюқлик окимининг текис илгарилмана ҳарқатининг асосий тенгламаси деб аталади. Қуйида бу тенгламани қараб чиқамиз.

Бу ерда окимнинг узунлиги бўйича йўқотилган напор (энергия) билан суюқлик окими ҳарқати пайтида ҳосил бўладиган ишқаланиш кучи орасида боғланиш тенгламасини келтириб чиқарамиз. Бунинг учун кувурдаги суюқлик окимининг напорли ҳарқатини қараб чиқамиз (4.9-расм). Кувур (диаметрнинг) марказидан оким йўналиши бўйича \(S \) ўқини белгилаймиз. Суюқлик окими бўйича 1-1 ва 2-2 кесимларини олиб, улар оралигини билан белгилаймиз. Су-
4.9-рasm.

юқлиқ окими ҳаракати текис илгариланма бўлган учун икки кесим ўртасида пьезометрик чизик тўғри чизик бўлиб, унинг пасайиши Δh ни, узулиқ l га нисбати йўқотилган напор h, ни беради. Суюқлиқ окимининг 1–1 ва 2–2 кесимлар оралигидаги бўлгига ташсир этувчи барча ташқи куかもしれませんが аник-лаб чиқамиз. Шундан кейин, суюқлиқ окимининг ҳаракати, барқарор текис илгариланма бўлганлигини назарда тутган ҳолда, унга ташсир этувчи кучларни S ўқиға, проекцияларининг йиғиндисини нолга тенг деб оламиз. Шундай қилиб текис илгариланма ҳаракатнинг асосий тенгламасини оламиз.

Доирaviй кувурда l оралигида суюқлиқ окимининг текис илгариланма ҳаракатини қараб чиқамиз (4.9-рasm), бунинг учун қуйидаги шартли белгиларни қабул қиламиз: D — кувурнинг диаметри; ω — окимнинг кўндаланг кесими юзасининг майдони; v — окимнинг кўндаланг кесимидаги ўртача тезлик; χ — хўулланган периметрининг узунлиги; R — гидравлик радиус; t₀ — окимнинг кувур девори билан ишқаланган юзасининг бирлик майдонига тўғри келган куchlаниш; T₀ — шу оким бўлгигадаги умумий юзага тўғри келган кувурнинг хўулланган периметри бўйича ишқаланиш кучи; h₁ — окимнинг узунлиги бўйича йўқотилган напор; β — кувурнинг (ўқи бўйича) горизонтал текисликка нисбатан бурчаги.

1. Окимнинг ажратилган бўлгига, яъни окимнинг 1–1 ва 2–2 кесимлар орасидаги суюқлиқ ҳажмига таъсир қилувчи куchlар:
а) Қаралаётган суюқлик окимининг 1–1 ва 2–2 кесим-чар оралиғидаги бўлганинг оғирлик кучи

\[G = \gamma \omega l; \] \hspace{1cm} (4.19)

унинг \(S \) ўқига проекцияси

\[G_s = \gamma \omega l \sin \beta. \] \hspace{1cm} (4.20)

4.9-расмдаги чизмадан

\[l \sin \beta = z_1 - z_2. \] \hspace{1cm} (4.21)

(4.21) тенгламани (4.20) тенгламага қўйсак

\[G_s = \gamma \omega (z_1 - z_2); \] \hspace{1cm} (4.22)

б) суюқлик окимининг 1–1 ва 2–2 кўндаланг кесимларидаги босим кучлари

\[P_1 = p_1 \omega_1; \quad P_2 = p_2 \omega_2. \] \hspace{1cm} (4.23)

бу ерда \(p_1 \) ва \(p_2 \) — окимининг 1–1 ва 2–2 кўндаланг кесимларининг оғирлик марказига қўйилган гидродинамиқ бо-симлар; \(\omega_1 = \omega_2 = \omega \) — окимининг 1–1 ва 2–2 кўндаланг кесимларининг майдони, окимнинг узунлиги бўйича қувурнинг диаметри ўзгармас бўлгани учун \(D = \text{const} \) ва қувур-даги ҳаракат текис илгариланма бўлган ҳолда унинг икти-ёрий кўндаланг кесими майдонининг ўтаси ўзгармас, яъни \(\omega = \text{const} \) бўлади. Бу кучларнинг \(S \) ўқига проекцияси \(P_s \) ва \(P_{2s} \);

в) ташқи ишқаланиш кучи — \(T_0 \). Бу қувурнинг ички девори томонидан окимнинг сиртки ўтасига нисбатан қўйилган ишқаланиш кучи, у окимга қарши йўналган, унинг \(S \) ўқига проекцияси ўзгармас бўлади.

Бундан ташқари яна ички ишқаланиш кучи мавжуд. Бу кучлар қўшалоқ, бир-биригра тенг ва қарама-қарши йўналган бўлгани учун уларнинг йиғиндиси нолга тенг

\[\Sigma T = 0. \] \hspace{1cm} (4.24)

2. Барча кучларнинг \(S \) ўқига проекциялари йиғиндиси нолга тенг:
\[G_s + P_{1s} + (-P_{2s}) + (-T_{0s}) = 0. \] (4.25)

(4.25) тенгламага (4.22) тенглама ва (4.23) тенгламадан қийматларини келтириб кўйсак

\[\gamma \omega (z_1 - z_2) + p_1 \omega_1 - p_2 \omega_2 - T_0 = 0. \] (4.26)

(4.26) ни \(\gamma \omega \) га бўлиб чиқсак, шунингдек \(\omega_1 = \omega_2 = \omega \) ни назарда тутсак

\[(z_1 - z_2) + \frac{p_1 - p_2}{\gamma} - \frac{T_0}{\gamma \omega} = 0 \] (4.27)

ёки

\[\left(z_1 + \frac{p_1}{\gamma} \right) - \left(z_2 + \frac{p_2}{\gamma} \right) = \frac{T_0}{\gamma \omega}. \] (4.28)

4.9-расмдан кўринадик, (4.28) тенгламанинг чап томони оқимнинг узунлиги бўйича \(h_i \) йўқотилган напорга тенг

\[\left(z_1 + \frac{p_1}{\gamma} \right) - \left(z_2 + \frac{p_2}{\gamma} \right) = h_i. \] (4.29)

Шундай экан, (4.28) тенгламанинг ўнг томони ҳам оқимнинг узунлиги бўйича йўқотилган напорга тенг бўлади

\[h_i = \frac{T_0}{\gamma \omega}, \] (4.30)

бу ерда \(T_0 \) — ўумумий (қувертинг тўлиқ периметри бўйича) ишқаланиш кучи

\[T_0 = \chi l \tau_0, \] (4.31)

бунда \(\tau_0 \) — қувертининг ичкі деворидаги ёртача уринма кучланиш. (4.31) тенгламани (4.30) тенгламага кўйсак

\[h_i = \frac{\chi l}{\omega} \cdot \frac{T_0}{\gamma}, \] (4.32)

ёки

www.ziyouz.com kutubxonasi
$$\frac{h_t}{l} = R \cdot \frac{\tau_0}{y}, \quad (4.33)$$

бу ерда

$$\frac{\omega}{\chi} = R; \quad \frac{h_t}{l} = J. \quad (4.34)$$

$$\frac{\tau_0}{y} = RJ. \quad (4.35)$$

(4.35) тенглама суюқлик окими барқарор текис илгариланма ҳаракатининг асосий тенгламаси деб аталади. (4.32) ёки (4.35) тенгламалар (4.34) тенгламани назарда тутган ҳолда, суюқлик окимининг текис илгариланма ҳаракат пайтида

чика ва ташки ишқаланиш кучларининг бахарган иши таъсирида йўқотилган напорни ифодалайди. (4.35) тенгламани қуйидагича ёзиш мумкин:

$$\frac{\tau_0}{\rho} = g RJ, \quad (4.36)$$

бу ерда gRJ нинг ўлчов бирлиги иккинчи даражали тезликнинг ўлчов бирлигига тенг. Гидродинамикада \sqrt{gRJ} динамиқ тезлик деб аталади (ишқаланиш тезлигин деб ҳам аталади) ва v_* билан белгиланади

$$v_* = \sqrt{gRJ} = \sqrt{\frac{\tau_0}{\rho}}. \quad (4.37)$$

4.4-§. ЛАМИНЛAR ҲAРАКАТДАГI ОҚИМИНГ НУҚТАЛАНГ КЕСИМИ МАЙДОНИ БЎЙИЧА НУҚТАЛАНГИ ЙЎРТАЛАШТИРИЛГАН ТЕЗЛИКЛАРНИНГ ТАҚСИМЛАНИШИ

1. Тексис илгариланма ҳаракат тенгламаси (4.35) га асосан радиуси у га тенг бўлган қувурдаги суюқлик окими учун (4.36) дан қуйидаги тенгламани ёзмиз:

183

www.ziyouz.com kutubxonasi
В. Ньютон қонунинг асосан ишқаланиш кучи

\[\tau = -\nu \rho \frac{du}{dy} \cdot (4.40) \]

Бу ерда манфий белги кувурнинг ўқидан деворгача тезликнинг камайиб боришини билдиради (ёки кучланишнинг кўпайиб боришини кўрсатади). (4.40) тенгламани (4.38) тенгламага қўйиб, уни интеграллаб чиққандан кейин ламинар ҳаракатнинг \(AB \) кесимдаги (4.10а-расм) тезликларнинг тақсимланиши эпюраси тенгламасини оламиз

\[u = \frac{1}{4} \frac{E}{\nu} J (r^2 - y^2) \cdot (4.41) \]

(4.41) формуладан кўринадики, \(ACB \) чизиги қонунинг кўндаланг кесими буйича нуқталардаги ўрталаштирилган тезликларнинг тақсимланиш эпюраси парабола қонун буйича бажарилар эткан. Агар \(y = 0 \) деб олсак, у холда (4.41) тенгламадаги тезлик энг катта қийматга эга бўлади

\[u_{max} = \frac{1}{4} \frac{E}{\nu} Jr^2 \cdot (4.42) \]
(1.42) formuladadan қўринадики, \(u_{\text{max}} \) тезлик қувур ўқида жойлашган бўлади. Ламинар ҳаракатда тезликнинг окимнинг кўндаланг кесими бўйича тақсимланиш эпюраси учун \(\alpha \approx 1.33 \) ва \(\alpha \approx 2 \) қийматларга эга бўлади. \((4.40)\) тенгламадан т уринда қўлчалиш окимнинг кўндаланг кесими- нинг радиуси бўйича туғри чизик қонуни бўйича тақсимланади \((4.10a\)-расм). \(\tau \) нинг қиймати қувурнинг ўқида \(\tau = 0 \) бўлади, унинг энг катта қиймати \(\tau_{\text{max}} \) деворга жуда яқин жойда бўлади. Güncравликда деворга яқин жойдаги қўлчалиш \(\tau_0 \) белги билан ифодаланади, у \(\tau_0 = \tau_{\text{max}} \) бўлади. Очик ўзанлар учун ҳам шу усулни қўллаш мумкин, ҳавни \((4.41)\) тенгламани олиш мумкин. Очик ўзанда ҳам, окимнинг кўндаланг кесими юзаси майдони бўйича нукталардағи ўрталаштирилган тезликларнинг тақсимланishi ҳам парабола қонунинг бўйсунади:

\[
\begin{align*}
 u &= \frac{y}{2\mu} y(2h - y) = \frac{g}{2v} y(2h - y), \\
\end{align*}
\]

ammo бунда тезликнинг энг катта қиймати \(u_{\text{max}} \) сув сатҳида бўлади \((4.106\)-расм), ҳавни \(y = h \), \(y \) ҳолда

\[
 u_{\text{max}} = \frac{g}{2v} h^2.
\]

4.5-§. СУЮҚЛИК ОҚИМНИНГ ЛАМИНАР ҲАРАКАТИ ПАЙТИДА ЎЗАННИНГ УЗУНЛИГИ БўЙИЧА ЙЎҚОТИЛГАН НАПОР

Суюқликнинг сарфини аниклаш. 4.10-расмга асосан, қувурда ҳаракат қилаётган суюқлик окимнинг сарфини топамиз. Бунинг учун кўндаланг кесимнинг радиуси у бўлган элементар \(d\omega \) майдонидан ўтаётган элементар суюқлик сарфи \(dQ \) ни аниклаямиз

\[
 dQ = u \, d\omega;
\]

бу ерда

\[
 d\omega = 2\pi \, y \, dy.
\]

\((4.41)\) тенгламани \((4.45)\) тенгламага қўйсак

185
\[dQ = \frac{1}{4} \frac{g}{v} J (r^2 - y^2) 2\pi y dy. \] (4.46)

(4.46) тенгламани окимнинг кўндаланг кесими юзаси майдони бўйича интеграллаб қуйидагини оламиз

\[Q = \frac{\pi}{2} \frac{g}{v} J \int_{y=0}^{y=r} (r^2 - y^2) y dy = \frac{\pi}{8} \frac{g}{v} J \cdot r^4 = \frac{\pi}{128} \frac{g}{v} J \cdot D^4, \] (4.47)

ёки

\[Q = AJD^4, \] (4.48)

бу ёрда \(A \) — суюқликнинг турига боғлиқ коэффициент

\[A = \frac{\pi}{128} \frac{g}{v}. \] (4.49)

Суюқлик окимнинг кўндаланг кесими юзаси майдони бўйича (узлуксизлик тенгламасидан) ўртacha тезлигини аниклаймиз

\[v = \frac{Q}{\omega} = \frac{\pi}{128} \frac{g}{v} JD^4 \cdot \frac{1}{n b^2} = \frac{1}{32} \frac{g}{v} JD^2, \] (4.50)

бунда

\[J = \frac{h}{l}, \] (4.51)

(4.51)ни (4.50)га кўйсак:

\[v = \frac{1}{32} \frac{g}{v} \frac{h}{l} \cdot D^2. \] (4.52)

(4.52) ни \(h_l \) га нисбатан ечқақ, Ж. Пуазейл формуласи келиб чиқади

\[h_l = 32 \frac{v}{g} \frac{l}{D^2} v. \] (4.53)

(4.48) формула Ж. Пуазейлнинг назарий формуласи бўлиб, 1840 йилда ишлаб чиқилган.
(4.53) формула оқим ҳаракати ламинар бўлганда ундан йўқотилган напор (энергия)ни ҳисоблаш формуласи. Бу (4.53) формуласини кўринадики, ламинар ҳаракат учун йўқотилган напор:
1. Суюқликнинг физик хоссалариға бўғлик; \(\gamma, \rho, v \).
2. Оқимнинг б и р и н ч и дарақал ўртача тезлигининг тўғри пропорционал
 \[
 h_i : v.
 \]
3. Ўзан туби ва девориннинг гадир-будурлигиға бўғлик эмас.
4. (4.53) формула амалда қуйидаги кўринишга келтириб қўлланлади
 \[
 h_i = 32 \frac{v}{g} \frac{v}{D^2} l = 32 \frac{v}{D} g \frac{2}{2} \frac{v}{v} = 64 \frac{v}{Dv} g \frac{v^2}{2g},
 \] \hspace{1cm} (4.54)
бундан
 \[
 h_i = \lambda_D \frac{f}{D} \frac{v^2}{2g}.
 \] \hspace{1cm} (4.55)

Бу ерда \(\lambda_D \) — гидравлиқ ишқаланиш коэффициенти факат доиравий кувурдаги суюқлик ҳаракати ламинар бўлганида қуйидаги формуладан фойдаланиш мумкин

\[
\lambda_D = 64 \frac{v}{Dv} = \frac{64}{Dv} = \frac{64}{Re_D}.
\] \hspace{1cm} (4.56)
(4.56) тенгламадаги ўзгармас 64 сони факат доиравий шаклдаги ўзанлар (масалан, напорли кувур) учун олинган бўлиб, бошқа шаклдаги ўзанлар учун ўзгаради ва бошқа ўзгармас қийматга тенг бўлади. Бунда \(\lambda \) — гидравлиқ ишқаланиш коэффициенти; \(\lambda = f(Re) \), \(Re_D \) — О. Рейнольдс сони.
4.11-расм.

4.6-ξ ТУРБУЛЕНТ ХАРАКАТНИ ЩИСОБЛАШ МОДЕЛИ.
ТУРБУЛЕНТ ХАРАКАТДАГИ ОКИМ КЎНДАЛАНГ КЕСИМИНИНГ
МАЙДОНИ БҮЙИЧА НУҚТАЛАРДАГИ ЎРТАЛАШТИРИЛГАН
ТЕЗЛИКЛНИНГ ТАҚСИМЛАНИШИ

Турбулент ҳаракатдаги окимнинг кўндаланг кесими жоксинати майдони бўйича нуктальардаги ўрталаштирилган тезликларнинг таъсирланши ҳаракатдаги данқа фарқ қилади. Турбулент ҳаракатдаги окимда нуктальардаги тезликлар миқдори ва йўналиши бўйича доимо ўзгариб туради, бу ҳол қандайдир бирик вақт ичидага тезликнинг ўрталаштирилган миқдори атрофида қўй беради. Бу ҳосиласа тезликнинг пульсациси деб аталади.

Фазодаги берилиган нуктада бирон бир қисма вақт ичидага ҳаракатдаги суъоқлик заррачашининг u_a ҳақиқий тезлиги бир зумдағи маҳаллий тезлик ёки актуал тезлик деб аталади. Бу u_a тезлик ҳам миқдори, ҳам йўналиши бўйича ўзгаради (4.11-расм).

4.12а- расмдаги 1-1 кўндаланг кесим чизмасида A нуктасини ва $d\omega$ элементар майдончасини белгилаб A нуктаси орқали ўтаётган актуал тезликларни қараб чиқамиз (4.11-расмга қаранг). A нуктасида Ax ва Ay ўқлар орқали u_a тезлик векторининг ташкил этувчилирини u_{ax} ва u_{ay} билан ифодаламиз.

1. u_a актуал тезликни Ax ўқи бўйича ташкил этувчиси u_{ax} қуйидагича характеристланади:
 а) у ҳар доим ўзгармас йўналишда бўлади;
б) вақт ўтиши билан унинг микдори ўзгарувчан бўлади.

Бундан буён бу ташқили этuvчилар u_{ax} ва u_{ay} ни тегиш-лича: горизонтал ва вертикал ташқили этuvчилар деб юри-тилади. Вақт ўтиши билан фазодаги A нуктада u_{ax} нинг ўзгаришни ўрганамиз. 4.12а-расмда A нуктадаги u_{a} актуал тезликнинг горизонтал ташқили этuvчиси u_{ax} кўрсатилган.

Актуал тезликнинг пульсацияси табиатда кўп учрайди, масалан, очик ўзанлар тубидаги ўсимликларнинг мурак-каб тебранма ҳаракатлари тезлик пульсацияси натижасида йоқ бўлади; Пито найчасидаги сув сатҳининг тебрани-ши; пьезометрлардаги сув сатҳининг тебраниси ва ҳоқа-зо; бу начақлардаги сув сатҳларнинг бир қўтарилиб — бир тушиб турishi ҳам тезлик пульсацияси натижалари хисобланади.

4.7-§. ЎРТАЛАШТИРИЛГАН МАҲАЛЛИЙ ТЕЗЛИК. ЛАМИНАР ҲАРАКАТ ҚАТЛАМЧАСИ. ГИДРАВЛИК СИЛЛИҚ ВА ФАДИР-БУДУР ЎЗАН ДЕВОРИ

Ўрталаштирилган маҳаллий тезлик. 4.12б- расмда A нук-тасини олиб, узок t вақт ичида унлари u_{ax} тезлик микдо-
рини ўрталашириламиз: унинг учун u_x тезлик пульсацияси графигида (4.12б-рasm) AB тўғри горизонтал чизик ўтказамиз. Унда тўғри тўртбурчакли $ABCD$ майдон (Ω_{ABCD}) ва тезлик пульсацияси графигида эгри чизик билан чегаралangan $A'B'CD$ шаклли майдон $(\Omega_{A'B'CD})$ ҳосил бўлади. Бу майдонлар ўзаро тенг, яъни

$$\Omega_{ABCD} = \Omega_{A'B'CD}. \quad (4.57)$$

У ҳолда t_1 вақт ичида шу A нуктадаги ўрталаширилган горизонтал ташкил этувчи тезлик \bar{u}_i ни; худди шу усулида t_2 вақт учун \bar{u}_2 ни; t_3 учун \bar{u}_3 ва ҳоказоларни оламиз. Бу олган тезликларимиз \bar{u}_1, \bar{u}_2, \bar{u}_3, ... фазонинг бирор бериған нуктасида вақт ўтнидиги билан ўрталаширилган маҳаллий тезлик деб аталади. Шу тариқа бошқа нукталар учун, ма-салан, B нуктаси учун (4.11-расмга қаранг) ўрталаширилган маҳаллий тезликларни олиш мумкин. Агар шу ўрталаширилган маҳаллий тезликлар, бирор-бир нукта учун вақт ўтнидиги билан ўзгарувчан бўlsa, бундай ҳаракат барқарор ҳаракат деб аталади (4.12б- расмга қаранг), у ҳолда

$$\bar{u}_1 = \bar{u}_2 = \bar{u}_3 = ... = \bar{u}_n = \text{const} \ (\text{вақт ўтнидиги билан}). \quad (4.58)$$

Агар шу ўрталаширилган маҳаллий тезликлар, бирор-бир нукта учун вақт ўтнидиги билан ўзгарувчан бўlsa (ҳам миқдори, ҳам йўналиши бўйича) бундай ҳаракат бекарор ҳаракат деб аталади, у ҳолда

$$\bar{u}_1 \neq \bar{u}_2 \neq \bar{u}_3 \neq ... \ (\text{вақт ўтнидиги билан}). \quad (4.59)$$

Агар 4.12б- расмда кўрсатилган, вақт ўтнидиги билан нуктадаги тезликларнинг ўзгаришни графикда $u = f(t)$ деб олсак, у ҳолда бериған нуктада ўрталаширилган маҳаллий тезликнинг аналитик қўрinishи куйилагича ёзилади:

$$\bar{u} = \frac{1}{t} \int_0^t u \, dt, \quad (4.60)$$

190
4.13-рисунок.
4.14-расм.

\[u_{y'} = u_y' \] \hspace{1cm} (4.65)

Ламинар ҳаракат қатламчаси. Суюқлик окимининг турбулент ҳаракати пайтида суюқликнинг ўзан туби (девори) билан учаражган жойида (девор қандай бўлишидан — сильлик ёки ғадир-будурлигидан қатъи назар) жуда ҳам юпқа ламинар ҳаракат қатламчаси ҳосил бўлади. Бу қатламчада унинг қалинлиги бўйича тезликларнинг таксимланиши тўғри чизик қонунига бўйсунади. Бу қатламча 4.14-расмда келтирилган.

Бу ерда \(\delta \) — ламинар ҳаракат қатламчасининг қалинлиги, унинг ўлчами мм-дан ҳам кичик бўлади. Мазкур қатламчани Л. Прандтль ичтиро этган. Бу билан табиатнинг яна бир қонуни қашф этилган, яънни гидравликда турбулент окимининг кўндаланг кесими юзасининг майдони бўйича нуктлаардаги ўрталаштирилган тезликларнинг таксимланиши соҳасида шу пайтчача маълум бўлмagan янгиллик яратди. Бу янгиллик гидро- ва аэродинамикада улкан ҳаммиятта эга.

Гидравлик сильлик ва ғадир-будур ўзан девори. 4.15-расмдан кўриниб турбидики,

\[\delta > \Delta \] \hspace{1cm} (4.66)

бу ҳолда ўзан девори гидравлик сильлик бўлади (4.15а-расм). Агар

\[\delta < \Delta \] \hspace{1cm} (4.67)

булса, ўзан девори ғадир-будур ҳисобланади (4.15б-расм). Бу ерда \(\Delta \) — ўзан девори ғадир-будурлиги-

192

www.ziyouz.com kutubxonasi
4.15-расм.
бу ерда \(v_* = \sqrt{\frac{gRJ}{\rho}} \) — динамики тезлик, бошқача қиғиб айтганда, уринма ишқаланиш тезлиги \(v_* = \sqrt{\frac{\tau_0}{\rho}} ; \ k^* \) — Карманнинг универсал ўзгармас коэффициенти. Карманнинг тажрибаси бўйича \(k = 0,36—0,435 \); Л. Прандтль тажрибаси бўйича \(k = 0,435 \); охирги изланишларга қараганда, масалан: Г. А. Гуржиненко тажрибаси бўйича \(k = 0,440 \); А. Ю. Умаров тажрибаси бўйича \(k = 0,46 \); И. Никурадзе тажрибаси бўйича \(k = 0,40 \); Г. В. Железняков тажрибаси бўйича \(k = 0,54 \) ва ҳоказо. Ф. А. Шевелев тажрибаси бўйича эса, к ўзгарувчан бўлиб, масалан, кувурнинг диаметрига боғлик

\[
k = \frac{0,337}{d^{0,08}}.
\]

(4.69)

2. Л. Прандтль ва И. Никурадзе формуласи

\[
\frac{\mu}{v_*} = 5,751 \log \left(\frac{r-y}{y} \right) + 5,5,
\]

(4.70)

бу ерда \(r \) — кувурнинг радиуси; \(y \) — кувурнинг ўқидан тезлик ўлчанаётган нуктагача бўлган масофада; \(v_* = \sqrt{\frac{\tau_0}{\rho}} \) — мухим белги, барқарор текис илгариланма ҳаракат-нинг асосий тенгламасидан қуйидагича олинади:

\[
\frac{\tau_0}{\gamma} = \frac{\tau_0}{\rho g} = RJ;
\]

(4.71)

\[
v_* = \sqrt{\frac{\tau_0}{\rho}} = \sqrt{gRJ},
\]

(4.72)

б) ғадир-будур девор учун

1. Л. Прандтль формуласи

\[
\frac{\mu}{v_*} = 5,751 \log \frac{r-y}{\Delta} + A_w,
\]

(4.73)

*) Гидравлика фанида Карман коэффициенти жаҳон миқъёсida юнон алфавитда қаппа ҳарфи билан ифодаланган, дарсликда унинг ўрнига кирил алфавитдаги к (кичик «ка») ҳарфи ишлатилган, чунки компьютерда шундай қабул қилинган.
буниа Λ — гадир-будурликнинг ўртача геометрик баландчилиги; A_w — ўзан туби гадир-будурлигининг микро- ва мак-рошаклига боғлиқ коэффициент (микрошакли гадир-бувур ўзан учун $A_w = 8,5$).

2. А. Д. Альтшул формуласи

$$\frac{u}{u_{\text{max}}} = 1 - 2 \left[\frac{\frac{\lg \frac{\varepsilon}{\gamma}}{0.975 \frac{1}{\sqrt{\Lambda}}} + 1.35}{1} \right],$$

(4.74)

бу ерда y — кувурнинг ўқидан то тезлик u ўлчанаётган нуктагача бўлган оралиқ; r — кувурнинг радиуси; u_{max} — тезлик-нинг энг катта (максималь) микдори, у кувур ўқида жойлашган бўлди; λ — гидравлик ишқаланиш коэффициенти.

Б. Дараха кўрсаткич функцияси кўринишда олинган тезликларнинг тақсимланishi формулалари, улардан:

а) гидравлик с и л и к демор учун

1. Карман формуласи (1921 й.)

$$u = u_{\text{max}} \left(1 - \frac{y}{r}\right)^m,$$

(4.75)

бу ерда r — кувурнинг радиуси; y — кувур ўқидан то тезлик ўлчанаётган нуктагача бўлган масофа; $\frac{1}{m}$ — даражага кўрсаткичи, у О. Рейнольдс сонига боғлиқ. А. Д. Альтшул даражага кўрсаткичи $\frac{1}{m}$ ни

$$\frac{1}{m} = 0.90\sqrt{\lambda}$$

(4.76)

dеб қабул қилган.

Очих ўзанлар учун тезлик тентламасининг умумий кўрниши қуйидагича:

$$\frac{u_{\text{max}} - u}{v_*} = \frac{1}{\kappa} \lg \left(\frac{h}{y} \right),$$

(4.77)

ёки

$$u = u_{\text{max}} - \frac{v_*}{\kappa} \lg \left(\frac{h}{y} \right).$$

(4.78)

195
2. A. M. Latipshenkov formulasi

\[u = u_{\text{max}} \left(\frac{y}{h} \right)^{\frac{1}{m}} \]
(4.79)

\[\frac{1}{m} \] — даража кўрсаткичи, уни Г. В. Железняков формуласидан аниклаш мумкин

\[m = \frac{C_b}{\sqrt{g}} \left(\frac{2 \sqrt{g}}{\sqrt{g} + C_b} + 0.30 \right) \]
(4.80)

бунда \(C_b \) — вертикалдаги A. Шези коэффициенти.

б) ғадир-будур devor учун

3. A. Ю. Умаров формуласи, микро- ва макрошаклли ғадир-будурликлар учун

\[\frac{u}{u_{\text{max}}} = \left(\frac{y}{h} \right)^{\frac{1}{n}} \]
(4.81)

бунда \(\frac{1}{n} = m \) — даража кўрсаткичи, у гидравлик ишқаланиш коэффициенти \(\lambda \) га боғлик

\[m = \frac{\sqrt{\lambda}}{0.596} \]
(4.82)

(4.82) тенгламани (4.81) тенгламага қўйсак

\[\frac{u}{u_{\text{max}}} = \left(\frac{y}{h} \right)^{\frac{\sqrt{\lambda}}{0.596}} \]
(4.83)

Макрошаклли ғадир-будурликлар учун (V. C. Knoroz ва A. Ю. Umurov назарияси ҳамда тажрибалари бўйича)

\[\frac{u}{u_{\text{max}}} = \left(\frac{y}{h} \right)^{\frac{1}{3}} \]
(4.84)

бу ерда \(y \) — ўзан тубидан то тезлик ўлчаниётган нуктагача бўлган масофада; \(u_{\text{max}} \) — максималь тезлик (очқи ўзан учун \(u_{\text{max}} \)
4.9- §. ТУРБУЛЕНТ ЌАРАКТАДАГИ СУЮҚЛИК ОҚИМИНИНГ УЗУНЛИГИ БЎЙИЧА ЙЎҚОТИЛГАН НАПОР. ДАРСИ—ВЕЙСБАХ КОЭФФИЦИЕНТИ. ГИДРАВЛИК ИШҚАЛАНИШ \КОЭФФИЦИЕНТИ

Юқорида айтилганидек, ўзаннинг узунлиги бўйича йўқотилган напор (горизонтал напорли қувурда текис илгариланма турбулент ҳаракат бўлганда) оралиги l га тенг бўлган оқимнинг икки, 1—1 ва 2—2 қўндаланг кесимида ўрнатилган пьезометрлар кўрсаткичларининг фарқига тенг (4.3- расмга қаранг):

$$
\frac{P_1}{\gamma} - \frac{P_2}{\gamma} = h_f. \tag{4.85}
$$

Агар ногоризонтал напорли қувурда текис илгариланма турбулент ҳаракат бўлса, йўқотилган напор (4.6) формуладан аникланади.

Агар ҳаракат барқарор нотекис бўлса, у ҳолда h_f (4.2) ёки (4.5) тенгламадан аникланади. Бу ерда h_f — суюқлик ҳаракати пайтида тўлиқ йўқотилган напор, у қўкчи кўринишларига йўқотилган напор йигиндисидан ташкил топган

$$
h_f = h_i + \Sigma h_j, \tag{4.86}
$$

бу ерда h_i — ўзаннинг узунлиги бўйича ишқалашиш натижасида йўқотилган напор (энергия), у Дарси—Вейсбах формуласида аникланади:

$$
h_i = \lambda \frac{L}{D} \cdot \frac{v^2}{2g}, \tag{4.87}
$$

ёки

$$
h_i = \lambda \frac{L}{4R} \cdot \frac{v^2}{2g}, \tag{4.88}
$$

буна λ — ўзаннинг узунлиги бўйича гидравлик ишқалашиш коэффициенти; l — ўзаннинг қаралаётган бўлганнинг

197
узунлиги; R — гидравлик радиус; Σh_j — маҳаллий қаршиликлар таъсирида маҳаллий йўқотилган напор, масалан, маҳаллий қаршиликларга қуйидагилар киради: ўзаннинг узунлиги бўйича бирдан кенгайиши ва торайиши, жўмрақ, тирсак ва ҳоказо

$$\Sigma h_j = \Sigma \xi_j \frac{v^2}{2g},$$

(4.89)

бунда ξ_j — маҳаллий қаршилик коэффициенти, $\Sigma \xi_j$ — унинг йиғиндиси. (4.87), (4.88) ва (4.89) тенгламалардан кўриниб турибдики, турбулент ҳаракатдаги окимда тўлик йўқотилган напор, окимнинг кўндаланг кесими бўйича ўртача тезлигининг иккиччи даражасига тўгри пропорционал. Окимнинг узунлиги бўйича йўқотилган напор (4.88) тенгламадан ҳисоблаш учун гидравлик иш-қаланиш коэффициентининг қийматини аниқлаш керак, бу узлуксиз мухит механикасининг эмг мураккаб муаммодаридан бири ҳисобланиб, шу кунгача ҳали тўлик назарий ечими топилмagan. Гидродинамика ҳозирча бу муаммо асосан, тажриба усулида ҳал қилинмокда. Бу соҳада А. Н. Патрацев, И. И. Леви, А. П. Загжда, В. С. Кнороз, В. Н. Гончаров, А. Д. Альтшул ва бошқалар қўп иш қилишган, умуман улар гидравлика ва гидродинамика соҳасида йирик олимлар ҳисобланадилар, уларнинг гидравликада кўрсатган хизматлари ва бажарган ишларининг натижалари аллақачондан бери амалда қўлланма бўлиб келгани. Масалан, Р. Тейлор, Карман, Л. Прандтль, Ф. Фюрхгеймерларин оқимнинг кўндаланг кесими бўйича тезликларининг таксимланиш тенгламаси, ламинар ҳаракат қатламчаси назарийси ёшнга далилдир. Шунингдек Л. Прандтль ва И. Никурадзе, Кольбрук, И. И. Леви, Г. А. Мурин, В. С. Кнороз, В. Н. Гончаров, А. П. Зегжда, А. Ю. Умаров ва бошқаларнинг барча зона ва қаршилик областлари учун ишлаб чиқилган гидравлик іш-қаланиш коэффициентини аниқлаш номограммалари ва ўзан гадир-будурлигини аниқлаш усуллари шулар жумлассидир.

Юқорида кўрсатилган олимларнинг тажрибаларидан кўринадики, оқим ҳаракати пайтида унинг узунлиги бўйича йўқотилган напор қўп сабабларга боғлиқ экан, масалан, окимнинг ўртача тезлиги, окимнинг кўндаланг кесими-
нидин майдонини гидравлик элементларига, суюлкликнинг каналоқлиги ва зичлиги, ўзан туби ва деворларининг микро- ва макрошакли гадир-будурлиги, қаралаётган узанинг узунлиги ва ҳоказо. Шу тажрибаларни назарда қўғған ҳолда, текис илгариланма ҳаракатнинг асосий тенгламасидан \(\frac{\tau_0}{\rho} \) ни тезлик напори орқали қуйидагича ифодалаш мумкин, у ҳолда

\[
\tau_0 = \frac{\lambda}{4} \frac{v^2}{2g},
\]

бу ерда \(\frac{\lambda}{4} \) — эмпирик пропорционаллик коэффициенти. (4.90) тенгламани (4.35) тенглама билан солиштирсак

\[
RJ = \frac{\lambda}{4} \frac{v^2}{2g},
\]

бунда \(J = \frac{h_l}{l} \) ни назарда тутсак, у ҳолда окимнинг барқарор текис илгариланма ҳаракати учун унинг узунлиги бўйича йўқотилган напор тенгламасини умумий кўринишда оламиз

\[
h_l = \lambda \frac{l}{4R} \frac{v^2}{2g},
\]

бу ерда \(l \) — қаралаётган окимнинг узунлиги; \(R \) — гидравлик радиус. Доиравий кувур учун \(D = 4R \), у ҳолда (4.92) тенгламани қуйидагича ёзамиз:

\[
h_l = \lambda \frac{l}{D} \frac{v^2}{2g}.
\]

(4.92) ва (4.93) тенгламалар Дарси–Вейсбах тенгламаси деб аталади. Бу ерда \(\lambda \) — ўлчам бирлиги эга бўлмаган физик анщик коэффициент, гидравликада \(\lambda \) гидравлик ишқаланиш коэффициенти деб аталади, қолган ҳадлари маълум. Доиравий кувурдаги напорли, ламинар ҳаракат учун юқорида назарий йўл билан (4.56) тенглама олинган. Қуйида турбулент ҳаракат учун \(\lambda \) ни ҳисоблаш тенгламаларини келтирамиз. Кейинги вақтларда қатор
олимлар томонидан λ ни ҳисоблаш формулалари, умуман, унинг О. Рейнольдс сониға ва ўзаннинг ғадир-будурлигига боғлик эканлиги исботланган:

$$\lambda = f \left(\text{Re}, \frac{R}{\Delta}, \xi \right).$$ \hspace{1cm} (4.94)

Напорли турбулент ҳаракат учун қуйида λ ни ҳисоблаш формулаларини келтирамиз:

а) гидравлик с и л и к қ е д о в о р учун:
 1. Л. Прандтль формуласи (1932 й.)

$$\frac{1}{\sqrt[1]{\lambda_D}} = 2 \log(\text{Re}_D \sqrt[3]{\lambda_D}) - 0.80.$$ \hspace{1cm} (4.95)

2. Х. Блазикус формуласи (1913 й.)

$$\lambda = \frac{0.3164}{\text{Re}_D^{0.25}},$$ \hspace{1cm} (4.96)

б) ғадир-будур қ е д о в о р учун λ ни ҳисоблаш формулалари юқорида номлари зиқр этилган олимлар томонидан ишлаб чиқилган.

Қуйида улардан айримларини, яъни амалда татбиқ этилганларини келтирамиз.

4.10-§. ҚУВУРЛАРДА СУЮҚЛИК ОҚИМИНИНГ НАПОРЛИ ҲАРАКАТИ

И. Никирадзе тажрибаси (1933 й.). И. Никирадзе биринчи бўлиб диаметри D бўлган оддий доиравий қувурда тажриба ўтказган. Қувурда орадики l бўлган 1–1 ва 2–2 кесимларда Π_1 ва Π_2 пьезометрлар ҳамда $Ж$ жўмрак ўрнатилган (4.16-рам). $Ж$ жўмрак ёрдамида қувурдаги суюқлик ҳаракатининг $т$ тезлígини қўхлаганча ўзгартириш мумкн. Аммо ҳар бир қувурда ҳосил этилган тезликни ўлчаш учун ўрнатилган Π_1 ва Π_2 пьезометрлар ёрдамида ўша қувурнинг l узунлиги бўйича йўқотилган напор h_i аникланган. Бунда И. Никирадзе гидравлик ишқаланиш коэффициентини (4.93) тенгламага асосан қуйидағича қулай холга келтирган:

$$\lambda = \frac{h_i}{l} 2g \frac{D^3}{v^2} \frac{1}{\text{Re}_D^2}.$$ \hspace{1cm} (4.97)
Тажрибада \(h_p, v, \nu \) ларни ўлчаб, \(\lambda \) ни (4.97) тенглама ёрдамида ҳисоблаган. Мазкур тажрибалар доирaviy қувурда, унинг ички периметри сатҳи тенг заррачали текис жойлашган (ёпиштирилган) қумлардан ташкил топган гадир-будурликлардан иборат ўзанда ўтказилган. И. Никурадзе курилмасидағи гадир-будурликлар бир хил ўлчамдаги қумлардан иборат бўлиб, улар кувурнинг ички деворига бир-бирига нисбатан бир хил оралидаги бир текис баландликда жойлашган. Буни И. Никурадзе уз мақоласида қуийдагича тушуниради: диаметри \(d = 0,80 \) мм бўлган бир ўлчамли қумнн олиш учун икки хил, диаметри \(d_1 = 0,78 \) ва \(d_2 = 0,82 \) мм ли элакдан қум аралашмасини элаб ўтказган. Бошқа тажрибада ишлатилган қумларнинг диаметрларини ҳам худди шундай усулда элаб олган. Ўзининг тажрибаларидан олинган натижаларни И. Никурадзе алоҳида номограмма-га туширган (4.17-расмга қараб), бунда ордината ўқита \(\lg(100\lambda_p) \), абсциссалар ўқита эса \(\lgRe_p \) миқдорлари қўйилган. Шу номограммада қатор эгри ва тўғри чизиклар мав-жуд, уларнинг ҳар бири аниқ бир нисбий гадир-будурлик-ка эга, яъни

\[
\left(\frac{k}{k_0} \right),
\]

бу ерда \(k \) — абсольют гадир-будурлик, И. Никурадзе буни кувурнинг ички сатҳи юзасининг ҳақиқий геометрик характеристикаси, яъни шу кувурнинг ички девориға ёпиштирилган қумларнинг геометрик баландлиги этиб қабул

201
4.17-рам.

$$\text{çiqgan, } k = \frac{d}{2} \text{ (4.16-рам); } r \text{ — кувурнинг радиуси. Бу но-}$$

$$\text{мограмма (4.17-рам) бизга гидравлик ишқаланиш коэф-}$$

$$\text{фициенти О. Рейнольдс сонига ва ўзаннинг нисбий}$$

$$\text{гадир-}$$

$$\text{будурлигига боғликлігини яққол кўрсатади:}$$

$$\lambda = f \left(\text{Re}, \frac{r}{k} \right). \quad (4.99)$$

Бундан ташқари И. Никурадзе ўз тадқиқотларида график тузиш ёрдамида яна бошқа мухим бир натижани олади. Бу графикининг координаталари кўйидагида: $$\frac{1}{\sqrt{\lambda}} - 2 \lg \frac{r}{k}$$ ва $$\lg \frac{v \cdot k}{v} \text{ (4.18-рам). Бу график (4.18-рам)да зона ва қарши-}$$

$$\text{лик областларининг чегарадали аниқланган. И. Никурадзе}$$

$$\text{номограммаси (4.17-рам) жуда қулақ шаклда бўлиб, }$$

$$\text{су-}$$

$$\text{юққил фарқатли пайтида йўқотилган напор тўғрисидаги муш-}$$

$$\text{аммоний умумлаштирган ва у кўйидаги натижаларни яққол}$$

$$\text{кўрсатган:}$$

1) гидравлик ишқаланиш коэффициенти $$\lambda$$ умумий кўринишда О. Рейнольдс сони ва $$\frac{r}{k}$$ ўзан деворининг гадир- Будурликларига боғлик;

202
2) суюқлик ҳаракатнинг хусусий ҳоллари мавжуд эканлигини ҳисобга олсак, у ҳолда ҳар бир хусусий ҳол учун гидравлик ишқаланиш коэффициенти фақат Re га ёки фақат $\frac{\tau}{k}$ га боғлиқ бўлади;

3) анъиқ бир-биру билан боғлиқ бўлган λ ва Re лар учун зона ва областлар мавжуд, улар учун h, йўқотилган напор v ўртача тезликнинг m даражасига тўғри пропорционал

$$h \sim \nu^m; \quad (4.100)$$

бу ерда m — даража кўрсаткич, ҳар бир зона ва областлар учун мутлақо анъиқ миқдор, $m = 1 \ldots 2$. И. Никурадзе логарифмдаги фойдасини (4.17-рассм), чапдан ўнгда биринчи тўғри чизикни I билан белгилаймиз, бу Ж. Пуазейлнинг назарий (4.56) тенгламасини тасдиқлайди (рассмдаги 1–2–3 чизик), уни ламинар ҳаракатнинг тўғри чизиги дейилади ёки Ж. Пуазейл тўғри чизиги дейилади: иккинчи тўғри чизик II, бу Х. Блазиуснинг назарий (4.96) тенгламасини тасдиқлайди (рассмдаги 2–4–5 чизик), бу чизик, X. Бл азизус тўғри чизиги дейилади. И. Никурадзе графигининг барча майдонини учта зона-га бўлиш мумкин.

Биринчи зона. Бу зона ламинар ҳаракат зонаси дейилади (4.17-рассмдаги 1–2–3 тўғри чизик ёки I тўғри чизик, бу Ж. Пуазейл чизиги дейилади). Бу зона учун:

а) О. Рейнольдс сони Re_{kr} дан кичик;
б) йўқотилган напор ўзаннинг гадир-будурлигига боғлик эмас, чунки ҳар хил гадир-будурликларга тегишили \(\lambda = f(\text{Re}) \) эгри чизиклар келиб шу ламинар ҳаракатни ифодаловчи 1-2-3 тўғри чизикқа қўшилганти. Бу зона І да \(\lambda \) Ж. Пуазейл формуласи (4.56) ёрдамида ҳисобланади. Бунда 64 сони факат доиравий шаклдаги қувур учун олинган. Бошқа шаклдаги қувурлар учун 64 сони ўрнита бошқа ўзгарчас сон олинади;
в) йўқотилган напор оким тезлизининг биринчи дара-жасига тўғри пропорционал

\[h_i : v^m, \text{ бу ерда } m = 1. \] (4.101)

Иккинчи зона. Бу зонани номустаҳкам зона ёки «алмашиш» зонаси дейилади (4.17-расмда ІІ ва ІV вертикалларнинг оралги). 4.17-расмда C зонага қараган. Бу зонада ламинар ҳаракат турбулент ҳаракатга ўтиши мумкин ва аксинча, турбулент ҳаракат ламинар ҳаракатга ўтиши мумкин. Бу ерда О. Рейнольдс сони 1000÷2320 дан то 4000÷40000 гача бўлиши мумкин. Бу зона «ўтувчи зона» бўлиб қолмасдан, унда ҳам ламинар (1-2-3 чизик), ҳам турбулент ҳаракат (5-4-2 чизик) пайдо бўлиши мумкин. Шунинг учун бу зонани «алмашиш» зонаси деб атайилар. Бу ҳодиса 4.2-§ да мувассал ёритилган (4.8-расм).

Учинчи зона. Бу зона турбулент ҳаракат зонаси дейилади. У IV вертикалдан ўинг томонда жойлашган. Бу зона ўз ҳолicha учта областга бўлинади.

Биринчи област — ўзан девори гидравлик силял икч област; 4.17-расмдаги 2-4-5 тўғри чизиғи ёки 11 чизик, кўпинча бу X. Блазиус чизиғи деб аталади. Бу областда:

а) йўқотилган напор оким тезлизининг 1,75 даража кўрсаткичига тўғри пропорционал

\[h_i : v^m, \text{ бунда } m = 1,75. \] (4.102)

б) \(h_i \), йўқотилган напор фақат Re га боғлик, гадир-будурликка боғлик эмас. Л. Прандтль ва X. Блазиус тенгламаларига қаранг [(4.95) ва (4.96) тенгламалар].

\[h_i = f(\text{Re}). \] (4.103)

204
Ўзан девори гидравлик силиқ деган тушунчани шартли тушунча деб қараш керак, чунки қандайдир бирон ўзига хос ширишта ҳар бир ғадир-будур Thảoанны девори ўзини силиқ «туғади». Бу ҳол 4.17 ва 4.18-расмларда, номограммада иштамланган. Бундай ширишта ўзанларда ўтказилган тажри-

Иккинчи обласс — ўзан девори гидравлик силиқ обласидан туғил ғадир-будур облассига ўтиш, яъни иккинчи даражали қаршилик обласига ўтиш обласси, у 4.17-расмдаги туғри чизик (11 ёки 2–4–5) чизик билан АВ туғри чизиги ўртасида жойлашган (D

$$\lambda = f\left(\text{Re}, \frac{h_0}{k}\right) \quad (4.104)$$

Бу ўтиш облассида чизиклар эгри бўлиб, О. Рейнольдс сони ўсиши билан ва ламинар қарақат қатламчасининг қалинлиги юпқалашиб борган сари ғадир-будурликлар шу ламинар қатламчадан юқорига кўтарилаверади, у ҳолда бу эгри чизиклар 11 ёки 2–4–5 туғри чизикдан ахралаётган чоғида озгина пасайиб, кейин кўтарила бошлади. Бундай кўтарилишга сабаб ўзан туби деворидаги ғадир-будурлик оким турабидаги ламинар қатламчадан кўтарилған D>8 бўлиб колганчи учун гидравлик қаршиликнинг қўпайиғани нати-жасидалди.

Учинчи обласс — ўзан девори туғил ғадир-будур обласс, яъни иккинчи даражалар қаршилик обласси, (қўллаб адабиётларда бу обласси автомодел обласси деб ўринлайди). Бу обласси АА чизигидан ўнгда жойлашган (4.17-расмда Е облассiga каранг). Бу обласси:

а) йўқотилган напор оким тезлигининг иккинчи даражасига туғри пропорционал

$$h_1 = v^m, \quad бунда \ m = 2; \quad (4.105)$$
б) гидравлик ишқаланиш коэффициенти λ О. Рейнольдс сонига боғлиқ, эмас, шунинг учун 4.17-расмда $A4$ тўғри чизигидан ўғн томондаги $\frac{h}{k}$ гадири-будурликларга тегишли ҳамма горизонтал чизиклар тўғри ва горизонтал ўққа паралел;
в) h, ва λ фақат нисбий гадири-будурликка боғлик,

$$\lambda = f \left(\frac{c}{k} \right).$$

(4.106)

И. Никурадзе тажрибаларидан шундай хуолоса келиб чиққиди, иншуотларни гидравлик ҳисоблашда қандай суюқлик бўлишидан қатъи назар, гидравликанинг формулаларини бир хилда қўллаш мумкин экан. Й. Никурадзе номограммасидан келиб чиққиб йўқотилган напорни ҳисоблашда фақат сув-ни эмас, умуман суюқликлар (сув, нефть, ёғ ва бошқалар, аномал суюқликлардан ташқари) ни назарда тутиш керак, уларнинг ҳаракати, ўлчов бирлиги бўлмagan комплекс О. Рейнольдс сонининг аниқ миқдори билан характерланади. Й. Никурадзенинг гадири-будур ўзанлар учун ишлаб чиққан формула али ва уларнинг қўлланиш чегараларини келтириш.

А. Ўзандори гидравлик силлик области учун қўлланиш чегараси

$$\lg \frac{v \cdot k}{v} < 0,55,$$

гиравлик қаршилик коэффициентини ҳисоблаш формуласи

$$\frac{1}{\sqrt{\lambda}} = 2 \lg(Re \sqrt{\lambda}) - 0,80.$$

(4.107)

Б. Ўтиш области учун:

биринчи қўлланиш чегараси

$$0,55 < \lg \frac{v \cdot k}{v} < 0,85,$$

206
й) ҳисоблаш формуласи

\[
\frac{1}{\sqrt{\lambda}} = 1,18 + 2 \lg \frac{\xi}{k} + 1,13 \lg \frac{v_{*k}}{v};
\]
(4.108)

иккинчий қўлланиш чегараси

\[0,85 < \lg \frac{v_{*k}}{v} < 1,15,\]

6) ҳисоблаш формуласи

\[
\frac{1}{\sqrt{\lambda}} = 2 \lg \frac{\xi}{k} + 2,14.
\]
(4.109)

В. Ўзан девори тўлик ғадир-булур бўлган хол, яъни иккинчи даражали қаршилик област и учун қўлланиш чегараси

\[\lg \frac{v_{*k}}{v} > 1,83,\]

ҳисоблаш формуласи

\[
\frac{1}{\sqrt{\lambda}} = 2 \lg \frac{\xi}{k} + 1,74.
\]
(4.110)

Ишлаб чиқилган formulalarни амалда қўллаш ва уларни бошқа formulalar билан такқослаш осон бўлиши учун ғидравлик ишқаланиш коэффициентини ҳамда О. Рейнольдс сонини қувурнинг D диаметри ва r радиуси орқали ифодаламасдан, улар үрнини R ғидравлик радиус билан алмаштириб, И. Никурадз фомулаларини бошқача қўрникишда ёзами.

А. Ўзан девори ғидравлик силик област и учун

\[
\frac{1}{\sqrt{\lambda_R}} = 4,0 \lg (Re_R \sqrt{\lambda_R}) + 2,0.
\]
(4.111)

Б. Ўтиш област и учун

а) \[
\frac{1}{\sqrt{\lambda_R}} = 4,0 \lg \frac{R}{k} + 5,48;
\]
(4.112)
6) \[\frac{1}{\sqrt[4]{\lambda}} = 4,0 \log \frac{R}{k} + 6,82 - 1,17 \log \frac{v, k}{v} \] (4.113)

В. Ўзан девори тўлик ғадир-будур бўлганда, яъни иккинчи даражали қаршилик областни учун

\[\frac{1}{\sqrt[4]{\lambda}} = 4,0 \log \frac{R}{k} + 4,68. \] (4.114)

Кольбрук тажрибаси (1938 й.). Унинг бу тажрибалари напорли кувурда ўтказилган, унинг ички девори ҳар ҳил ўлчамли ғадир-будурликлардан иборат, яъни кувурнинг ички деворига диаметри ҳар ҳил бўлган кум ёпиштирилган. Кольбрук ўз тажрибасидан олган натижалари асосида суъоқлик ҳаракатининг барча зона ва қаршилик областлари учун универсал формула ишлаб чиққан (4.19-рasmга қаранг)

\[\frac{1}{\sqrt[4]{\lambda}} = -2 \log \left(\frac{k_s}{3,7d} + \frac{2,51}{Re \sqrt[4]{\lambda}} \right). \] (4.115)

бунда \(k_s \) — кувур деворининг эквивалент ғадир-будурлиги.

Масалан, О. Рейнольдс сони чекисизга интилса \(Re \to \infty \) Кольбрук формуласи И. Никурадзенинг (4.110) тенгламасига айланади. О. Рейнольдс сони кичик бўлса, қавс ичидағи биринчи қиймат иккинчилиги қарабандо жуда кичик бўлади, у ҳолда (4.115) формула И. Никурадзенинг (4.107) тенгламаси қўринишини олади (гидравлик силлик девор учун). Кейинги пайтларда Кольбрук формуласи амалда кенг кўламда қўлланиб, гидравлик ишқаланиш коэффициентини хисоблашда асос бўлди. Бунга мисол тақрибасида А. Д. Альтшул формуласини қелтириш мумкин:

\[\lambda = 0,11 \left[\frac{k_s}{d} + \frac{68}{Re} \right]^{0,25}, \] (4.116)

бундан қўриниб турибдики, (4.116) тенглама Кольбрук формуласининг хусусий ҳоли.
4.19-рasm

Иккинчи дарожалари қаршилиқ области учун (4.115) формула (Кольбрук формуласи) соддалашади ва Л. Прандтль формуласи кўринишда бўлади

\[
\lambda = \frac{0.25}{\left[\lg\left(\frac{k_2}{3,7d} \right) \right]^2}.
\] (4.117)

Гадир-будур очик ўзанларда барқарор текис илгариланма турбулент ҳаракатдаги суюқликлар учун гидравлиқ ишқа-ланиш коэффициентини қараб чиқмиз.

4.11-§. ОЧИҚ ЎЗАНЛARDA СУЮҚЛИҚ ОҚИМНИНГ НАПОРСИЗ ҲАРАКАТИ

А. П. Зежда тажрибаси (1935 й.). А. П. Зежда биринчи бўлиб ўзининг тажрибаларини гадир-будур очик ўзанда ўтказган. Бунда ўзан туби ва деворларининг гадир-будур-14—К-24

209
4.20-расм.

лиги унга бир хил қум-тошларни ёпиштириш йўли билан ҳосил қилинган. А. П. Зегжда тажрибаларида ламинар ва турбулент ҳаракатлар ҳар хил ғадир-будурлликларда ўрганилган. Шуниси эътиборга сазоворки, А. П. Зегжда тажрибаларида ғадир-будурлликлар баландлиги k, алоҳида гидравлик усулда, бошқалардан мутлақо фарқли ҳолда аниқланган. А. П. Зегжда ҳам ўзининг очиқ ўзанларда ўтказган тажрибалар натижаларини И. Никурадзе сингари номограмма шаклида ордината ўкиға $\lg(\lambda_R \cdot 10^3)$, абсцисса ўкиға $\lg Re_R$, ни қўйиб, ажойиб бир графиқ ҳосил қилган (4.20-расм). А. П. Зегжда графиғида ҳам И. Никурадзе номограммасидек, ўша тўртта қўринишдағи тўғри чизик — І, ІІ, ІІІ, ІV чизиклар мавжуд; учта зона ва учта област ва уларнинг чегаралари тасдиқланган (4.21-расм).

Шундай қилиб, А. П. Зегжда ўз тажрибаларининг натижаси асосида барча зона ва областлар учун тузиғлан номограммадан фойдаланиб қуйидағи тенгламаларни ишлаб чиққан.

А. Тўрбулент ҳаракат зонасиздағи гидравлик сизлик девор областини учун

$$\frac{1}{\sqrt{\lambda_R}} = 4,0\lg(Re_R \sqrt{\lambda_R}) + 2,0.$$ (4.118)
4.21-расм.

Б. Турублент ҳаракат зонасига үтиш области учун

а) \[
\frac{1}{\sqrt{\lambda R}} = 4,0 \log \frac{R}{k} + 5,75;
\] (4.119)

б) \[
\frac{1}{\sqrt{\lambda R}} = 4,0 \log \frac{R}{k} + 9,65 - 4,0 \log \left(\frac{u^* k}{v} \right)^{0.31}.
\] (4.120)

В. Ўзан девори тўлиқ фадир-будур бўлган ҳолдир, яъни иккинчи даражали қаршилик области учун

\[
\frac{1}{\sqrt{\lambda R}} = 4,0 \log \frac{R}{k} + 4,25.
\] (4.121)

И. Никурадзе тажрибаларидан олинган натижаларини А. П. Зегжда тажрибалари натижалари билан таққосласак, иккада ҳолда ҳам номограммалар кўриниши шаклан бир-бирнига ўхшаш (4.17 ва 4.20-расмлар). Барча зона ва областлар учун ишлаб чиқилган тенгламалар бир-бириндан жуда кам фарқ қилади. А. П. Зегжда фикрича, бу фарқ тажриба пайтида очиқ ўзанларда ўлчангандан гидравлик элементлар иниқлигига нисбатан паст даражада бўлганни (очиқ ўзандан
кувурга нисбатан сувнинг сатгис бўлмaganligi) сабабли рўй бериш mumkin. Бундан ташқари И. Никурадзе тажрибасида гадир-будуриликни ҳосил қилиш учун бир хил ўлчамли кумлаар ишлатилган. А. П. Зегжа тажрибасида эса бу кум-тошлар И. Никурадзе қурилмасидагидек деярлик бир хил ўлчамли бўлмagan.

Бунинг учун барча гидравлик элементларни, чунончи, гадир-будурликларни бир тизимга келтириш зарур. Масалан, И. Никурадзе тажрибасида гадир-будурликнинг баландлиги қуйидагicha қабул қилинган

\[k_3 \approx \frac{d}{2}. \] (4.122)

А. П. Зегжа тажрибасида эса гадир-будурлик махсус гидравлик усулда олинган

\[
\begin{align*}
 k_s &> d \quad \text{— майдан қум учун, } d < 1,0 \text{ мм} \\
 k_s &< d \quad \text{— йирик қум учун, } d \geq 2,0 \text{ мм}
\end{align*}
\] (4.123)

А. Ю. Умаров тажрибасида бутунлай янги, ҳажмий усул қўлланилган; ўзаннинг тубига ёпиштирилган текис гадир-будурлик учун (микрошаклли гадир-будурлик) \(\bar{\Delta} \) қуйидагича олинади,

\[\bar{\Delta} \approx \frac{d}{2}. \] (4.124)

Ўзан тубига ёпиштирилган гадир-будурликни аниклашда В. Н. Гончаров, И. И. Леви, А. П. Зегжа, И. Никурадзе,
В. С. Кнороз, И. К. Никитин, А. Ю. Умаров тажрибаларини бир тизимга келтириб (4.22-рasm), кейин ўзаро такқосланган.

Микро- ва макрошаклли ўзанлар учун $\tilde{\Delta}$ ни А. Ю. Умаров формуласидан аниклаш мумкин, у куйидагича:

$$\lg \tilde{\Delta} = \lg h - 0,287 \left[2,045 + (\lambda_h^{0.5})^{-1}\right].$$ (4.125)

Формулаларни солиштираётганда гадир-будурликларни бир тизимга келтириб, жоҳлган ифодани (масалан, k, k, ёки $\tilde{\Delta}$ ва бошқалар) хисоблаш асоси деб олиш мумкин. 4.22-расмдан фойдаланиб, ҳар бир олимнинг қабул қилган гадир-будурликларининг баландлигини ифодаловчи шартли белгиларини бир тизимга келтириш керак. Бу расмдаги чизма, агар ўзан тубдаги гадир-будурлик фақат тўгри текисликда бўlsa, бундай гадир-будурлик тўғри текисликни микрошаклли гадир-будурликлари дейилади. Агар гадир-будурлик ўзаннинг тубига ёпиштирilmagan бўлиб, у ҳаракатланса, ўзан тубида йирик нотекисликлар, қум пушталари пайдо бўлади, бундай гадир-будурликлар макрошаклли гадир-будурликлар дейилади. Бундай гадир-будурликлар ўзаннинг ювилиш тезлиги ва су-
4.24-растм.

юкликнинг қум-тошлар билан юкланиш дарожиси (концентрация)га боғлиқ. Бу ҳолда ғадир-будурллик баланддилги 4.23-расмдаги номограммадан олинади. А. Ю. Умаровнинг очик ўзанда ўтказган тажрибалари натижалари асосида номограмма тузилган (4.24-расм). Унда ординатага ўқи бўйича $\log(\lambda_n \cdot 10^3)$ ва абсциссага ўқи бўйича $\log Re_n$ кўйилган. Энди бошқа олимларнинг тажрибалари натижаларини 4.24-расмдаги номограммага кўйиб чиқамиз. Масалан, А. П. Зегжда В. Н. Горчаров, И. В. Егназоров, В. С. Кнороз, К. Ф. Атомонов, З. Н. Нуртдинов ва бошқа тажрибаларнинг тажрибалари натижалари ишлаб чиқиб, юқорида айтилган усулда уларни бир тизимга келтириб, 4.24-расмдаги номограммага кўйдик. Бу ёрда ҳар хил муаллифларнинг ишларини, шу 4.22 ва 4.23-расмлардаги чизма графиклар ёрдамида бир тизимга келтириб, ундан кейин уларнинг қийматларини номограммага қўйсак (4.24-расм), тегишли зона ва областлар, ҳатто уларнинг чегаралари ҳам А. П. Зегжда номограммасиға жуда ўхшашлиги аникланди. Бу номограммада ҳам А. П. Зегжданы каби I, II, III, IV ва AA тўғри чизиклари мавжуд; I тўғри чизик ламинар ҳаракат-ни ифодалайди, бу ёрда $\log Re_n = 2.92$, яъни $Re_n = 830$; II тўғри чизик ўзан девори ғидравлик силлик девор областни кўрсатади; AA тўғри чизикнинг ўнг томони ўзан девори тўлқ ғадир-будур, яъни иккинчи даражалари қарши-
лик области дейилади. Иккинчи даражали қаршилик област и учун А. Й. Умаров томонидан гидравлик ишқаланиш коэффициентини аникловчи тенглама ишлаб чиқилган, у қуйидагида (4.25-расм)

$$\frac{1}{\sqrt{A_h}} = 3,48 \lg \frac{h}{A} + 2,08.$$ \hspace{1cm} (4.126)

(4.126) тенгламадан гидравлик ишқаланиш коэффициенти

$$A_h = \left[3,48 \lg \left(\frac{3,96 h}{A}\right)\right]^{-2},$$ \hspace{1cm} (4.127)

бундан кўринадики, А. П. Зегжа ва А. Й. Умаров тенгламалари очиқ ўзан шароитида олинган бўлиб, структураси жиҳатидан И. Никурадзенинг напорли кувур, И. Й. Леви ва В. С. Кнорознинг макрошаклли гадир-будур очиқ ўзан учун олинган тенгламалари билан бир хил, фарқи фақат гидравлик радиусда. Мутлақ геометрик гадир-будурликнинг қийматини аниклаш ёки ўлча қийин бўлгани учун ва гадир-будурлик турлари классификацияси бўлмаганни сабабли \bar{A} билан λ ўртасида бўлганувчи жадвал ёки шкалани ҳозирча тузишнинг иложи йўқ. Аммо шунга қарамасдан, очиқ ўзанлар учун А. П. Зегжа, В. С. Кнороз ва А. Й. Умаровларнинг гидравлик ишқаланиш коэффициентини ҳисоблаш учун ишлаб чиққан тенгламалари микро-
4.12-§. ИККИНЧИ ДАРАЖАЛИ ҚАРШИЛИК ОБЛАСТИ УЧУН ЎЗАННИНГ УЗУНЛИГИ БЎЙИЧА ЙЎҚТОИЛГАН НАПОР.
А. ШЕЗИ ФОРМУЛАСИ. СУВ САРФИ МОДУЛИ.
ТЕЗЛИК МОДУЛИ

Гидротехник иншоотларни лабораторияда тажрибада ўрганиш жараёнида, уларни лойиҳалаш чоғида, суюқлик ҳаракатлари ҳодисалари ва жараёнлари иккичи даража-
ли қаршилик областига қараб ёки бўлган деб қабул қилинади ва ну областга тегишил тенгламалардан фойдаланилади. Бу-
нинг учун О. Рейнольдс сони критик О. Рейнольдс сони-
дан катта, яъни Re > Re_кр бўлиши керак (4.2-§, 4.8-расмга қаранг). Иншоотларни гидравлик ҳисобlashда иккичи
даражалари қаршилик областига қараб тенгламалардан фойдаланилса ҳисоблаш анча содд билан бўлади, чунки бу об-
ластда бир неча микдорларнинг моделлаш масштаб коэф-
фициентлари бирга тенг бўлади, масалан,
\[\alpha_\lambda = \alpha_C = \alpha_\xi = 1,0 \], бу дегани, иккичи даражалари қарши-
лик областида, гидравлик ишқаланиш коэффициенти \(\lambda \) ва А. Шези коэффициенти \(C \) туғридан тўғри ҳеч қандай кўшимча қў سابилан аслига яқин қўшаверади. Бошқа областларда эса бундай қилиш мумкин эмас, чун-
ки бу ерда \(v \) оким тезлиги қийматлари ва гадир-будурлик-
лари баланддилари ўзгарувчан бўлади. Бу ўзгарувчанлик
ўша иккичи даражали бўлмagan областларда \(\lambda = f\left(Re, \frac{t}{\Delta}\right) \)
бўлади, Re сони эса, вакт ўтиши билан ўзгариб боради,
натижада \(\lambda \) ҳам ўзгаради. Иккичи даражалари қаршилик
областида эса \(\lambda \) микдори О. Рейнольдс сони Re га боғлак
эмас, шундай экан, бу ерда, оким тезлигини билмасдан
туринги ҳам \(\lambda \) ни аниклашими мумкин. Бундан ташқари,
айрим тажрибалар натижалари ўтиш областига тегиши
bўлиб қолиш мумкин. Шунга қарамасдан қўпинча, ҳисоб-
китобда иккичи даражалари қаршилик областига тааллуқ-
ли тенгламалардан фойдаланилади. Юқорида қўрсатилган
нуксон гадир-будурликни аниклаётгандаи камчиликлар-

А. Шези формуласи. А. Шези формуласини оlish учун (4.92) формуласини кўйиштириб ёзамиз:

\[v = \sqrt[\lambda]{ \frac{8g }{ } } \cdot \sqrt{ R \frac{ h }{ J } }, \] \hspace{1cm} (4.128)

ёки

\[v = C\sqrt{ RJ }, \] \hspace{1cm} (4.129)

бу ерда \(v \) — оқимнинг кўндаланг кесими юзасининг маядони бўйича ўртача тезлиги; \(R \) — ғидравлик радиуси; \(J \) — пьезометрик љишаб; \(C \) — А. Шези коэффициенти.

(4.129) формула А. Шези формуласи деб аталади. (4.128) ва (4.129) формулаларни солиштириб, \(C \) ни оламиз (напорли кувурлар учун)

\[C = \sqrt{ \frac{8g }{ \lambda } }. \] \hspace{1cm} (4.130)

(4.130) ва (4.131) формулалар \(\lambda \) ни топамиз,

\[\lambda = \frac{8g }{ C^2 }. \] \hspace{1cm} (4.131)

(4.130) ва (4.131) формулалар доиравий напорли кувур учун ғидравлик ишқаланиш коэффициенти \(\lambda \) нинг А. Шези коэффициенти \(C \) билан боғланшиши кўрсатади. Бундан кўринади, \(\lambda \) ни билмай, \(C \) ни аниклаш жуда осон бўлади.
Иккичи даражали қаршилик областидага λ факат нисбий килир-будурликка боғлик (Re га боғлик эмас), унда C ҳам факат нисбий гадир-будурликка боғлик бўлади.

А. Щези тенгланамасидан келиб чиқадиган формулалиар.

А. Щези формуласи (4.129)дан қуйидаги муҳим формулалиарни олиш мумкин:

\[J = \frac{v^2}{C^2 R}; \] \hspace{2cm} (4.132)

\[h_1 = J \cdot l = \frac{v^2}{C^2 R} l; \] \hspace{2cm} (4.133)

\[Q = v\omega = \omega C \sqrt{RJ}, \] \hspace{2cm} (4.134)

бу ерда l — окимнинг қаралаётган бўлганинг узунлиги. Сув сарфи модули

(I) \hspace{2cm} \omega C \sqrt{R} = K; \hspace{2cm} (4.135)

бундан (4.134) формулани қуйидагича кўчириб ёзамиз

\[Q = K \sqrt{J}, \] \hspace{2cm} (4.136)

текис илгарилимана ҳаракат учун

(II) \hspace{2cm} K = \frac{Q}{\sqrt{J}}. \hspace{2cm} (4.137)

(4.137) формуладан

\[J = \frac{Q^2}{K^2}, \] \hspace{2cm} (4.138)

у ҳолда (4.133) формуладан

\[h_1 = Jl = \frac{Q^2}{K^2} l. \] \hspace{2cm} (4.139)

Тезлик модули

(I) \hspace{2cm} C \sqrt{R} = W \ (белги), \hspace{2cm} (4.140)

219
бундан (4.129) формулани қуйидагича қўчиреб ёзамиз

\[v = W \sqrt{J}, \] (4.141)

tекис илгарилама ҳаракат учун

(II)

\[W = \frac{v}{\sqrt{J}}. \] (4.142)

(4.142) формуладан

\[J = \frac{v^2}{W^2}, \] (4.143)

у ҳолда

\[h_l = Jl = \frac{v^2}{W^2} l. \] (4.144)

Амалда қўвурни ва ҳок ўзгларни ғидравлик хисоблашда иккинчи даражали қаршилик соҳаси учун сув қарфи модули \(K \) ва тезлик модули \(W \) тушунчалари кенг қўлланилади.

4.13- §. A. ҚЕФФИЦИЕНТИНИ ҲИСОБЛАШ УЧУН ЭМПИРИК ФОРМУЛАЛАР

(4.129) формуладан A. Қези қоффициентини аниқлаймиз

\[C = \frac{v}{\sqrt{RJ}}, \] (4.145)

A. Қези қоффициентини аниқловчи формулалар кўп, улар ҳар ҳил мухитда ҳар ҳил шароитда яратилган. Бу ҳарда, асосан, амалиётда кўпроқ қўлланиладиган формулаларни келтирамиз.

1. Гангилье—Куттер формуласи

\[C = \frac{23 + \frac{1}{n}}{1 + 23 \frac{n}{\sqrt{R}}}, \] (4.146)

220
бу срда n — ўзан деворининг гадир-будурлигини ифодаловчи коэффициент.

2. Маннинг формуласи

$$C = \frac{1}{n} R^{\frac{1}{6}}. \quad (4.147)$$

3. Н. Н. Павловский формуласи

$$C = \frac{1}{n} R^{y}. \quad (4.148)$$

бу ерда

$$y = 2,5\sqrt{n} - 0,13 - 0,75\sqrt{R}(\sqrt{n} - 0,10).$$

Н. Н. Павловский фикрича даража кўрсаткичи у ни куйи-дагича содда шаклга келтириш мумкин:

а) агар $R < 1,0$ м бўлса, у ҳолда $y \approx 1,5\sqrt{n}$;

б) агар $R > 1,0$ м бўлса, у ҳолда $y \approx 1,3\sqrt{n}$.

4. Х. Базен формуласи (1897 й.)

$$C = \frac{87}{1 + \frac{n}{R}}. \quad (4.149)$$

5. И. А. Агроскин формуласи (1949 й.)

$$C = 17,72(k + \lg R), \quad (4.150)$$

бу ерда $k = 0,056/n$.

6. А. Д. Альтшул формуласи

$$C = 25 \left(\frac{R}{(80n)^{6} + \frac{0,025}{\sqrt{R}}} \right)^{6}. \quad (4.151)$$

Фадир-будурликин ифодаловчи коэффициенти бўлмagan янги формулалар.

221
7. Қ. Қ. Альтшул формуласи

\[C = 25 \left[\frac{R}{k_3 + \frac{0.025}{\sqrt{R}}} \right]^\frac{1}{6}, \]

(4.152)

бу қарда \(k_3 \) — эквивалент ғадир-будурлик.

8. Қ. Қ. Умаров формуласи (1967 й). Микро- ва макрошаклли ғадир-будурлик ўчун

\[C = \left[4.92 \log \left(\frac{\Delta}{4} \right) + 2.94 \right] \sqrt{g}, \]

(4.153)

\[\log \Delta = \log h - 0.287 \left[2.045 + \frac{1}{\sqrt{h}} \right]. \]

(4.154)

4.14-§. МАҲАЛЛИЙ ҚАРШИЛИКЛАР ТАЪСИРИДА ЙЎҚОТИЛГАН НАПОР. Ж. Ш. БОРДА ФОРМУЛАСИ

Сув ўтказгич қувурларнинг қайси бирида сув окса, ўша жойда ҳар хил маҳаллий тўсиқлар — торайиш, кенгай-ниш, диафрагма, жўмрак ва ҳоказолар, кўшимча қаршиликларни келтириб чиқаради. Маҳаллий қаршиликлар бор қарда (шу оралиқда) оқим ўз энергиясининг бир бўлаги-ни йўқотади. Шу оралиқнинг узунлиги жуда қисқа бўлган-лиги учун уни маҳаллий гидравлик қаршилик дейилади. Маҳаллий қаршиликларнинг қўринишлари жуда қўп ва ҳар хил, аммо уларнинг ҳаммаси учун унумий қўрисатма мавжуд.

Агар қувур қисқа бўлиб, маҳаллий қаршиликлар қўп бўлса, у ҳолда маҳаллий қаршиликлар учун йўқотилган навор ўзанияниг узунлиги бўйича йўқотилган напордан ано катта бўлади. Бу ҳолда маҳаллий қаршиликлар му-ҳим аҳамиятга ға бўлади ва улар ҳар томонлама ўргани-лади.

222

www.ziyouz.com kutubxonasi
Маҳаллий йўқотилган напор

Амалда маҳаллий қаршиликлар таъсирида йўқотилган напор h_j ни оdatda икки пьезометрлар кўрсаткичларининг фиқрлари билан ўлчанади. Бу пьезометрларнинг бири маҳаллий қаршиликнинг олдига, иккинчиси эса унинг орқасига ўрнатилган бўлади. Масalan, жўмрақ Ж ни олсак, у тўғри қувурда ўрнатилган, яъни қувурнинг диаметри жўмрақ Ж дан олдин ва ундан кейин ҳам бир хил ($D = \text{const}$), унинг пьезометрлар 4.26-рамс-да кўрсатилган. Маҳаллий йўқотилган напор тезлик напори орқали ифодаланади

$$h_j = \xi_j \frac{v^2}{2g}, \quad (4.155)$$

бу ерда ξ_j — маҳаллий қаршилик коэффициенти; v — окимнинг ўртача тезлиги (маҳаллий қаршиликдан кейинги). Бу формула Ж. Вейсбах формуласи деб аталади. Бу ерда шуни эслатиб ўтиш керакки, ҳар бир маҳаллий қаршиликнинг ўз коэффициенти ξ бўлади, улар тажриба усулида аникланади. Агар қувурнинг бирик-бир бўлгача бир неча маҳаллий қаршиликлар, масалан, кириш (қувурга), бурилиш, жўмрақ, чиқиш (қувурдан) мавжуд бўlsa, у ҳолда умумий маҳаллий қаршилик коэффициенти ҳар бир маҳаллий қаршилик коэффициентларининг йифиндисита тент, яъни

$$\xi = \xi_\text{кириш} + \xi_\text{бурилиш} + \xi_\text{жўмрақ} + \xi_\text{чиқиш}, \quad (4.156)$$

у ҳолда маҳаллий йўқотилган напор:

$$h_j = \xi_j \frac{v^2}{2g} = (\xi_\text{кириш} + \xi_\text{бурилиш} + \xi_\text{жўмрақ} + \xi_\text{чиқиш}) \frac{v^2}{2g}. \quad (4.157)$$

Ҳар хил маҳаллий қаршилик шакллари учун маҳаллий қаршилик коэффициентлари 4.1-жадвалда келтирилган.
<table>
<thead>
<tr>
<th>Махаллий каршиликнинг номи</th>
<th>Шакли</th>
<th>Махаллий каршилик коэффициенти</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кирис (ўткир қиррали кувурга)</td>
<td></td>
<td>$\xi_{\text{кир}} = 0.50$</td>
</tr>
<tr>
<td>Кирис (синик қиррали кувурга)</td>
<td></td>
<td>$\xi_{\text{кир}} = 0.20 \div 0.25$</td>
</tr>
<tr>
<td>Кирис (силикдланган кувурта)</td>
<td></td>
<td>$\xi_{\text{кир}} = 0.05 \div 0.10$</td>
</tr>
<tr>
<td>Тирсак (доиравий кувурда)</td>
<td></td>
<td>$\xi_T = 0.50$ $\xi_T = 0.30$ $R_T \geq 2D$ $R_T = (3\div7)D$</td>
</tr>
<tr>
<td>Жўмрақ ($\alpha=30^\circ$)</td>
<td></td>
<td>$\xi_{\alpha} = 5.0 \div 7.0$</td>
</tr>
<tr>
<td>Жўмрақ (Вентил)</td>
<td></td>
<td>$\xi_{\alpha} = 1.0 \div 3.0$</td>
</tr>
<tr>
<td>Жўмрақ (Задвижка)</td>
<td></td>
<td>$\xi_{\alpha} = 1.0$ $\xi_{\alpha} = 2.0$ $h = D$ $h = \frac{D}{2}$</td>
</tr>
</tbody>
</table>

224
<table>
<thead>
<tr>
<th>Махалли каршиликнинг номи</th>
<th>Шакли</th>
<th>Махалли каршилик коэффициенти</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сўрувчи кувурдағи сим тўр</td>
<td></td>
<td>$\xi_{c,тр} = 5,0 \pm 7,0$</td>
</tr>
<tr>
<td>Бирдан кенгайиш</td>
<td></td>
<td>$h_{16,k} = \xi_{16,k} \frac{y^2}{2g}$, $\xi_{16,k} = \left(\frac{D^2}{d^2} - 1,0\right)^2$</td>
</tr>
<tr>
<td>Бирдан торайиш</td>
<td></td>
<td>$h_{16,m} \xi_{16,m} \frac{y^2}{2g}$, $\xi_{16,m} = f\left(\frac{\omega}{\Omega}\right)$</td>
</tr>
<tr>
<td>Чиқиш (кувурдан каналга)</td>
<td></td>
<td>$\xi_{чиқиш} = 1,0$</td>
</tr>
</tbody>
</table>

Кувурнинг тез кенгайиш. Ж. ІІ. Борда формуласи. Кувурдан каналга чиқиш шакли

Кувурнинг тез кенгайган шаклида маҳалли қаршилик тасирида йўқотилган напорни Д. Бернулли тенгламаси ва ҳаракат микдорининг гидравлик тенгламасини қўллаб, назарий усула ҳисоблаш мумкин. Бунинг учун керакли математик ўзгартиришларни амалда бажариб, гидродинамикада кенг маълум бўлган Ж. ІІ. Борда тенгламасини олиш мумкин (4.27-расм). Бу формула қуйидагича

$$h_j = \frac{(u_1 - u_2)^2}{2g}, \quad (4.158)$$
бу ерда \(v_1 \) — напорли кувурнинг кенгайишдан олдинги кўндаланг кесимидаги тезлик; \(v_2 \) — кенгайишдан кейинги кўндаланг кесимидаги тезлик. Бу тезликларнинг фарқи \((v_1 - v_2) \) маҳаллий қаршиликлар таъсирида йўқотилган тезлик бўлади. Шундай экан, (4.158) тенглама қуйидагида ўқилади: Кувурнинг тез кенгайишда йўқотилган напор йўқотилган тезликка жавоб берувчи тезлик напорига тенг. Маҳаллий қаршилик ҳисоблашда унинг, яъни маҳаллий қаршиликнинг олдидаги тезликни қабул қилсак, яъни (4.158) формуллдан \(\frac{v_i^2}{2g} \) ни қавсдан ташқариға чиқарсак, у холда

\[
h_j = \left(1 - \frac{v_i}{v_1}\right)^2 \frac{v_i^2}{2g}, \tag{4.159}
\]

ёки

\[
h_j = \left(1 - \frac{\omega_1}{\omega_2}\right)^2 \frac{v_i^2}{2g}. \tag{4.160}
\]

\[
\left(1 - \frac{\omega_1}{\omega_2}\right)^2 = \xi_j', \tag{4.161}
\]

билан белгиласак, у холда

\[
h_j = \xi_j' \frac{v_i^2}{2g}. \tag{4.162}
\]
Амалий машиналар үйнинг унинг гидродинамикадан машиналар

4.2-масала. Напорли қувурда суюқликнинг турбулент қарақати пайтида унинг узунлиги буйича йўқотилган напорни аниқлантириб, ξ_j махалли қаршилик коэффициентини топалмай қўқиғилган напорни аниқлаймиз:

$$h_j^* = \xi_j \frac{v_j^2}{2g}.$$ \quad (4.163)

Eчиш. Қаралаётган масаладаги берилган мийдорлар иккинчи дарахада қаршилик соҳасида ётади деб фарқ қила-миз, у ҳолда йўқотилган напор А. Шези формуласи $v = C\sqrt{RJ}$ дан фойдаланиб қуидагида аниқланади:

$$h_i = \frac{v_i^2}{C^2 R} l,$$

бу ерда

$$J = \frac{h_i}{l}.$$

Бунда v узлук сизлик тенгламасидан аниқланади:

$$v = \frac{Q}{\omega} = \frac{0.10}{\pi D^2} = \frac{0.10}{3.14 \times 0.25^2} = 2.04 \text{ м/с},$$

бу ерда

$$R = \frac{D}{4} = \frac{0.25}{4} = 0.0625 \text{ м.}$$

227
И. И. Агроскин формуласидан \(C \) ни аниклаймиз

\[
C = 17,72 \left(k_w + \lg R \right) = 50,2 \text{ м}^{0.5}/\text{с}
\]

бунда

\[
h_t = \frac{v^2}{C^2 R} \cdot 1 = \frac{2,04^2}{50,2^2 \cdot 0,0625} \cdot 800 = 21,14 \text{ м}.
\]

Масаланинг бошланшида биз суюқлик ҳаракати жараён-ларини иккинчи даражали қаршилик соҳасида қараши деб ҳисоб ни бошлаган эдик. Энди ҳақиқатан ҳам шундайми ёки йўқми эканлини текширамиз. Бунинг учун О. Рейнольдс сонини ҳисоблаймиз

\[
Re_D = \frac{vD}{\nu} = \frac{2,04 \cdot 0,25}{1,31 \cdot 10^{-6}} = 389313,
\]

бу ерда сувнинг ҳарарати \(T^* C = 10^* C \) бўлган учун 1.2-жадвалдан \(\nu = 1,31 \times 10^{-6} \text{ м}^2/\text{с} \) бўлади. Энди шундай О. Рейнольдс сонини аниклашымиз керакки (у чегаравий О. Рейнольдс сони дейилади), у чегаравий \(Re_{чегара} \) сонидан катта бўлса, у ҳолда бизнинг масала иккинчи даражали қаршилик соҳасида қарашили бўлади, яъни ўзан девори тўлиқ ғадир-будур

\[
Re_{чегара} = 21,6 C \frac{D}{\Delta} = 21,6 \cdot 50,2 \frac{0,25}{0,0013} = 208523,
\]

яъни

\[
Re_D = 389313 > Re_{чегара} = 208523.
\]

Бу тенгсизликдан шундай ҳуолоса чиқадики, берилган масалада қараляётган суюқлик ҳаракати ҳақиқатан ҳам иккинчи даражали қаршилик облостида экан. Бундан кўринадик, масалани ечишда биз тўғри йўл тутганмиз.

4.3-масала. Трапеция шакли бетондан ясалган канал учун А. Шези коэффициентини аниклант. Канал ўлчамлари қуйидаги: тубининг кенглиги \(b = 5,0 \text{ м} \); ундан қувнинг чуқурлиги \(h = 2,0 \text{ м} \); канал ёнбосъ деворининг нишаби \(m = 1,0 \) (4.28-расм).
4.28- расм.

Ичиш. Бу ҳаракат иккинчи қадр жардами қаршилик облас-нига тегишли деб фараз қиламиз:

\[
\omega = (b + mh)h = (5 + 1,0 \cdot 2) \cdot 2 = 14,0 \text{ м}^2;
\]

\[
\chi = b + 2h\sqrt{1 + m^2} = 5 + 2 \cdot 2 \cdot \sqrt{1,0 + 1,0^2} = 10,66 \text{ м};
\]

\[
R = \frac{\omega}{\chi} = \frac{14,0}{10,66} = 1,31 \text{ м}.
\]

Берилиган бетонли канал учун \(n = 0,012; \ \frac{1}{n} = 83,3 \) ёки \(k_w = 4,75 \).

А. Шеи коэффициентини бир неча формулаар ёрдамида ҳисоблаймиз.

1. Гангилье–Куттер формуласи (1869 й.)

\[
C = \frac{23 + \frac{1}{n}}{1 + 23 \frac{R}{\sqrt{R}}} = \frac{23 + \frac{1}{0,012}}{1 + 23 \frac{0,012}{\sqrt{1,31}}} = 85,6 \text{ м}^{0,5}/\text{с}.
\]

2. Маннинг формуласи (1890 й.)

\[
C = \frac{1}{n} R^{0,5} = \frac{1}{0,012} \cdot 1,31^{0,5} = 87,0 \text{ м}^{0,5}/\text{с}.
\]

3. Ф. Форхгеймер формуласи (1923 й.)

\[
C = \frac{1}{n} R^{0,20} = \frac{1,0}{0,012} \cdot 1,31^{0,20} = 87,9 \text{ м}^{0,5}/\text{с}.
\]

4. Н. Н. Павловский формуласи (1930 й.)

\[
C = \frac{1}{n} R^r = \frac{1}{n} R^{1,36} = 83,3 \cdot 1,31^{0,136} = 86,4 \text{ м}^{0,5}/\text{с}.
\]

229
бу ерда

$$R > 1,0$$, демак $$y \approx 1,3\sqrt{n}$$.

5. Х. Базен формуласи (1897 й.)

$$C = \frac{87}{1 + \frac{n}{\sqrt{R}}} = \frac{87}{1 + \frac{0.012}{\sqrt{1.31}}} = 86.6 \text{ м}^{0.5}/\text{с.}$$

6. И. И. Агроскин формуласи (1949 й.)

$$C = 17.72(k_w + 1gR) = 17.72(4.75 + 0.117) = 86.2 \text{ м}^{0.5}/\text{с.}$$

7. А. Д. Альтшул формуласи (1954 й.)

$$C = 25\left[\frac{R}{(80n)^6} + \frac{0.025}{\sqrt{RJ}}\right]^6 = 87.7 \text{ м}^{0.5}/\text{с.}$$

8. А. Ю. Умаров формуласи (1967 й.)

$$C = [4.92 \log\left(\frac{h}{\Delta}\right) + 2.94] \sqrt{g} = 85.75 \text{ м}^{0.5}/\text{с}$$

бу ерда бетон учун $$\Delta = 0.10 \cdot 10^{-4} \text{ м.}$$

4.4-масала. 4.29-расмдаги N кувурда ҳаракатланаётган сувнинг сарфи Q ни ва ундаги оким тезлигини аникланг. Берилиган: $H = 0.48 \text{ м}; D = 0.15 \text{ м} ва $l = 50 \text{ м.}$

$Ehish$. Кувур N даги сув ҳаракати пайдо ҳўқотилган напор

$$H = h_{c.typ} + h_{l-2} + h_{chikh}.$$

1. Тўрдаги маҳаллий қаршилик таъсирида ҳўқотилган напор

$$h_{c.typ} = \xi_{c.typ} \frac{v^2}{2g},$$

бу ерда

$$\xi_{c.typ} = 5,0,$$

230
4.29- рамо.

\[h_{\text{c.tyr}} = 5,0 \frac{v^2}{19,62}. \]

2. Йўқотилган напор \(h_{1-2} \) ни тезлик модули орқали аніқлаймиз, чунки бу масала иккинчи даражали қаршилик областига тегишли

\[h_{1-2} = \frac{v^2}{W^2} \cdot l, \]

бу ерда \(W = \frac{v}{f} \) қийматини жадвалдан гидравлик маълумотномадан аніқлаймиз, \(D = 0,15 \) м бўлган қувур учун \(W = 9,58 \) м/с. Шундай қилиб йўқотилган напор

\[h_{1-2} = \frac{v^2}{W^2} \cdot l = \frac{v^2}{9,58} \cdot 50. \]

3. Қувур \(N \) дан чиқишида йўқотилган напор

\[h_{\text{чиқиш}} = \xi_{\text{чиқиш}} \frac{v^2}{2g} = 1,0 \frac{v^2}{19,62}. \]

Булардан қилиб чиқадики

\[H = h_{\text{c.tyr}} + h_{1-2} + h_{\text{чиқиш}} = v^2 \left(\frac{5,0}{19,62} + \frac{50,0}{9,53^2} + \frac{1,0}{19,62} \right) = 0,857v^2. \]
H нинг қийматини ўрнига қўйиб, юқоридаги тенгламани ечамиз

$$H = 0,857 \, v^2,$$
$$0,48 = 0,857 \, v^2,$$

бундан

$$v = \sqrt{\frac{0,48}{0,857}} = 0,75 \, \text{м/с}.$$

Энди сув сарфтини аниклаймиз

$$Q = v \omega = \frac{\pi D^2}{4} \cdot \frac{3,14 \cdot 0,15^2}{4} \cdot 0,75 = 0,0132 \, \text{м}^3/\text{с}.$$

4.5-масала. A насос K кулуқдан сарфи $Q = 0,020 \, \text{м}^3/\text{с}$ га тенг бўлган сувни каналга қўтариб беради (4.30-расм). Насоснинг C сўриш кувуришининг узунлиги $l = 30 \, \text{м}$, диаметри $D = 0,20 \, \text{м}$. Кувуринг букилиш радиуси $r_k = 0,26 \, \text{м}$. Сўриш кувурининг бошида тўр ва қопқоқ мавжуд. Насоснинг сўриш баландлитети аникланг. Бу үрда вакуум $H_v = 6 \, \text{м}$ сув устунинг тенг.

Бу масалани Д. Бернуlli тенгламаси ёрдамида ечамиз. Бунинг учун (4.30-расм) асосан икки ихтиёрий кўндаланг кесим ва ихтиёрий $O-O$ такқослаш техислитети қабул қиламиз. Биричини кўндаланг кесим 1–1 ни кулуқдаги сув сатҳидан, иккичини кўндаланг кесим 2–2 ни эса сўриш кувури охирдан оламиз. Такқослаш техислитети $O-O$ ни

4.30- роcм.
Анричи кўндаланг кесимдан оламиз. Кўдук K да оким тезлигини полга тенг деб қабул қиламиз. Д. Бернулли тенгламасини ёзамиз:

$$\frac{\alpha_1 v_1^2}{2g} + \frac{p_1}{\gamma} + z_1 = \frac{\alpha_2 v_2^2}{2g} + \frac{p_2}{\gamma} + z_2 + h_f.$$

Масаланинг шартига асосан $v_1 \simeq 0$; $v_2 = v$; $p_1 = p_k$; $z_1 = 0$; p_2; $p_насос$, $z_2 = H$.

$$\frac{p_k}{\gamma} = \frac{\alpha v^2}{2g} + p_насос + H + h_f,$$ (A)

бу ерда p_k — кўдукдаги сув сатҳиға таъсири этувчи (барометрик) атмосфера босими; $p_насос$ — насосдаги босим; v — қунирадаги ўртача тезлик; h_f — сўровчи кувирида барча каршиликлар учун йўқотилган напор. Бу ерда

$$\frac{p_k}{\gamma} - \frac{p_насос}{\gamma} = H_v,$$ (B)

(Б) ни (A) га қўйиб, H_v га нисбатан ечсак

$$H_v = H + \frac{\alpha v^2}{2g} + h_f,$$ (B)

ўртача тезликнинг узлуксизлик тенгламасидан

$$v = \frac{Q}{w} = \frac{Q}{\pi h_2^2} = \frac{0,02 \times 0,14 \times 0,20^2}{4} = 0,64 \text{ м/с},$$

у ҳолда

$$\frac{v^2}{2g} = \frac{0,64^2}{19,62} = 0,02 \text{ м.}$$

Сўровчи кувирида сув ҳаракати пайтида ундаги каршиликларининг таъсирида умумий йўқотилган напорни аниклаймиз

$$h_f = h_1 + \Sigma h_j.$$

1. Сўровчи кувар бошидаги тўр ва қопқоқ маҳаллй каршилиги таъсирида йўқотилган напор

233
\[h_{c, тур} = \xi_{c, тур} \frac{v^2}{2g}. \]

Гидравлич маълумотномадан тур учун маҳаллий каршилик коэффициентини оламиз

\[\xi_{тур} = \frac{2.20}{\sqrt{D}} = \frac{2.20}{\sqrt{2.20}} = 4.90. \]

2. Кувурнинг учала тирсаги учун (\(\xi_{тирсак} = 0,20 \)):

\[\Sigma \xi_{тирсак} = \xi_2 + \xi_3 + \xi_4 = 0,60; \quad \frac{D}{r_k} = \frac{0,20}{0,26} = 0,77; \]

\[\Sigma h_{тирсак} = h_2 + h_3 + h_4 = \Sigma \xi_{тирсак} \frac{v^2}{2g} = 0,60 \frac{v^2}{2g}. \]

3. Узаннинг узунлиги бўйича йўқотилган напор \(h_j = il \), бу ерда \(i = 0,0031 \), у гидравлик маълумотномадан \(Q \) билан \(D \) нинг қийматлариға қараб олинади. Шундай қилиб

\[h_f = h_l + \Sigma h_j = il + h_{c, тур} + \Sigma h_{тирсак} = \]

\[= il + \frac{v^2}{2g} (\xi_{тур} + \Sigma \xi_{тирсак}) = 0,20 \text{ м.} \]

\(H_e, h_f \) ва \(\frac{v^2}{2g} \) нинг қийматларини (V) тенгламага қўйиб чиқсак, у ҳолда \(6 = H + 0,02 + 0,20 \), бундан \(H = 6 - 0,02 - 0,2 = 5,78 \text{ м.} \)

Такирлаш учун савollar

4.1. Ҳаракат тартиби (ламинар ва турбулент ҳаракат) нима?
4.2. Гидравлик каршилик (йўқотилган напор ва унинг турлари) қандай?
4.3. Напорли кувурларда ва очик ғуналарда йўқотилган напор (энергия) ни ҳисоблаш усуллари ва И. Никуралзе, А. П. Зегжда ва А. Ю. Умаров такрибалари нималардан иборат?
4.4. Радир-будурлик критерияси нима?
4.5. \(h \), ва \(\lambda \) учун ҳисоблаш формуласи қандай ёзилади?
4.6. Махаллий йўқотилган напор нима?
Бешинчи боб

Напорли қувурларда суюқлиқнинг барқарор ҳаракати

Асосий тушунчалар

Суюқлиқнинг барқарор текис илгариланма турбулент ҳаракатини доиравий цилиндрик напорли қувурларда ўрга- намиз. Бундан ташқари суюқлик ҳаракатини иккинчи да- раблан қаршилик областига тегишили деб оламиз. Қувур- нинг ички диаметрини D, унинг узунлигини l билан бе- гиласак, у ҳолда қувурдаги суюқлик окимининг кўндаланг кесими майдонининг гидравлик элементлари қуйидагича:

$$\omega = \frac{\pi D^2}{4}; \quad \chi = \pi D; \quad R = \frac{\omega}{\chi} = \frac{D}{4}. \quad (5.1)$$

Напорли қувурдаги суюқлик окимининг ҳаракатларини ўрганишда гидродинамикасий асосий тенгламаларидан фойдаланилади (III бобга қаранг). 5.1-ξ. Напорли қувурларда суюқлик ҳаракати пайтида йўқотилган напорни ҳисоблаш формулалари

Напорли қувурдаги суюқлик ҳаракатининг икки хил ҳолатини алоҳида-алоҳида қараб чиқамиз:

1. Биринчи ҳол. Қувурнинг узунлиги бўйича йўқотилган напор h_1 га нисбатан маҳаллий қаршилик учун йўқотилган напор $\Sigma h_1 \approx 5\%$ дан кам бўлса, амалда маҳаллий қар- шиқлар таъсирида йўқотилган напорнинг йиғиндиси нолгага тенг $\Sigma h_1 \approx 0$ деб олинади ва бу ерда фақат қувурнинг узунлиги бўйича йўқотилган напор h_1 устида гап боради. Бунда қувурнинг узунлиги бўйича h_1 йўқотилган напор сув сар- фи K модули орқали ҳисобланади, чунки қувурдаги қара- лаётган суюқлиқнинг напорли ҳаракати ىккинчи дара-
жали каршилик областита, яъни кувур девори тўлиқ гадир-будур бўлган ҳолга жавоб беради. (4.139) формуладан иккинчи даражали каршилик области учун \(h_i \) ни аниклаймиз

\[
h_i = \frac{Q^2}{K_i^2} l,
\]

бу ерда

\[
\frac{Q^2}{K_i^2} = J.
\]

Сув сарфи модули \(K \) доиравий напорли кувур учун

\[
K^2 = C^2 \omega^2 R = C^2 \left(\frac{\pi D^2}{4} \right)^2 \cdot \frac{D}{4} = C^2 \frac{\pi^2}{64} D^5,
\]

бу ерда

\[
C = \sqrt{\frac{8g}{\lambda}} = f \left(\frac{R}{\Delta} \right).
\]

Бундан кўринадики, чўян, пўлат, темирдан ясалган доиравий кувурлар учун \(K \) сув сарфи модули факат кувурнинг диаметри билан унинг девори гадир-будурлиги \(\Delta \) га босилади. Агар кувурларнинг анч \(\Delta \) гадир-будурлиги берилиган бўлса, у ҳолда кувур учун \(K \) сув сарфи модули факат унинг диаметрига босилади. Шундай экан, куйида 5.1, 5.2, 5.3-жадваларда \(K \) ва \(\lambda \) нинг миқдорлари келтирилган.

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(K,) м(^3)/с</th>
<th>(D,) мм</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0242</td>
<td>0,0125</td>
<td>50</td>
</tr>
<tr>
<td>0,0220</td>
<td>0,0361</td>
<td>75</td>
</tr>
<tr>
<td>0,0208</td>
<td>0,0762</td>
<td>100</td>
</tr>
<tr>
<td>0,0200</td>
<td>0,1352</td>
<td>125</td>
</tr>
<tr>
<td>0,0191</td>
<td>0,2193</td>
<td>150</td>
</tr>
<tr>
<td>0,0172</td>
<td>0,4749</td>
<td>200</td>
</tr>
<tr>
<td>0,0165</td>
<td>0,8475</td>
<td>250</td>
</tr>
<tr>
<td>0,0161</td>
<td>1,352</td>
<td>300</td>
</tr>
<tr>
<td>0,0156</td>
<td>2,019</td>
<td>350</td>
</tr>
<tr>
<td>0,0151</td>
<td>2,863</td>
<td>400</td>
</tr>
<tr>
<td>0,0148</td>
<td>3,878</td>
<td>450</td>
</tr>
<tr>
<td>0,0145</td>
<td>5,096</td>
<td>500</td>
</tr>
<tr>
<td>0,0141</td>
<td>8,169</td>
<td>600</td>
</tr>
<tr>
<td>0,0136</td>
<td>12,251</td>
<td>700</td>
</tr>
<tr>
<td>0,0132</td>
<td>17,324</td>
<td>800</td>
</tr>
<tr>
<td>0,0128</td>
<td>23,627</td>
<td>900</td>
</tr>
<tr>
<td>0,0125</td>
<td>31,102</td>
<td>1000</td>
</tr>
</tbody>
</table>

5.1-жадвалда гадир-будурлиги \(\Delta = (0,1÷0,15) \) мм (иккинчи даражали
каршилик областита қарашили) бўлган янги битумланган пўл система кувур учун \(K \) сув сарфи модуллари ва \(\lambda \) гидравлик ишқалиланиш коэффициентлари нинг қийматлари келтирилган.

5.2-жадвалда ҳам худди 5.1-жадвалдагидек \(K \) ва \(\lambda \) ларининг қийматлари келтирилган бўлиб, бу ерда факат янги пўлат кувур битумланмаган, унинг ғадир-будурлиги \(\lambda = (0,25 \div 1,0) \) мм.

5.3-жадвалда ҳам 5.1 ва 5.2-жадваллардагидек \(K \) ва \(\lambda \) ларининг қийматлари ишқалилган кувурнинг ғадир-будурлиги \(\lambda = (1,0 \div 1,5) \) мм учун келтирилган.

Бу жадваллардан фойдаланиб, (5.2) формуладан \(h \) ни осонгина ҳисоблаб чиқариш мумкун. Бундан ташкари, агар

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(K, \text{м}^2/\text{с})</th>
<th>(D, \text{мм})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,410</td>
<td>0,0096</td>
<td>50</td>
</tr>
<tr>
<td>0,0350</td>
<td>0,0284</td>
<td>75</td>
</tr>
<tr>
<td>0,0320</td>
<td>0,0614</td>
<td>100</td>
</tr>
<tr>
<td>0,0300</td>
<td>0,1106</td>
<td>125</td>
</tr>
<tr>
<td>0,0280</td>
<td>0,1814</td>
<td>150</td>
</tr>
<tr>
<td>0,0255</td>
<td>0,3914</td>
<td>200</td>
</tr>
<tr>
<td>0,0240</td>
<td>0,7020</td>
<td>250</td>
</tr>
<tr>
<td>0,0230</td>
<td>1,128</td>
<td>300</td>
</tr>
<tr>
<td>0,0224</td>
<td>1,6848</td>
<td>350</td>
</tr>
<tr>
<td>0,0215</td>
<td>2,394</td>
<td>400</td>
</tr>
<tr>
<td>0,0209</td>
<td>3,261</td>
<td>450</td>
</tr>
<tr>
<td>0,0206</td>
<td>4,283</td>
<td>500</td>
</tr>
<tr>
<td>0,0200</td>
<td>6,8605</td>
<td>600</td>
</tr>
<tr>
<td>0,0192</td>
<td>10,259</td>
<td>700</td>
</tr>
<tr>
<td>0,0185</td>
<td>14,543</td>
<td>800</td>
</tr>
<tr>
<td>0,0178</td>
<td>20,035</td>
<td>900</td>
</tr>
<tr>
<td>0,0170</td>
<td>26,704</td>
<td>1000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(\lambda)</th>
<th>(K, \text{м}^2/\text{с})</th>
<th>(D, \text{мм})</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0530</td>
<td>0,0084</td>
<td>50</td>
</tr>
<tr>
<td>0,0470</td>
<td>0,0247</td>
<td>75</td>
</tr>
<tr>
<td>0,0416</td>
<td>0,0539</td>
<td>100</td>
</tr>
<tr>
<td>0,0380</td>
<td>0,0982</td>
<td>125</td>
</tr>
<tr>
<td>0,0356</td>
<td>0,1606</td>
<td>150</td>
</tr>
<tr>
<td>0,0323</td>
<td>0,3464</td>
<td>200</td>
</tr>
<tr>
<td>0,0300</td>
<td>0,6272</td>
<td>250</td>
</tr>
<tr>
<td>0,0284</td>
<td>1,0178</td>
<td>300</td>
</tr>
<tr>
<td>0,0270</td>
<td>1,5346</td>
<td>350</td>
</tr>
<tr>
<td>0,0257</td>
<td>2,1955</td>
<td>400</td>
</tr>
<tr>
<td>0,0250</td>
<td>2,0809</td>
<td>450</td>
</tr>
<tr>
<td>0,0242</td>
<td>3,954</td>
<td>500</td>
</tr>
<tr>
<td>0,0232</td>
<td>6,415</td>
<td>600</td>
</tr>
<tr>
<td>0,0224</td>
<td>9,931</td>
<td>700</td>
</tr>
<tr>
<td>0,0218</td>
<td>13,487</td>
<td>800</td>
</tr>
<tr>
<td>0,0212</td>
<td>18,297</td>
<td>900</td>
</tr>
<tr>
<td>0,0207</td>
<td>24,175</td>
<td>1000</td>
</tr>
</tbody>
</table>
h_i, l, K қийматлари маълум бўлса, (5.2)дан сув сарфини ҳисоблаш мумкин ва ҳоказо.

2. Иккинчи ҳол. Бу ерда маҳаллий қаршиликлар учун йўқотилган напор йигиндиси Σh_j нинг миқдори кувурнинг узунлиги бўйича йўқотилган напор h_i нинг миқдорига яқин. Шунинг учун кувурларни гидравлик ҳисоблашда Σh_j эътиборга олинади ҳамда h_i (берилган масала шарти иккинчи даражали қаршилик областида бўлишidan қатъи назар) Дарси—Вейсбах формуласидан аниқланади:

$$h_i = \lambda \frac{L}{D} \frac{v^2}{2g},$$

(5.5)

бунда λ — гидравлик ишқаланиш коэффициенти, у 4.9-§ даги формулаардан аниқланади ёки пўлат кувурлар учун 5.1, 5.2, 5.3-жадваллардан олинади. Маҳаллий қаршиликлар учун йўқотилган напорга келсак, унинг ҳар бири алоҳида Ж. Вейсбах формуласи (4.155) ёрдамида ҳисобланади:

$$h_j = \xi \frac{v^2}{2g}.$$

(5.6)

5.2- §. Йўқотилган напорларни қўшиб чиқиш.
Тўлиқ ишқаланиш коэффициенти. Қисқа ва узун кувурлар тушунчаси

5.1 ва 5.2- расмларда икки хил кувур ва ҳар хил қаршиликлар (маҳаллий ва оқимнинг узунлиги бўйича) келтирилган. масалан, тизза, жўмрак, тирсак (бурилиш), тез кенгайиш ва ҳоказо. 5.1-расмда кувурнинг диаметри унинг узунлиги бўйича бир хил, яъни ўзгармас, 5.2- расмда эса кувурнинг диаметри унинг узунлиги бўйича ҳар хил, яъни ўзгарувчан. Бу маҳаллий қаршиликларнинг оралиги етарли даражада узун, яъни (20—30)D дан катта, шунинг учун маҳаллий қаршиликларнинг бир-бiringа таъсир ийк. У ҳолда 1—1 кесимдан 2—2 кесимгача бўлган оралиқда тўлиқ йўқолган напор куйидагича бўлади:
(5.7) тенгламадаги ҳаддларнинг, яъни йўқотилиган напорларнинг ҳар бирини бўлак-бўлак қараб чиқамиз.

1. Маҳалллий қаршиликлар таъсирда йўқотилган напорлар йигиндиси

\[
\Sigma h_j = h_{тиса} + h_{жумрак} + h_{тирсак} + h_{тез кенгайиш}.
\]
(5.8)

Ж. Вейсбах формуласиға асосан бу маҳалллий қаршиликлар таъсирида йўқотилган напорлар қуйидагича

\[
\begin{align*}
 h_{тиса} &= \xi_{тиса} \frac{v^2}{2g}; & h_{тирсак} &= \xi_{тирсак} \frac{v^2}{2g}; \\
 h_{жумрак} &= \xi_{жумрак} \frac{v^2}{2g}; & h_{тез кенгайиш} &= \xi_{тез кенгайиш} \frac{v^2}{2g}.
\end{align*}
\]
(5.9)

Бундан келиб чиқадики,

\[
\Sigma h_j = (\xi_{тиса} + \xi_{жумрак} + \xi_{тирсак} + \xi_{тез кенгайиш}) \frac{v^2}{2g},
\]
(5.10)

ёки умуман олганда

\[
\Sigma h_j = \Sigma \xi_j \frac{v^2}{2g}.
\]
(5.11)

2. Қувурнинг узунлиги бўйича йўқотилган напор. Бу (5.5) формуладан аникланади. Белги кирита-миз:
\[
\lambda \frac{L}{D} = \xi_f \text{ (белги).} \tag{5.12}
\]

(5.12) тенгламани (5.5) тенгламага кўйсак

\[
h_f = \xi_f \frac{v^2}{2g}, \tag{5.13}
\]

бунда ξ_f — ўзаннинг узунлиги бўйича ишқаланиш коэффициенти. (5.13)дан кўриниб туринбдики, h_f ни ҳам тезлик напори орқали ифодалаш мумкин экан.

3. Тўлиқ йўқотилган напор h_f ни аниклаш учун (5.13) ва (5.11) ни (5.7)га кўйиб чиқамиз

\[
h_f = h_i + \Sigma h_j = \xi_i \frac{v^2}{2g} + \Sigma \xi_j \frac{v^2}{2g}, \tag{5.14}
\]

ўки

\[
h_f = (\xi_i + \Sigma \xi_j) \frac{v^2}{2g}. \tag{5.15}
\]

Белги киритамиз

\[
(\xi_i + \Sigma \xi_j) = \xi_f \tag{5.16}
\]

(5.16)ни назарда тутган ҳолда (5.15)ни кўчирив ёзамиз.

\[
h_f = \xi_f \frac{v^2}{2g} \tag{5.17}
\]

(5.17) формула тўлиқ йўқотилган напорни ҳисоблаш формуласи. Бунда ξ_f — тўлиқ ишқаланиш коэффициенти.

Шундай қи́либ, уч хил ишқаланиш коэффициентини олдик:

а) маҳаллий йўқотилган напор h_j ни аниклаш учун, маҳаллий қаршилик коэффициенти — $\tilde{\xi}$;

б) ўзаннинг узунлиги бўйича йўқотилган напор h_i ни аниклаш учун, унинг узунлиги бўйича қаршилик коэффициенти — ξ_f.

240
II) тўлиқ йўқотилган напор h_j ни аниклаш учун, тўлиқ каршилик коэффициенти — ξ^*_f.

Бу кувур диаметри ўзанинг узунлиги бўйича ўзгармас, ёки $D = \text{const}$ бўлган қолда олинган натижалар (5.1-расм). Энди кувур диаметри унинг узунлиги бўйича ўзгарувчан $D \neq \text{const}$ бўлган ҳолни қараб чиқамиз.

Кувур диаметри унинг узунлиги бўйича ўзгарувчан $D \neq \text{const}$ бўлган ҳолда, (5.10) ва (5.15) формулаларнинг шартини қандай бажаришнимиз керак. Бу саволга жавоб бериш учун, масалан, икки маҳаллый каршилик учун йўқотилган напорни, улардан бирини тез кенгайиш каршилиги учун v_1 тезлик орқали ва иккичисини жўмрак каршилиги учун v_2 тезлик орқали ифодалаймиз (5.2-расм)

$$\sum h_j = \xi^*_\text{тез кенгайиш} \frac{v_1^2}{2g} + \xi^*_\text{жўмрак} \frac{v_2^2}{2g}, \quad (5.18)$$

бу қерда, бирича маҳаллый каршилик учун йўқотилган напорни v_2 тезлик орқали ҳам ифодалаш мумкин. Бунинг учун узлуксизлик тенгламасидан фойдаланамиз,

$$v_1\omega_1 = v_2\omega_2 = \ldots \text{const},$$

бундан

$$v_1 = v_2 \frac{\omega_2}{\omega_1}. \quad (5.19)$$

Энди (5.18) тенгламадан, (5.19) тенгламани назарда тутган ҳолда, қўйнганги олимиз:

$$\xi^*_\text{тез кенгайиш} \frac{v_1^2}{2g} = \xi^*_\text{тез кенгайиш} \left(\frac{\omega_2}{\omega_1}\right)^2 \frac{v_1^2}{2g} = \xi^*_\text{тез кенгайиш} \frac{v_2^2}{2g}. \quad (5.20)$$

Бунда

$$\xi^*_\text{тез кенгайиш} = \xi^*_\text{тез кенгайиш} \left(\frac{\omega_2}{\omega_1}\right)^2. \quad (5.21)$$

(5.21) тенгламани (5.20) тенгламага қўйсак,

$$\xi^*_\text{тез кенгайиш} \frac{v_1^2}{2g} = \xi^*_\text{тез кенгайиш} \frac{v_2^2}{2g}. \quad (5.22)$$
(5.22) тенгламани (5.18) га қўйиб, озгина ўзгартириш киритсак

\[\sum h_j = \xi_j^* - \frac{v_j^2}{2g} + \xi_j^* \frac{v_j^2}{2g} = (\xi_j^* + \xi_j^* - \frac{v_j^2}{2g}) \]

бунда

\[\xi_j^* + \xi_j^* = \xi_j^* \]

ёки

\[\sum h_j = \xi_j^* \frac{v_j^2}{2g} \quad (5.24) \]

Бундан қўриниб турибдики, кувурнинг диаметри хар хил бўлишита қарамай барча маҳаллий йўқотилган напорлар-ни анч бир тезлик орқали ифодалаш мумкин экан, факат унинг коэффициентини тегишли кўндаланг кесим майдон-ларининг нисбатига кўпайтириш керак.

Узун ва қисқа кувурлар тушиччаси. Агар сув ўтказувчи кувурлар учун \(\Sigma h_j \) микдори \(h_j \) микдорига нисбатан жуда кичик (3—5% дан кичик) бўлса, бундай кувурлар узун кувур ҳисобланади, у ҳолда

\[h_j = h_i \quad (5.25) \]

Агар \(\Sigma h_j \) микдори ҳисобга оладиган даражада катта бўлса, яъни \(\Sigma h_j \approx h_i \) бўлса, бундай кувурлар қисқа кувур дейилади. Бундан ташқари қисқа ва узун кувурлар, унинг диаметрига ва узунлигинга қараб ахратилади. Масалан, диаметри 200—500 мм бўлса, узунлиги 200÷1000 м дан катта бўлса, улар узун кувурлар қаторига киритилади. Акс ҳолда улар қисқа кувурлар ҳисобланади.

5.3- §. ЎЗГАРМАС ДИАМЕТРИЛИ ОДДИЙ ҚИСҚА КУВУР

Кувурнинг узунлиги бўйича ҳоҳобчалари бўлмасдан, якка ўзи бўлса, бундай кувур оддиий кувур дейилади. Ўлар-ни гидравлик ҳисоблаш учун кувурдаги суюқлиқнинг оқимини барқарор ҳаракатда деб, унинг тезлигини вақт ўтиши билан ўзгармас деб,
5.3- расм.

\[v = \text{const (окимнинг узунлиги бўйича)}, \quad (5.26) \]

хамда \(A \) ва \(B \) идишлардаги сув сатҳининг фарқи ўзгармас леб

\[z = \text{const}, \quad (5.27) \]

қабул қилиб, кувурдаги сув сарфи микдорини анақлайди (5.3-расм). Бунинг учун Д. Бернулли тенгламасини уз-луксизлик тенгламаси билан бирга қўллаб масаланинг ечи-мини оламиз.*

1. Суюқликнинг бир идишдан иккини чиқиш.
 Бунинг учун 5.3-расмдагидек \(A \) ва \(B \) идишни бирлашти-рувчи оддий қисқа кувур оламиз. Унда:
 а) иккита 1-1 ва 2-2 кесимлар белгилаймиз. 1-1 кесим \(A \) идишдали сув сатҳида, 2-2 кесим эса \(B \) идишдаги сув сатҳида жойлашган. Бу кесимларда босим \(p = p_0 \) ва тезлик-лар \(v_A = v_B = 0 \) маълум;
 б) горизонтал \(O - O \) такқослаш текислигини белгилаймиз, \(y, B \) идишдаги сув сатҳида, яъни 2-2 кесимда жой-лашган. Бунда \(z_2 = 0 \) бўлади;
 в) Д. Бернулли тенгламасини ёзамиз

* Кесимларни ва 0-0 такқослаш текислигини шундай тайинлаш керакки, унда Д. Бернулли тенгламасидаги кўпчилик хадлар микдори нолга айлансин, бу қўйилган масала шартига ва уни ечаётган талаба ва мухандиснинг махоратига (билимига) боғлик.
\[
\frac{\alpha_1 v^2}{2g} + \frac{p_1}{\gamma} + z_1 = \frac{\alpha_2 v^2}{2g} + \frac{p_2}{\gamma} + z_2 + h_f; \quad (5.28)
\]

г) (5.28) тенгламадаги ҳар бир ҳад миқдорини 5.3-расмга асосан аниклаймиз:

\[
\begin{align*}
 z_1 &= Z; \quad v_1 = v_A = 0; \quad p_1 = p_a; \quad \alpha_1 = \alpha_2 = \alpha = 1,0; \\
 z_2 &= 0; \quad v_2 = v_B = 0; \quad p_2 = p_a.
\end{align*}
\]
(5.29)

бунда \(Z - A \) ва \(B \) идишлардаги сув сатҳларининг фарқи;

д) (5.29) ни (5.28) га қўйиб чиқсак, қўйидагини оламиз

\[
Z = h_f. \quad (5.30)
\]

Бундан қўринадики, \(A \) ва \(B \) идишдаги сув сатҳларининг фарқи қувурдаги тўлиқ йўқотилган напорга сарфланар экан. Тўлиқ йўқотилган напорни \(h_f \) қувурдаги оқим тезлиги \(v \) орқали ифодалаб, (5.17) формуладан

\[
h_f = \xi_f \frac{v^2}{2g}, \quad (5.31)
\]

бунда \(\xi_f \) — қувурдаги тўлиқ ишқаланиш коэффициенти. (5.31) ни (5.30) га қўйсак

\[
Z = \xi_f \frac{v^2}{2g}. \quad (5.32)
\]

(5.32) ни \(v \) га нисбатан ечсак

\[
v = \frac{1}{\sqrt{\xi_f}} \sqrt{2gZ}. \quad (5.33)
\]

Сув сарфи

\[
Q = \omega v = \frac{\pi D^2}{4} \frac{1}{\sqrt{\xi_f}} \sqrt{2gZ}. \quad (5.34)
\]

2. Суюқликнинг бир идишдан атмосферага оқиб чиқиши.
\(A \) идишга уланган одди қисқа қувур орқали атмосферага оқиб чиқаётган суюқликни қараб чиқамиз. Юқорида-
ги шартларни саклаб қолиб (баркарор ҳаракат \(v = \text{const} \), \(H = \text{const} \), бунда \(H \) — \(A \) идишдаги сув сатхининг 2—2 кўнда-ланг кесими марказидан баландлиги), кувурдаги сув сар-фи миқдорини аниклаймиз. Бунда ҳам, юқоридагидек, кувурдаги суюқлик ҳаракатини гидравлик ҳисоблашда Д. Бернулли ва узлукусизлик тенгламаларини бирга қўллай-миз. Масаланинг шарти ва ундағи 1—1 ва 2—2 кесимлар, \(O-O \) таққослаш текислиги чизмада кўрсатилган (5.4-расм).

Д. Бернулли тенгламасини ёзамиз:

\[
\frac{\alpha_1 v_1^2}{2g} + \frac{p_1}{\gamma} + z_1 = \frac{\alpha_2 v_2^2}{2g} + \frac{p_2}{\gamma} + z_2 + h_f, \tag{5.35}
\]

ундаги хадлар миқдорларини 5.4-расмдан оламиз:

\[
\begin{align*}
z_1 &= H; \quad v_1 = v_A = 0; \quad p_1 = p_a; \quad \alpha_1 = \alpha_2 = \alpha = 1,0; \\
z_2 &= 0; \quad v_2 = v; \quad p_2 = p_a.
\end{align*} \tag{5.36}
\]

(5.35) га (5.36) даги миқдорларни қўймиз

\[
H = h_f + \frac{v^2}{2g}. \tag{5.37}
\]

Юқорида кўрсатилгандек \(h_f \) ўрнига (5.17) тенгламадан фойдалансак

\[
H = \xi_f \frac{v^2}{2g} + \frac{v^2}{2g}. \tag{5.38}
\]

(5.38) тенгламани ўртача тезлик \(v \) га нисбатан ечсак

245
Сув сарфи

\[Q = v \omega = \frac{\pi D^2}{4} \frac{1}{\sqrt{1 + \xi_f}} \sqrt{2gH}. \]

(5.40)

3. Хулоса. (5.34) ва (5.40) формулаларни куйидагича куқириб ёзиш мумкин

\[Q = \mu_{\text{kuvur}} \omega \sqrt{2gZ}; \]

(5.41)

\[Q = \mu_{\text{kuvur}} \omega \sqrt{2gH}, \]

(5.42)

бу ерда \(\mu_{\text{kuvur}} \) — кувурдаги сув сарфи коэффициенти, у куйидагича аниқланади:

а) \(A \) ва \(B \) ҳавзани кувур билан бирлаштирган ҳолда, (5.41) формуладан

\[\mu_{\text{kuvur}} = \frac{1}{\sqrt{\xi_f}} = \frac{1}{\sqrt{\xi_f + \sum \xi_j}} = \frac{1}{\sqrt{\frac{\lambda_l}{D} + \Sigma \xi_j}}; \]

(5.43)

б) сувнинг \(A \) ҳавзадан кувур орқали атмосферага чиқиб кетаётган ҳолда (5.42) формуладан

\[\mu_{\text{kuvur}} = \frac{1}{\sqrt{1 + \xi_f}} = \frac{1}{\sqrt{1 + \frac{\lambda_l}{D} + \Sigma \xi_j}}. \]

(5.44)

(5.41) ва (5.42) формулалардан фойдаланиб, қисқа, узун-лəги бўйича диаметри ўзгармас бўлган оддий кувурларни гидравлик ҳисоблаш мумкин. Оддий қисқа, диаметри ўзгармас кувурлар қаторига сифон, насоснинг сўриш кувури, дюкердаги горизонтал сув ўтказгич қисқа кувурлар ва бошқа кўрақиди.
5.4- §. ODDIY UZUN KUVURLARNI GIDRAWLIK XISOBLASH

Uzun kuvurlarni gidrawlik xisoblashda yuqordi aytilgan, mahalliy karshiliklar taisiriда йукотилган напорлар эътиборга олинмайди, undan tashkari \(E-E \) напор чизиги, \(P-P \) пьезометр чизиги билан бирлашади (5.5-расм) ва бир чизикни ташкил этади (чунки кувур узун бўлганда унинг тезлик напори \(\frac{v^2}{2g} \) жуда кичик бўлади, шунинг учун уни эътиборга олмаса ҳам бўлади).

1. Suyoliqniнг бир ядлидан иккиччи ядлишга окиб чиқиш.

\(A \) ва \(B \) ҳавзалардаги сув сатҳларининг фарқи \(Z \) йукотилган напорларнинг \(h_1, h_2, h_3 \) йифиндишига тенг:

\[
Z = h_1 + h_2 + h_3. \tag{5.45}
\]

Узун кувурлар учун йукотилган напор \(h_i \) (5.2) формулалдан аникланади. (5.45) га (5.2) дан \(h_i \) нинг қийматларини қўйиб чиқсак

\[
Z = \frac{Q^2}{K_1^2} l_1 + \frac{Q^2}{K_2^2} l_2 + \frac{Q^2}{K_3^2} l_3. \tag{5.46}
\]

бунда \(K_1, K_2, K_3 = 1, 2 \) ва 3-кувурларда сув сарфи модулларин; \(l_1, l_2, l_3 \) — ўша 1, 2, 3-кувурларнинг узунликлари; \(Q \) — сув сарфи, 1, 2, 3 кувурлар учун \(Q \) ўзгармас (бир хил). (5.46) ни \(Q \) га нисбатан ечсак, икки ҳавзани бирлаштирувчи иктиёрий диаметрли узун кувур учун сув сарфи формуласини оламиз.

5.5- расм.

247
$$L = \sum \frac{Q^2}{K^2}.$$ бундан

$$Q = \sqrt{\sum \frac{L}{K^2}}.$$ (5.47)

Бу формулалардан фойдаланиб мухандислик гидравлика-сияда турли масалаларни ечиш мумкин.

2. Суюқликинг бир юдишдан атмосферага окibu чиқиш.
А ҳавзадан кувур орқали атмосферага чиқиб кетаётган сувнинг сарфии ҳам худди юқоридагида сасоблаймиз. Бу ҳолда ҳавзага сув сатҳийинг кувур охирдаги кўндаланг кесими марказидаан баландлиги

$$H = h_r$$ (5.48)

Бу ерда, шунинг қурилиб ҳужш керакки, кувур охирда маъалий қаршилик натижасида йўқотидалган напор фақат кувурдан чиқишда эътиборга олиниши зарур, чунки у ерда соло ўрнатилган. Соло бу конус шаклида киска кувур бўлиб, унинг охирси (сув отилиб чиқадиган ери)нинг диаметри кувурнинг нисбатан анча кичик. Шу сабабли сув у ердан қатта тезликда отилиб чиқади. У ҳолда 5.6-расмга асосан

$$H = h_t + h_{j_{cn}} + \frac{v_0^2}{2g},$$ (5.49)

бу ерда $h_{j_{cn}}$ — кувурдан чиқишда солплода йўқотидалган на-пор,

$$h_{j_{cn}} = \xi_{cn} \frac{v_0^2}{2g}.\quad (5.50)$$

(5.50) ни (5.49) га қўйсак ·

$$H = h_t + (1 + \xi_{cn}) \frac{v_0^2}{2g},$$ (5.51)

ёки

248
5.6- расм.

\[H = h_i + \frac{v_0^2}{2g\mu_{сп}}, \] \hspace{1cm} (5.52)

бу ерда

\[\mu_{сп} = \frac{1}{\sqrt{1+\varepsilon_{сп}}}. \] \hspace{1cm} (5.53)

(5.52) ни қуйидагича кўчириб ёзиш мумкин

\[H = \frac{Q^2}{K^2} l + \frac{Q^2}{\omega_0^2 g^2 \mu_{сп}^2}. \] \hspace{1cm} (5.54)

Кувурдаги напорлари характерларнинг гидравлик ҳисоб-китоблари ёш тартибдада олиб борилади.

5.5- §. УЗУН ҚУВУРЛАННИНГ ЁНМА-ЁН ЖОЙЛАНИШИ ВА КЕТМА-КЕТ УЛАННИШИ

Сув таъминоти амалиётида баъзи бир қувурлар ёнма-ён жойланади, бошқалари кетма-кет уланиши мумкин.

1. Қувурлар кетма-кет уланганда (5.7-рассм) йўқотилган напор \(h_{АВ} \) окимнинг 1—1 кўндаланг кесимидан 2—2 кўндаланг кесимиғача бўлган масофа учун

\[h_{АВ} = h_1 + h_2 + h_3, \] \hspace{1cm} (5.55)

бундан кўринадики, умумий йўқотилган напор \(h_{АВ} \) қувурлар кетма-кет уланганда ҳар бир бўлак қувурлардаги йўқотилган напорларнинг йингиндисига тенг.
2. Кувурлар ёнма-ён жойлашганда, йўқотилган напорларни қўшиб чиқиш мумкин эмас, чунки ҳар бир кувурда алоҳида йўқотилган напор, \(h_1 = h_{AB}; \quad h_2 = h_{AB}; \quad h_3 = h_{AB} \), умумий йўқотилган напор \(h_{AB} \) га тенг, яъни

\[
h_{AB} = h_1 = h_2 = h_3.
\] (5.56)

5.8-расмда \(A \) ва \(B \) нукталарга тегишили \(A \) нуктага \(\Pi_1 \) пьезометр ва \(B \) нуктага \(\Pi_2 \) пьезометр ўрнатилган, уларнинг фарқи бизга \(A \) нуктадан \(B \) нуктагача бўлган узунлиқда йўқотилган напорни беради, яъни

\[
h_{AB} = H_{e_A} - H_{e_B},
\] (5.57)

бу ерда \(H_{e_A} \) ва \(H_{e_B} \) мос ҳолда \(A \) ва \(B \) нуктлардаги напорлар. Ҳар бир кувурдаги йўқотилган напорлар ҳам худди (5.57) каби ёзилади

5.8- расм.

250
$$h_{l_1} = H_{e_A} - H_{e_B};$$
$$h_{l_2} = H_{e_A} - H_{e_B};$$
$$h_{l_3} = H_{e_A} - H_{e_B};$$
(5.58)

бунда \(h_1, h_2, h_3 \) ҳар бир қувурда йўқотилган напор. (5.57) ва (5.58) тенгламаларни назарда тутган ҳолда, қуйидагича ёзишимиз мумкин:

$$h_{l_{AB}} = h_1 = h_2 = h_3 = H_{e_A} - H_{e_B}.$$
(5.59)

Бундан келиб чиқадики, ёнма-ён жойлашган қувурларнинг ҳар бирида йўқотилган напор ўзаро тенг бўлди. (5.59) тенгламага (5.2) тенгламадан ularнинг микдорларини қўйиб чиқсак

$$h_{l_{AB}} = \frac{Q^2_1}{K_1^2} l_1 = \frac{Q^2_2}{K_2^2} l_2 = \frac{Q^2_3}{K_3^2} l_3.$$
(5.60)

(5.60) тенгламани \(Q \) га нисбатан ечсак, ундаги нисбатлар учта тенгламани беради

(I) \[
Q_1 = K_1 \sqrt{\frac{h_{l_{AB}}}{l_1}};
\]

(II) \[
Q_2 = K_2 \sqrt{\frac{h_{l_{AB}}}{l_2}};
\]

(III) \[
Q_3 = K_3 \sqrt{\frac{h_{l_{AB}}}{l_3}}.
\]
(5.61)

Буларга қўшимча тўртинчи тенгламани ёзамиз

(IV) \[
Q = Q_1 = Q_2 = Q_3.
\]
(5.62)

Агар сув сарфи \(Q \) ва қувурнинг ўлчамлари, масалан, \(D, l \) берилиган ҳолда, шу тўртта (I), (II), (III) ва (IV) тенгламалар тизимидан фойдаланиб, муҳандислик-гидравлика
masalalarini echiqimiz mumkin. Endi shu turtta tenglam-a tizimining echiqini olamiz, uning unuch (IV) tenglama-maga qolgan uchala (I), (II), (III) tenglamalarini 7uyib chiq-7amiz

$$Q = K_1\sqrt{\frac{h_{AB}}{l_1}} + K_2\sqrt{\frac{h_{AB}}{l_2}} + K_3\sqrt{\frac{h_{AB}}{l_3}},$$ (5.63)

2. $$Q = \sqrt{h_{AB}} \sum \frac{K}{\sqrt{l}}.$$ (5.64)

(5.64) dan

$$h_{AB} = \frac{Q^2}{\left(\sum \frac{K}{\sqrt{l}}\right)^2}.$$ (5.65)

(5.65) dan h_{AB} ni bilgan taqdirda (5.61) dan Q_1, Q_2, Q_3 larini topmamiz.

5.6- §. MUARKKAB (TARQALGAN) UZUN KUVURLAR TARMOFIGINI GIDRAVLIK CHISOBLASH

Amaliyotda muarakkab tarkalgan kuvurlar tarmofig ikki xil kuriynishtda bulaadi:

a) boglanmasdan xar xil tomonga tarkalgan kuvurlar, yoki boqqaqcha qilib aytanda boshi berk kuvurlar (5.9-rasm);

b) boglanagan yoki boqqaqcha qilib aytanda, halkasimon (kolczezoy) kuvurlar (5.10-rasm).

Boglanmagan boshi berk kuvur tarmogi (5.9-rasm) bir asosiy magistral kuvurdan iborat builib, undan bir nechta kuvur sho'robchalarisi xar tomonga tarkalgan bulaadi.

Boglanagan yoki halkasimon kuvur tarmoklarini esa, kuriqich kuvurlar injamida shu boglanmagan tarmoklar-ning o'zgarlari qo'shimcha bo'lishi mumkin. 7alqasimon joylashgan kuvur tarmoklarini xar qurilmasdan maqsad, asosan, iste'molchilarini suv bilan betuhtov tab-252

www.ziyouz.com kutubxonasi
Боғланмagan (ҳар томонга тарқалган) боши берк кувурларнинг тармогини гидравлик ҳисоблаш — кувур тармогисининг ҳар бир бўлғидағи кувурларнинг диаметрларини ва тармок тугунларидаги нуқталарда напорларни аниклашдан иборат. Бундай кувур тармогини гидравлик ҳисоблаш учун кўйидағи маълумотлар берилган бўлиши керак.

Тармокнинг ҳар бир бўлғидағи кувурларнинг узунлиgli, тармок жойлашган өр планининг белгили гоҳирзонтал чизиклари, тармокнинг ҳар бир бўлғи нуқталиридағи сув сарфлари q_1, q_5 (q' — тенг сарфланадиган сув сарфи) ва ҳар бир метр узунлик учун берилган. Бундай тармокларни гидравлик ҳисоблаш тармокнинг энг охир-
ги нуқтасидан бошланади ва ҳисоблаш тартиби сув оқимига қарши йўналишда олиб борилади. Гидравлик ҳисоблаш натижасида қуйидаги микдорларни анилаймиз: қувур диаметри ва водонапор бакидағи сув сатҳи белгиси. Сув сатҳи белгиси тармоқнинг нукталариға берилиган сув сарфийни белгилайди. Магистрал қувур эса кетма-кет уланган ва ҳар бирида сув сарфи турлича бўлган бир неча қувурлар йифиндисидан ташкил топган қувур ҳисобланади. Қолган барча қувурлар шу магистрал қувур орқали сув билан таъминланади.

Умумий ҳисоблаш тартиби

1. Қувур тармоқнинг ҳар бир бўлами учун сув сарфи микдорини анилаймиз. Тармоқнинг иктиёрй бўлмайдиғи сув сарфи микдори ундан кейинги тармоқдағи бўлакларнинг сув сарфига тент бўлиши шарт. Масалан, 3–4 бўлак учун сув сарфи \(Q_{3-4} = q_4 \); 1–2 бўлак учун сув сарфи \(Q_{1-2} = q_4 + q_5 + q_6 + q' \cdot l_{2-5} \); 2–5 бўлак учун сув сарфи \(Q_{2-5} = q_5 + 0,55 q' \cdot l_{2-5} \).

2. Магистрал қизиғини танлаш. Юқорида айтиб ўтилганда, магистрал қизиғи, яъни энг асосий сув ўтказгич қувур, тармоқдаги барча сув сарфи шундан ўтади, у энг узун қувурдани ташкил топган бўлади.

254
Магистрал кувур 1–2–3–4 ни ҳисоблаш.
1. Кувур тармоғи магистралнинг ёр бир бўлға учун иқтисодий тезлигини қабул қиламиз. Бу \(v_{\text{иктисод}} \) тезлик кувурнинг диаметрига боғлиқ (5.4-жадвалга қаранг), шунга қарамасдан иқтисодий тезликни \(v_{\text{иктисод}} = 1,0 \text{ м}/\text{с} \) деб қабул қилиш ҳам мумкин.

<table>
<thead>
<tr>
<th>(D, \text{ м})</th>
<th>0,10</th>
<th>0,20</th>
<th>0,25</th>
<th>0,30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(v_{\text{иктисод}, \text{ м}/\text{с}})</td>
<td>0,75</td>
<td>0,90</td>
<td>1,10</td>
<td>1,25</td>
</tr>
</tbody>
</table>

2. Кувурнинг ёр бир бўлға учун иқтисодий тезлик \(v_{\text{иктисод}} \) ни ўрнатгандан кейин, магистрал кувурнинг диаметрини аниклаймиз (узвулксизлик тенгламасидан)

\[
\omega = \frac{Q}{v_{\text{иктисод}}}, \quad D' = \sqrt{\frac{4\omega}{\pi}} = \sqrt{\frac{4Q}{\pi v_{\text{иктисод}}}},
\]

(5.66)
натижада \(D' \) ни стандарт микдоригача бутунлаштириб ола-миз.

3. Магистрал кувур бўлакларининг диаметрлари \(D_n \) ва сув сарфлари \(Q_n \) маълум бўлгандан кейин, унинг барча бўлаклари учун кувурнинг узунлиги бўйича умумий йўқотилган напорни аниклаймиз

\[
h_l = \frac{Q^2}{K^2} l.
\]

(5.67)

4. \(h_l \) ни аниклгандан кейин магистрал кувур бўйича \(P–P \) пьезометрик чизикни чизамиз (5.9-расм), чизишни магистрал кувурнинг охиридан (масалан \(\nabla_4 \) дан) бошлаймиз. Пьезометрик чизик \(P–P \) ни қургандан кейин қуйидаги

\[
\nabla_{\text{в.б.}} = \nabla_4 + \sum h_l,
\]

(5.68)
тенгламадан водонапор бакдаги сув сатҳи белгисини аник-лаймиз (5.9-расмга қаранг). Бу ерда \(\sum h_l \) — магистрал кувурнинг узунлиги бўйича тулиқ йўқотилган напор. Бу \(\nabla_{\text{в.б.}} \) белги водонапор бак ўрнатилган миноранинг баландлиги-ни аниклайди.
Кувур шохобчаларини ғидравлик ҳисоблаш. Магистрал кувур учун \(P - P \) пьезометрик чизигини қурганда, кувур шохобчаларининг ҳар бир учун магистралга уланган жойида уларнинг напорларини анิกлаган эдик. Масалан, 3–6 кувур шохобчасининг бошланишида напор \(V'_3 \) белги билан ифодаланади, 2–5 кувур шохобчасининг бошланишида эса напор \(V'_2 \) белги билан ифодаланади ва ҳукозо.

Юкорида айтилганларга асосан:
а) масалан, 3–6 кувур шохобчаси учун йўқотилган напор

\[
h'_{3-6} = V'_3 - V'_4, \tag{5.69}
\]

бунда \(V'_3 \) белги магистрални ҳисоблаганда маълум бўлган;
б) (5.2) тенгламани кўчириб ёзамиз

\[
(K')^2 = Q^2 \frac{1}{k_i}. \tag{5.70}
\]

(5.70) дан \(K' \) ни аниклаймиз;
в) 5.1, 5.2, 5.3-жадваллардан \(K' \) га тегиши \(D' \) нинг қийматини аниклаймиз. \(D' \) ни \(D \) гача бутунлаштирамиз;
г) қабул қилинган \(D \) га тегиши сув сарфи модули \(K \) ни аниклаймиз ва 3–6 кувур шохобчасига тегиши ҳақиқий йўқотилган напор \(h'_{3-6} \) ни ҳисоблаиймиз.

5.7-§. МУРАККАБ ҲАЛҚАСИМОН УЗУН ҚУВУРЛАР ТАРМОФИНИ ҒИДРАВЛИК ҲИСОБЛАШ

Мураккаб боғланган ҳалқасимон жойлашган кувурлар тармофини ғидравлик ҳисоблашда (5.10а-расм) ҳар бир бўлак қувурнинг диаметрини аниклаш ва ўш қувур учун пьезометрик \(P - P \) чизигини қуриш тараб қилинади.

Кувур диаметрини аниклаш

Бунда аввало қуйидагиларни қабул қиламиз:
а) ҳар бир бўлак қувур диаметрини; б) 4–5 кувурдаги сув ҳаракати йўналишини (масалан, чапдан ўнгга); в) \(q_s \) сув сарфииинг 4–5 ва 6–5 чизиклар орасида таксимланишини [бу ерда 4–5 чизикда сув сарфи \(\varepsilon q_s \), 6–5 чизикда эса \((1-\varepsilon)q_s\)], бу ерда \(\varepsilon \) га қийматлар бериб борамиз. Қаралаёт-
Тан ҳилқасимон жойлашган тармоқда икки сув окими: биричиқсиз — соат стрелкасига тескари 2–3–4; иккинчиқсиз — соат стрелкаси йўналишида 2–6–5 мавжуд. Бундада сувнинг қаракат йўналишини 4–5 чизиги бўйича чапдан ъинга йўнали-тирӣ, шу билан икки қарака-қарши окимни 5 нуктада уч-раштирамиз. Бу икки окимнинг учрашиси нуктасини ноль нукта ёки сувайрипч (водораздел) нуктаси дейилади. Биз қуввр-мнинг диаметрини, сувайрипч нуктасининг ҳолатини ва ёкинг микдорини тўғри қабул қилидикми ёки нотўғрими, буни текшириш учун қўйидаги усулни қўллаймиз. Бу ҳалқасимон тармоқни бегиллашда, сувайрипчи нуктасида қувврларни қаёлан иккига ажратамиз, шу тарзда 5.10б-расмда кўрсатилган тармоқни ҳосил қиламиз. Кейин умумий (5.2) формулада ёрдамида 1–2–3–4–5' чизиги учун \(h_{1-2-3-4-5'} \) ва 1–2–6–5'' чизиги учун \(h_{1-2-6-5''} \) йўқотилган напорларни аниклаймиз.

Шундан кейин, шу икки чизик учун ҳисобланган йўқотилган напорларни бир-бирин билан таққослаймиз. Агар

\[
h_{1-2-3-4-5'} = h_{1-2-6-5''} \tag{5.71}
\]

бўлса, унда шундай ҳулоса қиламиз: 5' ва 5'' нуктalarда йўқотилган напорлар бир ҳил бўлади (шундай бўлиши ҳам керак, чунки 5' ва 5'' нуктalar физик маънода бир нукта-ни, яъни нукта 5 ни ифодалайди (5.10а-расм). Бундан келиб чиқадиқ, 5.10б-ресми нисбатан (5.71) тенглик ба-жарилса биз юқорида диаметри \(D \) ва ёларни тўғри қабул қилган бўламиз. Агар (5.71) тенглик шарти бажарилмаса, у ҳолда \(D \) ва ёларни такроран қабул қиламиз ва шу усулда ҳисоб-китобни токи (5.71) тенглик шарти бажарилмагун-ча давом этираеверамиз.

Амалий машғулот ўтказиш учун напорли кувврларда сувнинг ҳаракатини ҳисоблаш материаллари

5.1-масалада. Икки қурилиш шоҳобчасидаги сув ҳажми-ни I ва II идишда саклаш учун, яъни сув билан таъминлаш учун насос қурилмасини ҳисоблаш керак. Биринчи қури-лиш шоҳобчасига \(Q_3 = 4 \cdot 10^{-3} \) м³/с, иккинчисита эса, \(Q_1 = 3 \cdot 10^{-3} \) м³/с сув сарфими етказиб бериш керак, булар 5.11-расмда кўрсатилган. Бундан ташқари йўлма-йўл ис-теймолчидарга A нуктада \(Q_1 = 3 \cdot 10^{-3} \) м³/с ва B нуктада 17–K-24 257

www.ziyouz.com kutubxonasi
$Q_2 = 2 \cdot 10^{-3}$ м3с сув етказиб берилади. Юқорида кўрсатилган (5.11-рasmга қаранғ) тизим қуйидагича жойлаштирилган ва шу кувур тизимидағи бўлакларнинг узунликлари ҳамда характерли тугун нукталарининг нисбатан баландликлари, яъни насоснинг сув сўрғич бўлагининг узунлиги $l_{ex} = 20$ м; насосдан кейинги кувур бўлаклари $l_1 = 150$ м ва $l_2 = 50$ м; кувур шохобчаларининг узунликлари $l_3 = 50$ м; $l_4 = 75$ м; кувур тизимидағи характерли нукталарнинг баландликлари $h_2 = 2,0$ м (С нуктаси); $h_3 = 5,0$ м (D нуктаси) $h_4 = 8,0$ м (E нуктаси). Бу тизим пўлатдан ясалган қувурлардан ташкил топган бўлаб, $n = 0,0125$, $\lambda = 0,0421$, алоҳида бўлаклардағи қувурларнинг диаметрлари: $d = d_1 = 100$ мм; $d_2 = d_3 = d_4 = 75$ мм; фойдаланиш коэффициенти $\eta = 0,8$; $h_v = 7,0$ м. Насос ўрнатилган сув омборида эркин сув сатҳи тўлкинланиши мумкин. Бу тўлкинланиш $\sqrt{1-\sqrt{2}} = 4,0$ м. Насоснинг жойлашиш баландлиги h_1 ни ва унинг напори H ни ҳамда куввати N ни аникланг (қаралаётган жараёнлар иккинчи даражалари қаршилик областига тегишила, яъни кувур девори тўлиқ ғадир-будур).
1. Насоснинг сўрувчи қувири ∇ ни ҳисоблаш, ёки насоснинг ҳавзадаги эркин сув сатҳидан қанча ба-ландликда жойлашганлигини аниқлаш лозим. Насоснинг жойлашган баландлуги берилган вақуум баландлуги $h_\nu = 7,0$ м ва ҳавзадаги эркин сув сатҳининг тўлкинланиш баландлиги 4,0 м дан катта бўлгани учун, бундай шароитди масалани ечиш, насоснинг нормал ишлашини таъминловчи муҳим характеристикалардан бири ҳисобланади. Масалани ечишда, Д. Бернолли тенгламасини, узлуксизлик тенгламаси билан бирга қўллайдимиз. Бунинг учун 5.11-расмда қўрсатилганда, 1–1 кесимни ҳавзадаги эркин сув сатҳидан оламиз ∇, ўша белгидан $O--O$ такқослаш техислигини ўтказамиз. 2–2 кесимни эса, насосга қирис олдидан (қуверда) белгилаймиз, унгача насос ҳармоғи бўйича истиъмолчиларни етарли сув билан таъминлаш учун таъминий сув сарфи Q ни ҳисоблаб чиқамиз (5.11-расм):

$$Q = Q_1 + Q_2 + Q_3 + Q_4 = (3 + 2 + 3 + 7) \cdot 10^{-3} = 15 \cdot 10^{-3} \text{м}^3/\text{c}$$

Д. Бернолли тенгламасини 1–1 ва 2–2 кесимлар учун қўлласак, натижада ($O--O$ такқослаш техислиги 1–1 кесимдан ўтказилган)

$$0 = h_1 - h_\nu - \frac{\alpha v^2}{2g} + h_f,$$

ёки

$$h_1 = h_\nu - \frac{\alpha v^2}{2g} - h_f - h_{суриш} - h_{бурилиш},$$

ёки

$$h_1 = h_\nu - (\alpha + \xi_f + \xi_{суриш} + \xi_{бурилиш}) \frac{v^2}{2g}. \quad (5.72)$$

1–1 кесимда, яъни ҳавзадаги эркин сув сатҳида тезликни нолга тенг деб оламиз. Насоснинг суриш қувури учун ма-ҳаллий қувернинг узунлиги бўйича гидравлик ишқаланиш коэффициентлари қўйидагича ҳисобланади (5.2–§ га қараб):

а) насоснинг сурувчи қувури учун гидравлик ишқаланиш коэффициенти (унинг узунлиги бўйича)
\[\xi_f = \lambda \frac{L}{D} = 0,0421 \frac{20}{0,10} = 8,42; \]

б) маҳаллий қаршилиқ коэффициентлари: насоснинг сўрувчи қувури қопқоғи учун \(\xi_{сўрувчи қопқоқ} = 7 \); \(\xi_{обурилиш} = 0,15; \)
в) насоснинг сўрувчи қувуридаги сувнинг тезлиги

\[v_{ск} = \frac{4Q}{\pi D^2} = \frac{4 \cdot 0,015}{3,14 \cdot 0,10^2} = 1,91 \text{ м/с}; \]

г) Кориолис коэффициенти ёки окимнинг кўндаланг кесими юзаси майдони бўйича нукталарада ўрталаштирилган тезликларнинг нотекис тақсимланшишни ифодаловчи коэффициент \(\alpha = 1,05 \div 1,1. \) Аникланган қийматларни (5.72) га қўйиб чиқсак

\[h_1 = h_v - (\alpha + \xi_{сўрувчи} + \xi_{обурилиш}) \frac{\rho v^2}{2g} = \]

\[= 7 - (1,1 + 8,42 + 7 + 0,15) \frac{1,91^2}{19,62} = 5,14 \text{ м.} \]

Бундан ҳўринадики, насос ҳавзадаги эркин сув сатҳидан \(\Delta \Gamma \) белгидан 1,14 м баландликда жойлашиши керак, ундан юқорида жойлашиши мумкин эмас. Чунки ундан юқорида жойлашган насос ишлаётган пайтида сув сатҳи (юқорида кўрсатилган шартга биноан) \(\Delta \Gamma \) дан \(\Delta \Sigma \) га, яъни 4 м га тушиб кетса, насосдаги иш пайтида ҳосил бўладиган вақуум унинг тўлиқ қувватда ишланиши таъминламаслиги мумкин.

2. Узатувчи қувури ҳисоблаш. Бунда магистрал қувурдан ташқари ундан тармоқланиб кетган қувур шохобчаларининг сув сарфи билан таъминланиши ва керакли на- порни \(H_{чикаётган напор} \) — насосдан чикаётган напор ушлаб турит лозимлигини ҳисобга олиш керак. Бу ҳаммаси узатувчи қувуринг нормал ишланиши таъминлаш учун зарур. Қувур шохобчаларидаги сув сарфи таъминланиши назо- рат қилиб туриш керак, чунки бу шохобчалардаги гидрав- лик жараён ва ҳодисалар, уларнинг характеристикалари гидродинамиканинг қонунлари билан асосланган эмас, балки сув истеъмолчилари истаклари ҳамда шу қувур ти- зимини ташқил этишга асосан амалга оширилган. Бу ерда
ҳам, юқорида қўрсатилганда, узатувчи кувурни ҳисоблашда Д. Бернуlli ва узлуксизлик тенгламасидан ҳойдиланилади. Бунда 5.11-расмда қўрсатилганда, умумий қўндаланг кесимни, кувурнинг C тугунидаги нуктани ҳолаб (I ва II ҳавза учун, шу C нуктасида горизонтал 0–0 такқослаш технигии таъйинлаймиз), кейинги қўндаланг кесимларни I ва II ҳавзалардағи эркин сув сатҳларидан ўтказамиз. У ҳолда гидродинамики напор H

$$H_{q_c} = h_2 + h_3 + h_4 = h_2 + h_4 + h_4,$$ \hspace{1cm} (5.73)

бу ерда l_3 ва l_4 узунлигида йўқотилган напорлар соддалаштирилган ва маҳаллй каршиликлар эътиборга олинмagan. Олинган тенглама ҳамда узлуксизлик тенгламаси ёрдамида Q_3 ва Q_4 ларни ҳисоблаш учун иккита тенглама тузамиз:

$$Q_3 + Q_4 = Q - Q_1 - Q_2;$$ \hspace{1cm} (5.74)

$$h_3 + h_4 = h_4 + h_4.$$ \hspace{1cm} (5.75)

Охирги (5.75) тенгламада (5.2) формулаладан фойдаланиб ўзанинг узунлиги буйicha йўқотилган напорни ёзамиз. Бунинг учун 5.1, 5.2 ва 5.3-жадваллардан фойдаланиб, кувурнинг шохобчалари ва бошқа кувурлар учун сув сарфи модулларини оламиз. Унда K кувурнинг диаметрига қарор олинади. Кувурларнинг диаметрлари: $d_2 = d_3 = d_4 = 75$ мм ва $n = 0,0125$ учун тегишли $K_2 = K_3 = K_4 = 24.94 \cdot 10^{-3}$ м3/с, диаметри $d_1 = 100$ мм ва $n = 0,0125$ учун $K_1 = 53,72 \cdot 10^{-3}$ м3/с. Унда

$$h_3 + \left(\frac{Q_3}{K_3}\right)^2 l_2 = h_4 + \left(\frac{Q_4}{K_4}\right)^2 l_4;$$ \hspace{1cm} (5.76)

бундан

$$Q_3 + Q_4 = 10 \cdot 10^{-3} \text{м}^3/\text{с}.$$ \hspace{1cm} (5.77)

У ҳолда (5.76) дан

$$5,0 + \frac{Q_3^2}{24,54^2} \cdot 50 = 8 + \frac{Q_4^2}{24,94^2} \cdot 75.$$
(5.77) тенглама тизимни ечиб Q_3 ва Q_4 ларни аниклаймиз

$$Q_3 = 2,95 \cdot 10^{-3} \text{м}^3/\text{с};$$

$$Q_4 = 7,05 \cdot 10^{-3} \text{м}^3/\text{с}.$$

Бу, гидравлика назарияси асосида ҳисобланган сув сарфлари $Q_3 = 2,95 \cdot 10^{-3} \text{м}^3/\text{с}$ ва $Q_4 = 7,05 \cdot 10^{-3} \text{м}^3/\text{с}$ юкорида берилганлардан кам фарқ қилади (масалан, $3 \cdot 10^{-3} \text{м}^3/\text{с}$ ва $7 \cdot 10^{-3} \text{м}^3/\text{с}$), шунинг учун лойиҳаланган мазкур тизим қабул қилиниши мумкин.

Агар ҳисобланган сув сарфлари лойиҳаланган тизимда-ги сув сарфларидан катта фарқ қилса, қувур диаметрини ёки унинг девори гадир-будурлигини ўзгартириш керак. Насосдан чиқаётган (жойдаги) напорни, Д. Бернулли тенгламаси ёрдамида (икки кесим бирини — насосдан чиқишидан кувурда $a-a$; иккичисини эса иккита ҳавзадан биттасида, масалан, 1-ҳавзада, унинг эркин сув сатҳида $b-b$ олиб) ҳисобланади

$$H_{чн.чн} = h_2 + h_3 + \Sigma h_t = h_2 + h_3 + \varepsilon(h_1 + h_2 + h_3) =$$

$$= h_2 + h_3 + \varepsilon \left[\left(\frac{Q_1}{K_1} \right)^2 l_1 + \left(\frac{Q_2}{K_2} \right)^2 l_2 + \left(\frac{Q_3}{K_3} \right)^2 l_3 \right] =$$

$$= 2,0 + 5,0 + 1,1 \left[\left(\frac{15}{53,7} \right)^2 \cdot 150 + \left(\frac{15-3,0}{24,94} \right)^2 \cdot 50 + \left(\frac{3,0}{24,94} \right)^2 \cdot 50 \right] = 33,40 \text{ м},$$

бу ерда ё маҳаллий қаршиликда йўқотилган напорни инфодаловчи коэффициент, ўзанинг узунлиги бўйича йўқотилган напор 10% ни ташқил этади, шунинг учун ε=1,1 микдорини ҳисобга олдик, яъни ҳизимидаги ўзанинг узунлиги бўйича йўқотилган напор йингиндиси 10% ни ташқил этади

$$\varepsilon = 10\% \Sigma h_t.$$

3. Насоснинг характеристикасини аниклаймиз. Насоснинг напори унга киришда ва ундан чиқишидан гидродинамик напорларнинг фарқи билан аникланади. Насосдан олдинги ва кейинги тезлик напорлари тенг бўлган ҳолда юкоридаги қаралаётган тизимда

262
\[H = H_{чикш} + h_v - \frac{a u^2}{2g} = 33,4 + 7,0 - 0,20 = 40,20 \text{ м.} \]

Насоснинг қуввати йўқотилган напорларни насоснинг фойдани иш коэффициентини (ФИК) \(\eta = 0,8 \) ни назарда тутган ҳолда аниклаймиз.

\[N = \frac{\gamma QH}{102\cdot0,80} = 7,35 \text{ кВт.} \]

Насоснинг \(Q, H, N, \eta \) характеристикаларига асосан каталогдан тегишли маркали насосни танлаб оламиз.

Такрорлаш учун саволлар

5.1. Қиска ва узун кувурлар туспешаши ва уларни ҳисоблаш усуллари қандай?
5.2. Қиска ва оддий узун кувурларни гидравлик ҳисоблаш усуллари қандай?
5.3. Кетма-кет уланганд учун кувурларни ҳисоблаш усуллари қандай?
5.4. Ёнима-ён жойлашган учун кувурларни ҳисоблаш усуллари нимадан иборат?
5.5. Узун кувурларда сув сарфини ҳисоблаш формуласи қандай?
ОЛТИНЧИ БОБ

ОЧИҚ ЎЗАНЛАРДА СУЮҚЛИК ОҚИМИНИНГ БАРҚАРОР ТЕКИС ИЛГАРИЛАНМА ХАРАКАТИ ВА УНИНГ ГИДРАВЛИК ЭЛЕМЕНЛЛАРИНИ ЭҲМ ЁРДАМИДА ХИСОБЛАШ

6.1-§. АСОСИЙ ТУШУНЧАЛАР

Бу бобда очик ўзанларда суюқликнинг барқарор текис илгариланма харакатини қараб чиқамиз. Очик ўзанлар икки хил бўлadi: а) табий очик ўзанлар — дарёлар, сойлар ва бошқалар; б) сунъий (табий бўлмаган) очик ўзанлар — каналлар, новлар ва бошқалар.

Очик ўзанларда суюқлик окимининг текис илгариланма характерларининг шарти.

Ўзанларнинг узунлиги бўйича, окимининг ихтиёрий кўндаланг кесими майлони бўйича ўртача тезлиги u ва ўртача чуқурлиги h ўзгармас бўlsa, бундай суюқлик окимининг характери барқарор текис илгариланма характери деб аталади, яъни

$$u = \text{const} \quad (\text{оким узунлиги бўйича}), \quad (6.1)$$

$$h = \text{const} \quad (\text{оким узунлиги бўйича}). \quad (6.2)$$

Суюқликнинг барқарор текис илгариланма характери 6.1-рasmда келтирилган. Амалда суюқликнинг бундай характери кўпинча сунъий очик ўзанларда учрайди (очик ёки берк каналларда). Ҳозир суз очик ўзанлар устида борар экан, шунинг учун ишаби i учна катта бўлмагани учун, каналдаги сувнинг чуқурлиги h ни тик (вертикал) бўйича ўлча мум-
кин, бу ҳолда оқимнинг кўндалант кесими юзасининг май-
донини ҳам (шартли) текис деб қабул қилинади. Очиқ
ўзанларда суюқлик ҳаракати ўрганилаётганда суюқликнинг
ҳаракати турбулент ҳамда у иккинчи даражалари қаршилик
соҳасига тегишили деб қаралади. Текис илгарилиман ҳарака-
катда гидравлик нишаб J_e ва пьезометрик нишаб J бир-
бирига тенг бўлади

$$J_e = J.$$ \hspace{1cm} (6.3)

Шунингдек бу ёрда очик ўзланларда пьезометрик нишаб J
ҳар доим эркин сув сатҳи нишабига тенг бўлади, яъни
пьезометрик чизик эркин сув сатҳида ётади

$$J = J_{сув сатҳи}.$$ \hspace{1cm} (6.4)

Шундай қилиб, очик ўзланларда суюқлик ҳаракати бар-
карор текис илгарилиман ҳаракатда бўлса, у ҳолда гидрав-
лик нишаб J_e, пьезометрик нишаб J, сув сатҳи нишаби J_{cc}
 ва ўзан туби нишаби i ўзаро тенг бўлади, яъни

$$J_e = J = J_{cc} = i.$$ \hspace{1cm} (6.5)

Бундан келиб чиқадики, очик ўзланларда суюқлик окими-
баркарор текис илгарилиман ҳаракатда бўлса, напор чи-
зви ёки оқимнинг тўлик солиштирма энергия чизиги $E-E$, пьезометр чизиги $P-P$ ва ўзан туби чизиги $T-T$ бир-бирига параллел тўғри чизик бўлади: $EE \parallel PP \parallel TT$. Ўзан тубининг нишаби $i = \sin \theta$, бунда θ — ўзан туби чизигининг горизонтал техисликка нисбатан нишаб бўчаги.

Шундай қилич, очик ўзанларда суюқликнинг барқарор текис илгариланма ҳаракати ҳосил бўлиши учун:
1. Ўзанда сув сарфи ўзгармас бўлиши керак, яъни

$$ Q = \text{const.} \quad (6.6) $$

2. Оқимнинг узунлиги бўйича кўндalanг кесими юзасининг майдони, сувнинг чуқурилиги ҳамда кўндalanг кесимидаги ёртажа тезлик ўзгармас бўлиши керак, яъни

$$ \omega = \text{const (оқим узунлиги бўйича)}; $$
$$ v = \text{const (оқим узунлиги бўйича)}; $$
$$ h = \text{const (оқим узунлиги бўйича)}. $$

(6.7)

3. Ўзан туби нишаби ўзгармас ва у гидравлик нишабга тенг бўлиши керак

$$ i = J_e = J = \text{const.} \quad (6.8) $$

4. Ўзаннинг гадир-будурлиги бир текис бўлиши керак

$$ \overline{A} = \text{const (оқим узунлиги бўйича)}. \quad (6.9) $$

5. Ўзанда маҳаллий қаршиликлар бўлмаслиги керак.

Юқоридаги шарт-шароитлар барчаси бирдан бахарилмаслиги ҳам мумкин, аммо ўша бирион бахарилмagan шарт кўйилган шартлардан қўп факр қилмаса, у ҳолда очик ўзанлардаги ҳаракат текис илгариланма деб қабул қилиниши мумкин.

Сунъий ўзанлардаги суюқлик ҳаракати шарти каналларда текис илгариланма ҳаракат учун кўйилган шартдан жуда кам факр қилади. Шунинг учун гидравликка асосан каналларни гидравлик ҳисоблаш билан шуғулланилади. Очик табий ўзанларда эса кўйилган шартлардан кўпли сезиларли факр билан бахарилади. Шунга қарамасдан, табий очик ўзанларда, дарё ва сойларда, уларнинг узунлиги бўйича бирион-бир иншоотлар қўрилган бўлмаса, шу дарёда сув табий ҳолатда ҳаракат қилса, у ҳолда табий
6.2-§. ОЧИҚ ЎЗАНЛРАДА СЮЮЌЛИҚ ОҚИМИНИНГ БАРҚАРОР ТЕКИС ИЛГАРИЛМАНА ХАРАКАТИНИ ХИСОБЛАШ ФОРМУЛАЛАРИ

Очиқ ўзанларда сююќликнинг барқарор текис илгарилмана ҳаракатини ҳисоблашда асосан А. Шеъзи формуласидан фойдаланилади

\[v = C \sqrt{RJ}. \] \hspace{1cm} (6.10)

Очиқ ўзандаги сююќликнинг текис илгарилмана ҳаракати учун 6.1-расмдан қуийдаги ифодани қабул қилсақ,
\[h_t = a = a_r, \]
ва гидравлик нишаб \(J_t \) ўзан туби нишаби \(i_t \) га ҳамда пьезометрик нишаб \(J \) га тенг бўлган ҳолда: \(J_t = J = i_t \), (6.10) тенгламани қуийдагича кўчириб ёзамиз, у ҳолда

\[v = C \sqrt{i_t R}, \] \hspace{1cm} (6.11)

бундан бўён очиқ ўзанларда текис илгарилмана ҳаракат учун ўзан туби нишабини \(i \) билан белгилаймиз ва ундан индекс «\(T \)» ни ташқаб юборамиз, у ҳолда (6.11) формула қуийдагича ёзилади

(І)

\[v = C \sqrt{i_t R}. \] \hspace{1cm} (6.12)

(6.12) нинг иккала томонини оқимнинг қўндиланг кеси-ми майдони \(\omega \) га қўпайтирсак, очиқ ўзанлар учун сююқ-лик сарфини ҳисоблаш формуласини оламиз

(II)

\[Q = \omega v = \omega C \sqrt{i_t R}. \] \hspace{1cm} (6.13)

\(^{v) \) Квази текис илгарилмана ҳаракат сўзи шу табий ўзанлардаги сююқликнинг барқарор текис илгарилмана ҳаракатини англатади, чунки табиатда, юкорида айтилгандек, туб маънода барқарор текис илгарилмана ҳаракат учрмайди.
Текис илгариланма ҳаракатни гидравлик ҳисоблашда яна қўшимча формулалардан фойдаланилади. Бу қўшимча формулалар, асосан, юқоридаги (6.12) ва (6.13) формулалардан келиб чикади.

Ўзан туби нишаби

$$i = \frac{\nu^2}{C^2 R}.$$ \hspace{1cm} (6.14)

Йўқотилган напор (ўзаннинг узунлиги бўйича)

$$h_i = il = \frac{\nu^2}{C^2 R} \cdot l.$$ \hspace{1cm} (6.15)

Сувнинг ҳажмий серфи

$$Q = \omega C \sqrt{i R}.$$ \hspace{1cm} (6.16)

Булардан ташқари юқорида келтирилган формулалардан фойдаланиб, очик ўзанлардаги барқарор текис илгариланма ҳаракатни қуқинчи даражалари қаршилик областси тегишили деб ҳисобла қуйидаги қўшимча тенгламаларни оламиз.

$$K = \omega C \sqrt{R} ; \; W = C \sqrt{R};$$ \hspace{1cm} (6.17)

$$K = \frac{Q}{\sqrt{i}} ; \; W = \frac{\nu}{\sqrt{i}};$$ \hspace{1cm} (6.18)

$$Q = K \sqrt{i} ; \; v = W \sqrt{i};$$ \hspace{1cm} (6.19)

$$i = \frac{Q^2}{K^2} ; \; i = \frac{\nu^2}{W^2},$$ \hspace{1cm} (6.20)

бу ерда K — сув серфи модули; W — тезлик модули; C — А. Шези коэффициенти.

(6.12) ва (6.20) формулалар очик ўзанларда суюқлик-нинг барқарор текис илгариланма ҳаракатини гидравлик ҳисоблашда асосий формулалар бўлиб хизмат қилади. А. Шези коэффициенти C 4.3-§ да келтирилган формулалар ёрдамида аниқланади.

268
6.3-§. ОЧИҚ ЎЗАНЛАРДА СУЮКЛИК ОҚИМИННИНГ КЎНДАЛАНГ КЕСИМИ МАЙДОНИНИНГ ГИДРАВЛИК ЭЛЕМЕНТЛАРИ

Бу ерда асосан сунъий очиқ ўзанларни гидравлик хисоблаш усуллари қараб чиқилади. Булар қаторига асосан амалиётда кatta аҳамиятта эга бўлган очиқ ўзанлар — каналлар ва бошқа сунъий иншоотлар қиради. Каналларнинг кўндаланг кесимлари шакллари 6.2- расмда кўрсатилган.
Уларнинг кўндаланг кесимларининг гидравлик элементларини хисоблаш формулаларини келтирамиз.

1. Каналнинг кўндаланг кесими — симметрик трапеция шаклида (6.2а-расм). Бу ерда b — канал тубининг кенглиги; h — каналдаги сувнинг чукурлиги; m — каналнинг ён деворининг нишаб коэффициенти, $m = \text{ctg} \theta$, бу ерда θ бурчаги грунт турларига қараб олинади; B — ўзандаги оқимнинг кўндаланг кесимидаги сув сат-ҳининг кенглиги:

$$B = b + 2mh.$$ \hspace{1cm} (6.21)

ω — оқимнинг кўндаланг кесими юзасининг майдони:

$$\omega = (b + mh)h.$$ \hspace{1cm} (6.22)

6.2- расм.
χ — ўзаннинг ќўлланган майдони бўйича кўндаланг кесимининг периметри узунлиги:

$$\chi = b + 2h\sqrt{1 + m^2}.$$ \hfill (6.23)

ω ва χ лар маълум бўlsa, гидравлик радиус куйидагича аникланади:

$$R = \frac{\omega}{\chi}.$$ \hfill (6.24)

Кўп ҳолларда, амалиётда каналларни гидравлик ҳисоблашда каналнинг нисбий кенглиги (канал тубининг кенглигини ундаи сувнинг чукурлигига нисбати) деган тушунча ишлатилади. Бу куйидагича ёзилади

$$\beta = \frac{b}{h},$$ \hfill (6.25)

ω ва χ микдорлар β орқали ифодаланса, у ҳолда

$$\omega = h^2(\beta + m);$$ \hfill (6.26)

$$\chi = h(\beta + 2,0\sqrt{1 + m^2}).$$ \hfill (6.27)

2. Каналнинг кўндаланг кесими — тўғри бурчакли тўртбурчак шаклида (6.26-расм).

$$B = b; \ m = \ctg 90^\circ = 0; \left\{ \begin{array}{l}
\omega = bh; \ \chi = b + 2h.
\end{array} \right. $$ \hfill (6.28)

Агар тўғри тўртбурчакли каналнинг туби жуда кенг бўlsa, яъни

$$b \gg 10h,$$

у ҳолда

$$\chi \approx B; \ R \approx h.$$ \hfill (6.29)
3. Каналнинг кўндаланг кесими — симметрик учбурчак шаклида (6.2в-расм).

\[
\begin{align*}
 b &= 0; \quad B = 2mh; \\
 \omega &= mh^2; \quad \chi = 2h\sqrt{1 + m^2}.
\end{align*}
\]

(6.30)

4. Каналнинг кўндаланг кесими — парабола шаклида (6.2 г- расм)

\[
\chi^2 = 2py,
\]

(6.31)

бунда \(p \) — параболани ифодаловчи параметр; \(\chi \) ва \(y \) координата ўклари (6.2 г-расм). Бундай шаклдағи ўзанлар учун сув сатҳи кенглиги \(B \) (сувнинг берилган \(h \) чукурлиги учун) (6.31) тенгламадан аниқланади:

\[
\omega = \frac{2}{3} Bh.
\]

(6.32)

Бошқа гидравлик элеменлар эса \(\frac{h}{B} \) га қараб олинади

\[
\chi \approx B \ldots ; \quad \frac{h}{B} \leq 0,15 \text{ бўлган холда}
\]

\[
\chi \approx B \left[1,0 + \frac{8}{3} \left(\frac{h}{B} \right)^2 \right]; \quad 0,15 < \frac{h}{B} \leq 0,33 \text{ бўлган холда}
\]

\[
\chi \approx 1,78h + 0,61B \ldots ; \quad 0,33 < \frac{h}{B} < 2,0 \text{ бўлган холда}
\]

\[
\chi \approx 2h \ldots ; \quad 2,0 < \frac{h}{B} \text{ бўлган холда}
\]

(6.33)
5. Ўқорида қўрсатилганлардан ташқари ўзаннинг кўндаланг кесимлари қўйидагича бўлиши мумкин:
а) симметрик бўлмagan шаклда (6.3 а- расм);
б) нотўғри шаклда (6.3 б- расм);
в) қўшилма шаклда, яъни каналнинг кўндаланг кесим-ми ҳар хил шаклларнинг қўшилишидан тузилган бўлади. Каналнинг кесимининг бундай шакллари амалиётда тез-тез учраш туради (6.3 в- расм);
г) ёпиқ шаклда, яъни берхитилган канал (6.3 г- расм).

6.4- §. ОИЧҚ ЎЗАННИНГ ГИДРАВЛИК ЭНГ ҚУЛАЙ КЎНДАЛАНГ КЕСИМИНИНГ ШАКЛИ — ТРАПЕЦИЯ ШАКЛИДАГИ КАНАЛ

Оичқ ўзанларда суюқлик оқимининг барқарор текис илгарилган ҳаракатини гидравлик ҳисоблашда гидродинамикининг асосий тенгламаларидан, чунончиси
а) А. Шези тенгламасидан

\[v = C \sqrt{\frac{l}{R}} \] \hspace{1cm} (6.34)

б) узлуксизлик тенгламасидан (сув сарфи баланси тенгламасидан)

\[Q = \omega v \] \hspace{1cm} (6.35)

в) Д. Бернулли тенгламасидан ва бошқалардан фойдаланилади. Юқорида А. Шези коэффициенти \(C \) ни гидравлик радиус \(R \) билан ўзаннинг ғадир-будурлигини ифодаловчи коэффициент \(n \) га боғлиқлигини кўрсатиб ўтган эдик. Бу соҳада оҳирги изланишлар натижасида олинган янги формулаларда эса А. Шези коэффициенти \(C \) сувнинг чукурлиги \(h \) ва ўзан туби ғадир-будурлигининг мутлақ гео-
метрик баландлиги Δ га боғлиқ эканлиги исботланяпти. Ющача қилиб айтганда, тўгрироги, нисбий гадир-будурлик $\frac{\Delta}{h}$ га боғлиқ. Масаланинг бундай кўйилиши тўғри бўлади, чунки гадир-будурликни ифодаловчи коэффициент n оким ҳаракати жараёнида ўзгаради ва физик маъноси жиҳатидан ноанчик мидор. Бу нисбий гадир-будурлик ўзанинг нисбий гадир-будурлик критерияси дейилади. Шуни айтиш керакки, ўзанинг қўндаланг кесими юзасининг майдони ω, гадир-будурликни ифодаловчи коэффициент n ёки мутлақ гадир-будурлик Δ ва ўзанинг нишаби i микдорлари бирдек ўзгармас бўлган ҳолда, сув сарфингин микдори Q энг қатта бўлиши учун унинг гидравлик радиуси энг қатта бўлиши керак, яъни R_{max}. Гидравлик радиус эса $R = \frac{\omega}{\chi}$ га тенг, бу ҳолда гидравлик радиус энг қатта бўлиши учун ўзанинг ҳўлланиб периметри узунлиги χ энг кичик бўлиши керак χ_{min}. Бундан келиб чиқадики, ўзанинг қўндаланг кесими гидравлик энг қулий бўлиши учун, унинг べрилган қўндаланг кесими юзасининг майдони ω сакланган ҳолда, ҳўлланиб периметрининг узунлиги χ энг кичик микдорга эга бўлиши керак, яъни $\chi = \chi_{min}$.

Шундай қилиб, каналнинг гидравлик энг қулий қўндаланг кесимининг шаклини аниқлаш учун асосан каналнинг ҳўлланиб периметри узунлигининг энг кичик микдорини (каналнинг べрилган қўндаланг кесими юзасининг майдони ω ўзгармagan ҳолда) топиш керак.

Энди ҳўлланиб периметрининг узунлиги энг кичик қийматга эга бўлган каналнинг гидравлик энг қулий қўндаланг кесимининг шаклини аниқлаймиз. Геометриядан маълумки, барча бир-бирига тенг геометрик шакладан энг кичик узунлиқка эга бўлган периметр бу доиравий шакл бўлади. Бундан келиб чиқадики, очик ўзанларда гидравлик энг қулий қўндаланг кесимининг шакли ярим доира бўлади (6.4-расм).

18—К-24 273
Ярим доиравий шаклдаги каналларни табиий шароитда барпо этиш жуда мураккаб, чучки қум-тош, супесь, суглиноқ ва бошқа ғрунлардан бундай шаклни бунёд этиш мураккаб, амалиётда бундай шаклли ўзанларни фақат ёғочдан, темирдан ва бетондан ясаш мумкин. Ёрда кавланаидган каналлар, асосан, трапецийдига (ва учбўрчак) шаклда бўлиши мумкин. Трапеция шаклдаги каналларнинг олти бурчакли (доира ичина барпо этилган) шаклнинг ярми, яъни ярим олтибурчакли шакл деб қараш мумкин. Шунинг учун трапецийдилал шаклдаги кўндаланг кесимлар ичидага гидравлик энг қулаи кўндаланг кесим бу симметрик ярим олтибурчакли шакл бўлади (6.4-рам). Унда канал тубининг кенглиги б доиранинг радиуси р га тенг, яъни b = r бўлиб, каналдаги сув сатҳининг кенглиги эса B = 2r ёки B = 2b бўлади, яъни В канал туби кенглигининг иккиланганига тенг. 6.4-рамдан кўриниб турибдики, бундай каналнинг ён девор нишаби горизонтал тексисликка нисбатан θ бурчагини ҳосил қилади ва у 60° га тенг бўлади: θ = 60°. Амалда эса шундай кўндаланг кесимга эга бўлган каналларни барпо этиш (қуриш) ҳар доим ҳам мумкин бўлавермайди, чунки табиатдаги кўпчилик ғрунлар, канал ён деворларининг горизонтал тексисликка нисбатан бурчаги θ = 60° да қурилас, бу ён девор мустаҳкам бўлмаслиги мумкин. Шунинг учун амалда очик ўзанларни ҳисоблаш пайтида, ёрда канални кавлаётганда θ бурчаги берилган тақдирда, шундай гидравлик энг қулаи трапецийдилал кўндаланг кесимини топиш қеракки, мазкур канал тубининг кенглигини ва ундан сувнинг чукурлигини аниқлашда унинг кўндаланг кесимидаги ҳўлланган периметрининг узунлиги ғар қисқа бўлсин.

6.5-§. ТРАПЕЦИИДАЛ ШАКЛЛИ КАНАЛНИНГ ГИДРАВЛИК ЭНГ КУЛАЙ КЎНДАЛАНГ КЕСИМИ

Қуйидаги гидравлик ва геометрик элементлар берилган деб фароз қиламиз:
1) канал кўндаланг кесимининг шакли — трапецийдилал;
2) канал ён деворининг горизонтал тексислик билан ҳосил қилган бурчаги θ, яъни каналнинг ён девори нишаб коэффициенти $m = m_\theta$;

274
3) канал тубининг нишаби \(i = i_0 \);
4) ўзаннинг гадири-будурларини ифодаловчи коэффициент \(n = n_0 \) ёки ўзан туби гадири-будурларининг мутлақ геометрик баландлиги \(\Delta = \Delta_0 \);
5) сув сарфи \(Q = Q_0 \).

Шуарга асосланаб, каналнинг гидравлик энг кулаё кўндаланг кесиимини лойихалаш керак (ъъни унинг гидравлик элементларини аниклаш керак). Бундай масаланинг бир неча ечими бор. Шуардан бирини кўриб чиқамиз. Бунинг учун трапецидвал шаклдаги каналнинг юқоридаги шартларга жавоб берувчи бир неча итиёрий ўлчамлик кўндаланг кесиимларини оламиз (6.5-расм):

\[
\begin{align*}
m_1 &= m_2 = m_3 = \ldots = m_0 = \text{const}; \\
i_1 &= i_2 = i_3 = \ldots = i_0 = \text{const}; \\
n_1 &= n_2 = n_3 = \ldots = n_0 = \text{const}; \\
Q_1 &= Q_2 = Q_3 = \ldots = Q_0 = \text{const},
\end{align*}
\]

(6.36)

буна 1, 2, 3 ... индексслар каналларнинг вариантлари. Масалан, индекс 1, бу биринчи шакли каналнинг вариант ўлчамларини билдиради; индекс 2 — иккинчи вариантни; индекс 3 — учинчи вариантни ва ҳоказо.

6.5 а-расмда фаъат бешта вариант кўрсатилган, аммо бу чизмаларга қараб бундай вариантлар жуда кўп деб фароз қиламиз, булатан биринчи сувлар сувнинг жуда саёzlиги ва канал тубининг жуда кенглиги билан ажралиб туради, охиргиси эса — канал тубининг жуда торлғи ва ундағи сувнинг чукурлiği катта бўлиши билан фарқ қилади ва ҳоказо. Йиккала вариантда, шунингдек бошқа вариантларда ҳам сув сарфи ўтказиш қўбилияти бирдек бўлиши учун биринчи вариантда канал тубининг кенглиги катта, кейинги, масалан, охирги вариантда эса сувнинг чукурлиги катта бўлиши керак.

КаралаЕтган вариантлар учун

\[
\begin{align*}
\beta_1 &\neq \beta_2 \neq \beta_3 \neq \ldots \neq \beta_n; \\
\chi_1 &\neq \chi_2 \neq \chi_3 \neq \ldots \neq \chi_n.
\end{align*}
\]

(6.37)
6.5- рисунок.
Бундан кўриниб турбидики, биринчи ва охирги вариан-
лар нисбатан катта ішқаланиш юzasiga эга, яъни 1-вариан-
т учун $\chi \approx b$, охирги вариант учун эса $\chi \approx 2h$. Бундан ке-
либ чиқадики, бу варианларларда ўртача тезлик нисбатан ки-
чик. Қаралаётган трапецеидал каналларнинг кўндаланг кес-
симлари ичида шундай вариант бўлиши керакки, унда оким-
нинг кўндаланг кесими буйича ўртача тезлиги энг катта
булсин, яъни v_{max} канал кўндаланг кесимининг майдони эса,
эш кичик бўлсин, яъни ω_{min} (6.5 б-расмга қаранг). Шу шарт
бажарилиса, шунга қараши каналларнинг гид-
равлик энг қулақ кўндаланг кесими дейилади. Каналнинг
гидравлик энг қулақ кўндаланг кесими деб шундай кесимга
айтилади, бунда ўзан кўндаланг кесими юzasининг май-
дони унинг гадир-будурлиги, нишаби ўзгармас бўлган
қолда энг кўп сув сарфини ўтказади. Бошқача қиляб айтиган-
да ўзанинг кўндаланг кесими геометрик ва гидравлик эле-
ментлари m, n, Q, i нинг қийматлари берилган қолда оким
энг катта v_{max} ўртача тезликка ва ўзан энг кичик ω_{min} кўнда-
ланг кесими майдонига эга бўлган кўндаланг кесим трапе-
цеидал каналнинг гидравлик энг қулақ кўндаланг кесими
деб аталади.

Ўзан тубининг кенглигига нисбатан гидравлик энг қулақ
кўндаланг кесимининг нисбий кенглигини $\beta_{\text{рк}}$ белги билан
белгиласак, у қолда

$$\beta_{\text{рк}} = \left(\frac{\beta}{h} \right)_{\text{рк}}. \quad (6.38)$$

Юкорида айтилганларнинг барчасини 6.56-расмда қуйи-
даги эгри чизиклар билан кўрсатамиз

\[
\begin{align*}
\chi &= f_1(\beta); \\
\omega &= f_2(\beta); \\
v &= f_3(\beta).
\end{align*}
\quad (6.39)
\]

(6.39) даги $\chi = f_1(\beta)$, $\omega = f_2(\beta)$ ва $v = f_3(\beta)$ функцияларни
келтирамиз (6.5 б- расмга қаранг). Расмда бу функциялар β
ўқидан юкорида жойлашган. Бунда $Q = \text{const}$, ω эса ўзга-
рувчан деб қабул қилинган. Худди шундай график 6.5 б-
расмда фақат (6.39) даги функциялар β ўқидан пастда
жойлашган. Пастдаги график узук чизиклар (пунктир) би-
лан кўрсатилган. Юкоридағидан фарқи шуки, бу ерда Q
ұрнинга \(\omega = \text{const} \) деб қабул қилинган. \(Q \) эса ўзгарувчан 1—11 вертикал (6.5б-рasm) функцияларнинг таҳ ва миң қиймат-ларини кўрсатади, бу горизонтал ўқ бўйича \(\beta \) нинг қий-матини беради. Каналларни лойиҳалаш ва уларни қуриш ар-зон бўлиши учун \(\beta = \beta_k \) шартни бажариш керак бўлади, чунки бу шарт бахарилса, каналнинг кўндаланг кесими юзасининг майдони энг кичик \(\omega = \omega_{min} \) бўлади. Энди, шун-дай тенгламани тузиш керакки, ўзан тубининг кенглиги \(b \), оқимнинг чуқурлиги \(h \) гидравлик энг қулаи кўндаланг кесимнинг шартларини қониқтирсинг.

Бу масалани қуйидагича ҳал қиламиз:

Хўлланган периметрнинг узунлиги

\[
\chi = b + 2h\sqrt{1 + m^2}.
\] (6.40)

(6.22) тенгламадан \(b \) нинг қийматини аниқлаб

\[
b = \frac{\omega}{h} - mh,
\] (6.41)

(6.40) тенгламага қўйсак

\[
\chi = \frac{\omega}{h} - mh + 2h\sqrt{1 + m^2}.
\] (6.42)

Бундан кўринадики, агар \(\omega \) ва \(m \) ўзгармас болиса,

\[
\chi = f(h).
\] (6.43)

Гидравлик энг қулаи кўндаланг кесим шартига биноан \(\chi_{min} \) ни (6.42) тенгламадан аниқлаймиз.

Олий математика усулларидан \(\chi_{min} \) ни қуйидағи тенг-ламадан аниқлаш мумкинлиги осон исботланади

\[
\frac{\omega}{h^2} = 2\sqrt{1 + m^2} - m,
\] (6.44)

бу ҳарда \(2\sqrt{1 + m^2} - m = a \) деб белгилаб, гидравлик энг қулаи кўндаланг кесимдаги \(\omega_k \) ни аниқлаш тенгламасини оламиз

\[
\omega_k = (2\sqrt{1 + m^2} - m)h_k^2 = ah_k^2.
\] (6.45)

Бу ҳарда индекс «гк» — гидравлик энг қулаи кўндаланг кесимни билдиради. (6.44) га \(\omega_k \) нинг қийматини (6.22) дан олиб қўйиб

\[
\omega_{gk} = (b_{gk} + mh_{gk})h_{gk}.
\]

278
uni \(\beta \) ga nisbatan e'chak

\[
b_{rk} = 2h(\sqrt{1 + m^2} - m),
\] \hspace{1cm} (6.46)

\[
(\frac{h}{h})_{rk} = \beta_{rk} = 2(\sqrt{1 + m^2} - m).
\] \hspace{1cm} (6.47)

Amanla esa \(\beta \) ni \(\beta_{rk} \) dan bo'shqarorok қилиб олишга туғри келади, чунки \(\beta_{rk} \) шакли учун аслида кўпгина нокулийликлар мавжуд, масалан:

1. Гидравлик энг қулақ қўндаланг кесим таҳрибаларга кўра амалда кўпинча йқтисодий энг қулақ бўлмайди.

2. Каналнинг гидравлик энг қулақ қўндаланг кесими нисбатан чукур бўлади. Бундай чукур каналларни куриш ва уни ишлатиш анча мураккаб.

Шунинг учун бу ерда янги тушунча киритамиз, мазкур тушунча амалий энг қулақ қўндаланг кесим дейилади ва уни \(\beta_a \) шартли белги билан билангилаймиз, у ҳолда

\[
\beta_{rk} \leq \beta_{ak} \leq (\beta_{rk})_{чегара}.
\] \hspace{1cm} (6.48)

Bu ерда чегараёвий гидравлик энг қулақ каналнинг қўндаланг кесимини Р. Р. Чугаевнинг формуласидан ҳисоблаймиз

\[
(\beta_{rk})_{чегара} = 2,5 + \frac{m}{2}.
\] \hspace{1cm} (6.49)

6.6-§. ОЧИҚ ЎЗАНЛARDА ТЕКИС ИЛГАРИЛАНМА ҲАРАКАТДАГИ СУЮҚЛИК ОҚИМИНИНГ ЭНГ КАТТА ВА ЭНГ КИЧИҚ РУХСАТ ЭТИЛГАН ЎРТАЧА ТЕЗЛИГИ

а) Энг катта руҳсат этилган, аммо канални ювиб кетмайдиган суъқлик оқимининг ўртача тезлиги.

Каналларни гидравлик хисоблашда суъқлик оқимининг энг катта руҳсат этилган ўртача тезлигининг юқори чегарасини аниқлаш керак бўлади, чунки бундай катта тезлик канал тубини ва ён деворларини ювиб, уни бузиш юбориш мумкин. Энг катта руҳсат этилган тезлик, асосан, грунтта, юни шу ўзанни ташкил этган материалга боғлиқ. Бундай тезликнинг қиймати таҳрибада аниқлашади. Энг катта руҳсат этилган, аммо канални ювмайдиган текис ил гариланма ҳаракатдаги суъқлик оқимининг ўртача тезликлари 6.1- жадвалда келтирилган.
6) Энг кичик рухсат этилган, аммо каналда қуйукмаларни чўқтирлиб қолдирмайдиган суюқлик окимининг ўртача тезлиги

Каналлардаги суюқлик окимининг техис илгариланма ҳаракатини гидравлик ҳисоблашда окиминг энг кичик рухсат этилган ўртача тезлигининг пастки чегарасини ўртаниш зарур, чунки бундай кичик тезликлар каналларнинг куйукмалар билан тулиб қолишининг одлини олиш учун керак бўлади. Куйукмалари чўқтирмайдиган суюқлик окимининг ўртача тезлиги қуйидагича аниқланади:

\[v_{\text{min}} = e\sqrt{R}, \quad (6.50) \]

бу ерда \(e \) — куйукмалар микдорини, уларнинг грануломет-рик таркиби ни ҳамда ўзанинг гадир-будурлигини ифода-довчи коэффициент. Агар тажрибаларнинг кўрсатишига қараганда գռүтларнинг диаметри \(d \leq 0,25 \text{ мм} \) бўlsa, у ҳолда \(e = 0,5 \) қабул қилиниади.

Суюқлик окиминг рухсат этилган ўртача тезлиги ўзанинг тубида ўтлар ўсмаслигини назарда тутсак, у ҳолда \(v_{\text{min}} \geq 0,60 \text{ м/с} \) қабул қилиниади.

Агар куйукмалар асосан майда қумлардан иборат бўlsa, улар чўқмаслиги учун окиминг ўртача тезлиги \(v_{\text{min}} = 0,40 \text{ м/с} \).

<table>
<thead>
<tr>
<th>Грунт</th>
<th>(v_{\text{max}} \text{, м/с})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тупрок, чанг</td>
<td>0,15±0,20</td>
</tr>
<tr>
<td>Кум (майда, ўртача, қирғиз)</td>
<td>0,20±0,60</td>
</tr>
<tr>
<td>Шағал</td>
<td>0,60±1,20</td>
</tr>
<tr>
<td>Соз тупрок (супес, суғлиноқ)</td>
<td>0,70±1,00</td>
</tr>
<tr>
<td>Лой</td>
<td>1,0±1,80</td>
</tr>
<tr>
<td>Қаттиқ тог жинени</td>
<td>2,5±25,0</td>
</tr>
<tr>
<td>Тош терилган канал:</td>
<td></td>
</tr>
<tr>
<td>а) бир қават (қатлаш маъносида)</td>
<td>3,0±3,5</td>
</tr>
<tr>
<td>б) икки қават</td>
<td>3,5±4,5</td>
</tr>
<tr>
<td>Бетонланган канал</td>
<td>5,0±10</td>
</tr>
</tbody>
</table>

6.1-жадвал

Bu earda suoylik zu biylan obil kelajatgan komponentlar, yanini maida, xar domi suv ichida yuridigan қatlik jismlar (vзвешенные на- носы) назарда тутилади.
Канални лойихалаётганда оқимнинг ўртача тезлиги қуийланган оралиқда бўлиши керак:

$$v_{\min} \leq v \leq v_{\max}.$$ \hspace{1cm} (6.51)

Суъоқлик оқимнинг энг катта рухсат этилган ўртача тезлиги v_{\max} ни ҳисоблаш учун ҳар хил ғуръиярга тегиши формулалар ишлаб чиқилган, масalan, М. А. Великанов, И. И. Леви, И. В. Егиязаров, Г. И. Шамов, В. С. Кнороз, Ц. Е. Мирцхулова, В. Н. Гончаров, Б. И. Студеничников ва бошқаларнинг кумга оид формулаларини келтириш мумкин.

Амалиётда $v<v_{\min}$ шартини бахариш анча мураккаб, шунинг учун, кўпинча, қурилган каналлар қуйқумлар билан тўлиб қолиб, уларни вақт-вақти билан тозалашга тўғри келади. $v>v_{\min}$ шартига келсак, албatta, бу шарт бахарилиши керак, акс ҳолда канал ювилиб, бузилиб кетиши мумкин.

Бу ёрда шундай савол келиб чиқади: агар каналларни ғидравлик ҳисоблашда $v>v_{\max}$ бўлса ёки $v<v_{\min}$ бўлса, у ҳолда нима қилиш керак?

Бунга шундай жавоб бериш керак. v_{\max} тезлигини ошириш керак ёки v_{\min} қийматини камайтириш керак. Буни амалда қандай бахариш мумкин? Бу саволга қуйидагица жавоб бериш мумкин:

1. v_{\max} ни катталаштириш учун каналнинг тубини ва ён деворларини бетон парда билан ёки тош териш усули билан мустахкамлаш керак.

2. v_{\min} ни камайтириш учун тезлик формуласига, яъни А. Шеи формуласига, бошқача қилиб айтганда, текис илга-риланма ҳарқат формуласига мурожаат этамиз, $v = C \sqrt{R}$.

Бундан кўриниб турбидики, v ни камайтириш учун R ёки C ни ёки i ни қичиклаштириш лозим. Бунинг уч хил ечими мавжуд:

1. Каналнинг қўндаланган кесими юзасининг майдонини ўзгартирис (қичиклаштириш) йўли билан, бунда R озгишна камайди, у ҳолда v сезиларли даражада ўзгармайди.

2. Фадир-будурликни катталаштириш йўли билан ўзгартирамиз, у ҳолда n катталашиб, C камайди.

3. Канал тубининг нишаби i ни камайтирамиз, амалиётда, кўпинча ғидравликада шу усул қўлланилади. Бунинг
учун каналнинг узунлиги буйicha (алоҳида бўлакларида) шаршаралар ва тезоқар нишоотлар курилади.

Энг кичик рухsat этилган, аммо каналда қуйқумларни чўқтириб колдиримайдиган оқимнинг ўртача тезлиги 6.2-жадвалда келтирилган (В. Н. Гончаровнинг тажрибалари-дан олинган).

6.2-жадвал

<table>
<thead>
<tr>
<th>Грунт</th>
<th>Грунт заррачасининг диаметри d, м</th>
<th>v_{min}</th>
<th>Каналдаги сувнинг чукурлиги h, м</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Кум:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>" жуда майда</td>
<td>0,2÷0,3</td>
<td>0,34</td>
<td>0,44</td>
</tr>
<tr>
<td>" майда</td>
<td>0,3÷0,4</td>
<td>0,43</td>
<td>0,57</td>
</tr>
<tr>
<td>" ўртача</td>
<td>0,4÷0,5</td>
<td>0,60</td>
<td>0,78</td>
</tr>
<tr>
<td>" йирик</td>
<td>0,5÷1,0</td>
<td>0,87</td>
<td>1,13</td>
</tr>
</tbody>
</table>

6.7- §. ТРАПЕЦЕИДАЛ КАНАЛЛАРДАГИ СУЮҚЛИК ОКИМИНГ ТЕКИС ИЛГАРИЛАНМА ҲАРАКАТИНИ ГИДРАВЛИК ХИСОБЛАШДА АСОСИЙ МАСАЛАЛАР

Маълумки, трапециадал каналлар асосан олтита ўлчам билан характерланади, булар: b, h, m (бу учаласи оқимнинг кўндаланг кесими юзаси майдони ўлчамлари ифодалайди), n, i, Q (ёки $v = \frac{Q}{wo}$). Шулардан бир нечтаси, масалан, m грунтинг турлариға қараб олинади ва n берилган бўлади. Канални гидравлик хисоблашда асосан кўйидаги бир неча тур масалалар ҳал қилинади:

1. Сув сарфи Q ни ва окимнинг тезлиги v ни аниклаш. Бунда окимнинг кўндаланг кесими буйicha ўлчамлари маълум бўлган ҳолда канал тубининг нишаби i берилган бўлади.

2. Канал туби нишаби i ни аниклаш. Бунда сув сарфи Q берилган бўлиб, кўндаланг кесим буйicha ўлчамлари маълум бўлади.

3. Окимнинг кўндаланг кесими юзаси майдонини аниклаш. Бунда сув сарфи Q ва канал тубининг нишаби i берилган бўлади.
4. Оким кўндаланг кесими юзаси майдонининг ўлчамлари бўлган ҳисоблама бўлиб, гезлик u маълум бўлади.

Бириччи турдаги масалалар.
Оким кўндаланг кесимининг барча ўлчамлари берилган b, h, m, i, n (6.6-расм). Сув сарфи Q ни аникланг.

Масалани ечис тартиби: Окимнинг кўндаланг кесими майдонининг ўлчамларини билган ҳолда, (6.22), (6.23), (6.24) формулалардан ω, χ, R ларни аниклаб, C ни топамиз. C ни ҳисоблашда юқоридағи формулаардан бирини қабул қиламиз, масалан, Н. Н. Павловский формуласини:

$$C = \frac{1}{n} R^\nu.$$

6.1-масала. Трапециддаги канал берилган, унинг тубини шабаби $i = 0,0008$ ва қенглизи $b = 2$ м, каналдаги сувнинг чукурлиги $h = 1,2$ м; ўзан ён девори нишаб коэффициенти $m = 1,0$; унинг қадир-бўдурлик коэффициенти $n = 0,03$; каналдаги сувнинг сарфи Q; окимнинг ўртача тезлиги v ҳамда каналнинг ювилмаслик тезлигини ва қуйумларнинг чўкмаслигини тектиринг. Қанал ўтказиладиган трассадағи ґрунт — соз тупрок.

Ечис. Каналнинг кўндаланг кесими юзаси майдонининг ғидравлик элеменларини аниклаймиз:

$$\omega = (b+mh)h = (2,0+1,0 \cdot 1,2) \cdot 1,2 = 3,84 \text{ м}^2;$$

$$\chi = b + 2h\sqrt{1,0 + m^2} = b + m'h = 5,4 \text{ м};$$

бунда $m' = 2,0\sqrt{1,0 + m^2} = 2,0\sqrt{1,0 + 1,0^2} = 2,83;$

$$R = \frac{\omega}{\chi} = \frac{3,84}{5,40} = 0,71 \text{ м};$$
Бу масалада, аввало, шунга эътибор бериш керакки, иккala гидравлик элемент b ва h бир-бири билан (6.13) ёки (6.19) тенглама орқали боғланган:

$$Q = \omega C \sqrt{iR} = K \sqrt{i}.$$

Бу ерда b ва h учун юкоридаги тенгламани қониқтирувчи жуда кўп қийматлари топиш мумкин, шунинг учун бу масала аниқ эмас. Бу масалани аниклаш учун юкорида айтилгандек (6.4-§ га қараган) канал тубининг кенглиги b ёки ундағи сувнинг чуқурлиги h ёки уларнинг нисбатини $\beta = \frac{b}{h}$ қабул қилиш керак. Шунга асосан учунчи турдаги масаланинг уч хил ечимини қараб чиққамиз.

1. Биринчи хил ечими. Канал тубининг кенглиги b берилган, ундағи сувнинг чуқурлигини аниклаш керак. Бу масала итерация" усулида қуйидагича ечилади. Бу нинг учун (6.18) формуладан керакли сув сарфи модулини аниклашмиз:

$$K_{керак} = \frac{Q}{\sqrt{i}},$$

бунда b ни берилган деб ҳисоблаб, h нинг ихтиёрий қийматларини қабул қиламиз, масалан, $h = h_1$ бўлсин, шунга тегиши барча гидравлик элементларни ҳисоблаб чиққамиз, у ҳолда $\omega = \omega_1; \chi = \chi_1; R = R_1; C = C_1$ ва $K = K_1$ бўлади.

Булардан K_1 ни қуйидагича ҳисоблаймиз:

$$K_1 = \omega_1 C_1 \sqrt{R_1}.$$

K_1 ни $K_{керак}$ билан такқослаб h нинг тегиши қийматини топамиз. Агар $h = h_1$ қиймати учун ҳисобланган K_1 нинг қиймати $K_{керак} = \frac{Q}{\sqrt{i}}$ қийматига тенг бўлса, у ҳолда $h = h_1$ ёш қидирлиётган сувнинг чуқурлиги бўлади, яъни масаланинг ечими топилади. Аммо, амалиёта бирдан K ва $K_{керак}$ бир-бирига тенг бўлиши камдан-кам юз берадиган ҳолди-са, шунинг учун h нинг яна бошқа янги қийматини қабул қиламиз, яъни $h = h_2$ ва ҳоказо. Шундай қилиб, токи $K_{керак}$

" Кетма-кет яқинлашув усули.
нинг қийматини олмاغунча \(h \) нинг янги қийматини бериб бораверамиз (\(h \) нинг қийматини бир неча мarta қайта қабул қилгандан кейингина масала өчимини олиш мумкин).

6.3-масала. Берилганлар: \(Q = 1,0 \text{ м}^3/\text{с}; i = 0,0006; m = 1,0; n = 0,03 \). Трапецидвал шакли каналдаги окимнинг қўндалгеги кесими ўзаси майдонининг гидравлик элементлари аниқлансин. Канал тубининг кенглиги \(b = 1,5 \text{ м} \), каналдаги сувнинг чукурылги аниқлансин.

Билиш. Каналдаги су йуклиқ окимнинг қўндалгеги кесими майдонининг гидравлик элементларини аниқлаймиз:

\[
K_{келк} = \frac{Q}{\sqrt{i}} = \frac{1,0}{\sqrt{0,0006}} = 40,8 \text{ м}^3/\text{с};
\]

\[
\omega = (b + mh)h = (1,5 + 1,0h)h;
\]

\[
\chi = b + 2h\sqrt{1 + m^2} = 1,5 + 2,83h, \quad 2\sqrt{1 + m^2} = m' = 2.83;
\]

\[
R = \frac{\omega}{\chi} = \frac{(1,5+1,0h)h}{1,5+2.83h};
\]

\[
C = \frac{1}{n} R' = \frac{1}{0,03} \cdot R^{1.5_{0.03}}.
\]

\(h \) ни қабул қилиб сув сарфи модули \(K \) ни \(K = \omega C\sqrt{R} \) формуладан ҳисоблаймиз ва уни керакли су варифи модули \(K_{келк} = \frac{Q}{\sqrt{i}} \) билан таққослаймиз. Барча гидравлик ҳисобларни 6.4- жадвалга туширамиз.

6.4- жадвал

<table>
<thead>
<tr>
<th>(h, \text{ м})</th>
<th>(\omega, \text{ м}^2)</th>
<th>(\chi, \text{ м})</th>
<th>(R, \text{ м})</th>
<th>(C, \text{ м}^{0.5}/\text{с})</th>
<th>(K = \omega C\sqrt{R}.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>2,50</td>
<td>4,33</td>
<td>0,58</td>
<td>28,9</td>
<td>55,0>40,8</td>
</tr>
<tr>
<td>0,9</td>
<td>2,16</td>
<td>4,05</td>
<td>0,53</td>
<td>28,2</td>
<td>44,5>40,8</td>
</tr>
<tr>
<td>0,85</td>
<td>2,00</td>
<td>3,90</td>
<td>0,514</td>
<td>27,9</td>
<td>40,0<40,8</td>
</tr>
<tr>
<td>0,86</td>
<td>2,03</td>
<td>3,94</td>
<td>0,517</td>
<td>28,0</td>
<td>40,8=40,8</td>
</tr>
</tbody>
</table>

287
6.4-жадвалдан куриниб турiability, узандаги сувнинг чукурлиги $k = 0.86$ м, бундай натижа юкъриданги шартни крникариди. Демак, масала ечими топилди. Шуни айтб, угиш керакки, купинча амалиетда итерация усулида k нинг к.иймати сув сарфи модули

$$K = \text{шСЧ/л}$$

ни керакли сув сарфи модули $K_{\text{керак}}$ билан такдослаш усули билан аникланади:

$$K_{\text{керак}} = -2\frac{\text{г}}{}.$$

Юкъриданги жадвалда берилиган дек, А'ларнинг бир-биринча шунчалик якин булиши камдан-кам юз берадиган ҳақида, акс ўзла юкъриданги x юсбоқ-қитобдан фойдаланиб k нинг кийматини графики ёрдамида аникланади. Бунинг учун K-ЯКО графигини тузиш керак (6.8-расм). Бу графика нисбатан (6.4-жадвалда қараш) K_s, K_β, K_φ ва хоказолар, уларга тегишили L_s, I_s, κ_s ва хоказоларнинг кийматларига асосан чизилади. Бу графика горизонтал укига K ва вертикал укига k куйилади. Натижада $K = /k$ эрги ЧИЗИРИ пайдо булади.

Горизонтал укига $k_{\text{керак}} = 40.8$ кийматини куйиб, уни эрги чизик.кача кутарб, унда A нуктасини белгилаймиз, A нуктадан ордината k ўқи томонга йурсак, уша ордината

$$1.0$$

$$1)\text{OM} > y \quad \text{k}=\varepsilon m$$

$$\begin{align*}
\text{Ш} & = 50 \\
K_{\text{Ш}} & = 60 \quad K
\end{align*}$$

6.8-расм.

288
ўқи билан учрашган нүктаси бизга керакли чукурлик \(h \) ни бериади. Шундай қилиб, \(K = f(h) \) графигидан керакли

\[
K_{керак} = \frac{Q}{\sqrt{i}} = 40,8 \text{ сув сарфи модулига тегишили } h = 0,86 \text{ м}
\]

қийматни аниклалик.

2. Иккинчи хил ечими. Каналдағи сувнинг чукурлиги \(h \) берилади, унинг тубининг кенглиги \(b \) ни аникланг. Бу масала ҳам юкоридаги масалага ўшашш итерация усулида ечилади, бунинг учун аввало

\[
K_{керак} = \frac{Q}{\sqrt{i}}
\]

ни аниклаймиз. Сувнинг чукурлиги \(h \) берилади ҳолда \(b \) нинг бир неча қийматини қабул қилиб, барча гидравлик элементлар \(\omega, \chi, R, C \) ва бошқаларни ҳисоблаб чиқиб, сув сарфи модулини аникилаймиз:

\[
K = \omega C \sqrt{R},
\]

ва уни \(K_{керак} \) билан такқослаймиз. Агар қабул қилинган \(b \) учун ҳисобланган \(K \) керакли \(K_{керак} \) га тенг бўлса, демак, масала эчилган ҳисобланади. Юкоридаги масала қаби бу масалада ҳам \(b \) нинг қийматини аниклашда

\[
K = f(b)
\]

графигини тузамиз ва ундан фойдаланиб, \(b \) нинг қийматини топамиз.

3. Учунчи хил ечими. Ўзаниянг нисбий кенглиги, яъни каналнинг гидравлик энг қулақ кўндаланг кеши- ми \(\beta = \frac{b}{h} \) берилади. \(b \) ва \(h \) ни аниклаш керак. Бу масала ҳам итерация усулида ечилади. Аввало керакли сув сарфи модули аникланади

\[
K_{керак} = \frac{Q}{\sqrt{i}}.
\]

\(h \) нинг бир неча иктиёрий қийматини, яъни \(h_1, h_2, h_3, \ldots \) қабул қилиб уларга тегишили \(b \) ларнинг қийматларини

\(\beta = \frac{b}{h} \) формуласи ёрдамида ҳисоблаймиз, унда \(h_1 = \beta h_1 \),

19-K-24

289
$b_2 = \beta h_2$, $b_3 = \beta h_3$, ва ҳоказо бўлади. Гидравлик элементлар ω, χ, R ни аниклаймиз. Кейин $K = \omega C \sqrt{R}$ ни ҳисоблаймиз.

Бу K ни керакли $K_{керак} = \frac{Q}{\sqrt{i}}$ билан такқослаймиз. Итерация усулида ва график $K = f(h)$ ёрдамида h ни топамиз.

6.4-масала. Трапецеидал шаклду богондан ишланган каналнинг кўндаланг кесими ўлчамларини аниклайти. Бунда куйидагилар берилган: $Q = 30$ м³/с; $i = 0,00016$; $\beta = 3$; $m = 1,5$; $n = 0,014$.

Ечиш. Суюқлик окимининг кўндаланг кесими майдоннинг гидравлик элементларини аниклаймиз:

$$K_{керак} = \frac{Q}{\sqrt{i}} = \frac{30}{\sqrt{0,00016}} = 2370 \text{ м}^3/\text{с};$$

$$b = \beta \cdot h = 3h; \quad \omega = (b + mh)h = (3h + 1,5h)h = 4,5h^2;$$

$$\chi = b + m'h = 3h + 3,61h = 6,61h; \quad m' = 2,0\sqrt{1 + m^2} = 3,61h;$$

$$R = \frac{\omega}{\chi} = \frac{4,5h^2}{6,61h} = 0,683h;$$

$$C = \frac{1}{n} R' = \frac{1}{0,014} (0,683h)^{1,3\sqrt{0,014}}.$$

Масала ечишининг натижаларини 6.5- жадвалга тушира-миз.

<table>
<thead>
<tr>
<th>h, м</th>
<th>ω, м²</th>
<th>R, м</th>
<th>C, м³/с</th>
<th>$K = \omega C \sqrt{R}$, м³/с</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,0</td>
<td>18,0</td>
<td>1,36</td>
<td>74,80</td>
<td>1570<2370</td>
</tr>
<tr>
<td>2,5</td>
<td>28,0</td>
<td>1,70</td>
<td>77,20</td>
<td>2810<2370</td>
</tr>
<tr>
<td>2,3</td>
<td>23,8</td>
<td>1,57</td>
<td>76,05</td>
<td>2280<2370</td>
</tr>
<tr>
<td>2,35</td>
<td>25,0</td>
<td>1,60</td>
<td>76,50</td>
<td>2420<2370</td>
</tr>
<tr>
<td>2,34</td>
<td>24,7</td>
<td>1,59</td>
<td>76,00</td>
<td>2370=2370</td>
</tr>
</tbody>
</table>

6.5-жадвалдан кўринадики, $h = 2,34$ м қиймати масалада кўйилган шартга жавоб беради. Шундай қилиб, $h = 2,34$ м ни қабул қилиб, каналнинг кенглигини топамиз.

290
$$b = \beta h = 3,0 \cdot 2,34 = 7,02 \text{ м.}$$

Тўртинчи турдаги масалалар. Берилган: сув сарфи Q; окимнинг ўртача тезлиги v; бу ерда қуйидагилар маълум: m, b ёки h. Масалада b ёки h ни, ўзан туби нишаби i ни аниклаш керак. Бу ерда окимнинг кўндаланг кесими юзаси майдони қуйидагича топилади:

$$\omega = \frac{Q}{v}.$$ (6.22) формуладан

$$\omega = (b + mh)h,$$

бундан h ёки b ни аниклаймиз:

$$h = \sqrt{\left(\frac{b}{2m}\right)^2 + \frac{\omega}{m} - \frac{b}{2m}}; \quad b = \frac{\omega}{h} - mh.$$

Ўзаннинг туби нишаби i (6.20) формуладан аникланади:

$$i = \frac{Q^2}{K^2}.$$

6.5-масала. $Q = 2,28 \text{ м}^3/\text{с}$ сув сарфини ўтказадиган каналнинг гидравлик элементларини ҳисоблаш керак. Каналда окимнинг ўртача тезлиги $v = 0,65 \text{ м/с}$; канал тубининг кенглгити $b = 2,5 \text{ м/с}; m = 1,0; n = 0,0225$. Сувнинг чукурлиги h ва ўзан тубининг нишаби i ни аникланг.

Ечиш. Окимнинг кўндаланг кесими юзаси майдонининг гидравлик элементлари қуйидагича аникланади:

$$\omega = \frac{Q}{v} = \frac{2,28}{0,65} = 3,5 \text{ м}^2; \quad h = \sqrt{\left(\frac{2,5}{2 \cdot 1,0}\right)^2 + \frac{3,5}{1,0} - \frac{2,5}{2 \cdot 1,0}} = 1,0 \text{ м};$$

$$\chi = b + mh = 2,5 + 2,83 \cdot 1,0 = 5,33; \quad R = \frac{\frac{3,50}{5,33}}{0,66} = 0,66 \text{ м};$$

$$C = \frac{1,0}{n} R^r = \frac{1,0}{\frac{0,0225}{0,66}^{1,5 \cdot \sqrt{0,66}}} = 40,6 \text{ м}^{0,5} / \text{с};$$

$$K = \omega C \sqrt{R} = 3,5 \cdot 40,6 \sqrt{0,66} = 116,0 \text{ м}^3/\text{с};$$

$$i = \frac{Q^2}{K^2} = \frac{2,28^2}{116,0^2} = 0,00039.$$

291
6.8-§. ОЧИҚ ЎЗАНЛARDA СУЮҚЛИКНИИГ БАРҚАРОР ТЕКИС ИЛГАРИЛАНМА ҲАРАКАТНИНИГ ГИДРАВЛИК ЭЛЕМЕНТЛАРИНИ ЭҲМ ЁРДAMIIDA ҲИСОБЛАШ

Очиқ ўзанларда суюқликниинг барқарор текис илгариланма ҳаракати, шу жумладан окимнинг нормал чукурлиги ва унинг қўндalanг кесими юзасининг майдонини ва бошқа гидравлик элементларни қўл усулида гидравлик ҳисоблаш анча мураккаб бўлгани учун у қўп вақт талаб этади.

Масалан, юқорида айтилган дек кетма-кет яқинлашув (итерация) усули гидравлик ҳисоблашида кент қўлланила-ди. Бу ҳарда нотекис илгариланма ҳаракатни гидравлик ҳисоблаш қанчақ муракқаб эканлиги тўғрисида тапир- маса ҳам бўлади, у шундок ҳам тушунарли. Гидравлик ҳисоблаш вақтини қисқартириш ва унинг анкиллигини ошириш мақсадида юқорида кўрсатилган ва шуларга ўқиша масалаларни ҳисоблашда ЭҲМ ни қўллаш мақсадга муяфий. Биз қуйида масалани ЭҲМ да олиш, яъни текис ил- гариланма ҳаракатнинг нормал чукурлигини ва окимнинг кўндаланг кесими майдони бўйича ўртача тозилини анки- лаш усулларини кўриб чиқамиз. Суюқлик окимнинг нормал чукурлиги \(h \) қуйида берилиган гидравлик элементлар (сув сарфи \(Q \), ўзаннинг шакли ва гадир-будурлигини ифо- даловчи коэффициент \(n \), ўзан тубининг нишаби \(i \) ва унинг ён девори нишабининг коэффициенти \(m \)) асосида, текис илгариланма ҳаракатнинг тенгламасидан анкилланидади

\[
v = C \sqrt{RJ}. \tag{6.52}
\]

(6.52)нинг икки томонини \(\omega \) га қўпайтирсак

\[
Q = \omega C \sqrt{RJ}. \tag{6.53}
\]

Бу ҳарда трапецийдал шаклдаги каналда текис илгариланма ҳаракат бўлиб, унда нормал чукурлик \(h_0 \) бўлганда, окимнинг бошқа гидравлик элементлари тегишлича ёзилади

\[
\omega_0 = (b + mh_0)h_0; \quad \chi_0 = b + 2h_0 \sqrt{1 + m^2};
\]

\[
R_0 = \frac{\omega_0}{\chi_0} = \frac{(b+mh_0)h_0}{b+2h_0 \sqrt{1+m^2}};
\]

292

www.ziyouz.com kutubxonasi
\[W = C_0 \sqrt{R_0} = \frac{1}{n} R_0^{\gamma+0.5}; \]

Г. В. Железняков формуласидан:

\[C_0 = \frac{1}{2} \left[\frac{1}{n} - \frac{\sqrt{g}}{0.13} (1 - \lg R) \right] + \]

\[+ \sqrt{\frac{1}{4} \left[\frac{1}{n} - \frac{\sqrt{g}}{0.13} (1 - \lg R) \right]^2 + \frac{\sqrt{g}}{0.13} \left(\frac{1}{n} + \sqrt{g \lg R} \right), \]

\[y = \frac{1}{\lg R} \lg \left\{ \left[\frac{1}{2} - \frac{n \sqrt{g}}{0.26} (1 - \lg R) \right] + \right. \]

\[+ \left. n \sqrt{\frac{1}{4} \left[\frac{1}{n} - \frac{\sqrt{g}}{0.13} (1 - \lg R) \right]^2 + \frac{\sqrt{g}}{0.13} \left(\frac{1}{n} + \sqrt{g \lg R} \right) \right\}, \]

аникдайми. Масала итерация усулида ЭХМ ёрдамида ечилиди. Масалани ЭХМ ёрдамида ечиш учун алгоритм, блок схема ва ҳисоблаш дастурини тузиш лозим

6.9-§. БАРҚАРОР ТЕКИС ИЛГАРИЛАНМА ХАРАКАТНИНГ НОРМАЛ ЧУҚУРЛИГИНИ ХАМДА ОҚИМИНГКИ ҚЎНДАЛАНГ КЕСИМИ МАЙДОНИ БЎЙИЧА ЎРТАЧА ТЕЗЛИГИНИ ЭҲМ ЁРДАМИДА ҲИСОБЛАШ

Оқимнинг нормал чуқурлиги \(h_0 \) ва унинг ўртача тезлиги \(\nu \) ни ЭҲМ ёрдамида ҳисоблаш. ЭҲМ учун суюқлик оқимнинг нормал чуқурлигини аниклаш алгоритмини тузиш мақсадида (6.53) тенгламага, ундаги параметларнинг миқдорларини жой-жойига қўйиб чиқиб, унни \(h_0 \) га нисбатан ечамиз:

"Берилган масаланинг ҳақини ЭҲМ ёрдамида бахарш учун ҳисоблаш алгоритмини, блок схемасини ва ҳисоблаш дастурини талабалар тузиши керак, улар шу курслан лекция ўқийдиган ўқитувчи назоратн остида бахарлилш лозим. Масала жуда мураккаб бўлса, у ҳолда дастурчи (программист)ни жалб этиш мақсадга мувофик.
\[Q = (bh_0 + mh_0^2) \frac{1}{n} \left(\frac{bh_0 + mh_0^2}{b + 2h_0 \sqrt{1 + m^2}} \right)^{y + 0.5} \sqrt{i_0} = \]

\[= h_0^2 \left(\frac{b}{h_0} + m \right) \frac{1}{n} \left[\frac{h_0^2 \left(\frac{b}{h_0} + m \right)}{h_0 \left(\frac{b}{h_0} + 2 \sqrt{1 + m^2} \right)} \right]^{y + 0.5} \sqrt{i_0} = \]

\[= h_0^{2.5 + y} \frac{\sqrt{i_0}}{h} \left(\frac{b}{h_0} + m \right) \left(\frac{\frac{b}{h_0} + m}{\frac{b}{h_0} + 2 \sqrt{1 + m^2}} \right)^{y + 0.5}. \quad (6.54) \]

\[
\frac{b}{h_0} \text{ нисбатни } \beta \text{ белги билан ифодараб, (6.54) тенгламани } h_0 \text{ га нисбатан ечамиз}
\]

\[h_0 = \left[\frac{Q \cdot n}{\sqrt{i_0}} \left(\frac{\beta + 2 \sqrt{1 + m^2}}{\beta + m} \right)^{y + 0.5} \right]^{1 \over 2.5 + y}. \quad (6.55) \]

(6.55) тенгламадан \(h_0 \) нинг қийматини кетма-кет якинлашув усули билан аниқлайди. Бу масалани ечиш алгоритми қуйидаги (6.9- рasm).

A. Оқимнинг нормал чуқурлиги ва ўртача тезлигини ЭҲМ да ҳисоблаш алгоритми.

1. Очиқ ўзандаги барқарор текис илгариланма ҳаракат-даги сувнинг ихтиёрий чуқурлигини қабул қиламиз, масалан, \(h_i \).

2. \(\frac{b}{h_0} = \beta_i \) нисбатини аниқлаймиз.

3. (6.55) тенгламадан \(h_0' \) нинг қийматини кетма-кет якинлашув усулида, ЭҲМ ёрдамида ҳисоблаб, топамиз. Тенгсизлик шартини \(|h_0' - h_i| \leq \varepsilon \) ни қабул қиламиз, бу ерда \(\varepsilon \) — олдиндан берилган аниқлик.

4. Тенгсизлик шартини \((h_0' - h_i) \leq \varepsilon \) бажарилса, демак, масала ечкили ҳисоб (бу ерда \(\varepsilon = 0,01 \) — унинг қиймати қаралаётган масаланинг аниқлик даражасига боғлиқ). Агар юқорида қўрсатилган тенгсизлик шартини бажарилмаса, унда \(h \) га бошқа қиймат бериб, янгитдан (6.55) тенг-
6.9- расм.

295
lamadan h_0 ni hisoblaymiz, shu tarkibda hisob-kitobni
toki shu tengsizlik sharti bajarilmaguncha davom etta-
veramiz.
5. Tengsizlik bajarilganда, biz kablul qillaetgan suv-
nimg chukurligi shu okimning barqaror tekis ilgarilan-
ma xarakatining normald chukurligini beradi.
6. Suvning normal chukurligi h_0 topliganidan keyin
yokoridagi (6.7-§ da keltirilgan) formulalaridan foyda-
lanib, unga tegishli gidravlik elementlarini, yaxni ω_0,
χ_0, R_0, C_0, v_0 va boşkalarni aniqlaymiz.
7. (6.52) tenglamadagi A. Shizi koefitsienti bir nech-
ta formulalar irdamida EXM da hisoblanadi va tajriba-
dan olinggan C kiyimati bilan solishiqlaydini. EXM da C
ni hisoblash dasturiiga N. N. Pavlovskiy, A. P. Zeghda, G.
V. Jelensjakov, A. D. Altushul, I. K. Nikitin va A. Yu. Umar-
rov formulalarini kiritilgan.

B. Okimning normal chukurligi va urtacha tезлигини EXMda
hisoblash block-schema (6.9-rasm).

B. Okimning normal chukurligi va urtacha tезлигини EXM
жрдамиди хисоблаш дастури

5 DIM H0(15), H1(15)
10 PRINT "Суюклик окимнинг текис илгариланма
xarakatinning H0 normal chukurligini va uning
U urtacha tезлигини EXMда хисоблаш"
20 PRINT "Берилган микдорларни киритинг"
30 READ Q, I, M, N, E, B1, G, DELTA
40 PRINT "Oчик ўзандаги суюклик окимнинг их-
tiёрий чукурлигини киритинг"
50 INPUT H
60 B=B1*H: W=(B1+M)*H^2
70 X=(B1+2)*H*SQR(1+M^2): R=W/X
80 IF R<5 THEN 140
90 Y1=LOG(10)/LOG(R)
100 Y2=.5*(N*SQR(G)/.26)*(1-LOG(R)/LOG(10))
110 Y3=.25*(1/N-(SQR(G)/.13)*(1-LOG(R)/LOG(10)))
+ (SQR(G)/.13)*(SQR(G)*LOG(R)/LOG(10))
120 Y=Y1*LOG(Y2+N*Y3)/LOG(10)

296

www.ziyouz.com kutubxonasi
130 GOTO 150
140 Y=2.5*SQR(N)-.3-.75*SQR(R)*(SQR(N)-.1)
150 C1=(1/N)*R*Y
160 C2=.5*(1/N-SQR(G).13*(1-LOG(R)/LOG(10)))+Y3
170 L=2*G*H+1/Y^2
190 C3=(4.92*LOG(H/DELTA)/LOG(10)+2.94)*SQR(G)
200 Vl=.000101
210 C4=20*LOG(R/(N+.385*V1)/SQR(G*R*1))/LOG(10)
220 PRINT "Павловский формуласи: c="; C1
230 PRINT "Железнняков формуласи: c="; C2
240 PRINT "Умаров формуласи: c="; C3
250 PRINT "Альтшуул формуласи: c="; C4
270 Q1=W*C1+SQR(R*1)
275 FOR I=1 TO 10
280 HI(I)=.1+I*.2
290 HO(I)=(((Q1*N)/SQR(I)))((B/HI(I)+2*SQR(1+M^2))
/(B/HI(I)+M)^(Y+.5)*((1/(B/HI(I)+M))^2.5+Y))
292 PRINT "HO("I")="; HO(I)
300 IF ABS(HO(I)-H)>E THEN 50
305 PRINT "q="; Q; "q1="; Q1; "v="; U; "w="; W;
"HO="; HO
310 NEXT I
320 PRINT "q="; Q; "q1="; Q1; "v="; U; "w="; W;
"HO="; HO
400 END

Дастур машинага кириллади ва машина ишга туширилади, налижада о'кимнинг барқарор текис илгариланма ҳаракатининг нормал чукурллиги ва ўртача тезлигини хамда унга тегишилик барча гидравлик элементларнинг қийматларин оламиз.

ЭҲМ ёрдамида ҳисоблашдан аввал масалани қўлда ечил, уни машинадан олинган налижад билан таққосслаб кўриш керак, чунки факат шу усул билан ҳисоблаш дастурининг тўғри тузилганинги тасдиқлаш мумкин.

6.10-.§. О'КИМНИНГ НОРМАЛ ЧУКУРЛИГНИ ВА ТЕЗЛИГИНИ ЭҲМ ЁРДАМИДА ҲИСОБЛАШ УЧУН МАСАЛАЛАР

6.5-масала. Трапециадал шаклли канал берилган. У канал Q = 500 м³/с сув сарфини ўтказади. Канал тубининг нишаби i = 0.00016, ён деворининг нишаб коэффициенти
\(m = 3,0 \); грунт — майда қумдан иборат. Каналларга суюқлик окимининг нормал чукурлигини аникланг.

Ечп. 1. Масалан қучи учун гидравлик маълумотнома-дан берилиган қум (майда қум) учун ғадир-будурликни ифодаловчи коэффициент \(n \) ва ғадир-будурликнинг мутлақ геометрик баландлик ўлчами \(\Delta \) ҳамда трапециевал шакли канал ён девори нишабининг коэффициенти \(n \) нинг қийматларини оламиз. \(n = 0,0275; m = 3,0 \).

2. Берилиган \(Q \) ва \(i \) ларга асосан керакли сув сарфи моду-линин аниклаймиз:

\[
K_{\text{кер}} = \frac{Q}{\sqrt{i}} = \frac{500}{\sqrt{0,00016}} = 39528,85 \text{ м}^3/\text{с}.
\]

3. Кетма-кет қачинлашув усулини қўллаб, ўзандаги сув чукурлигининг ҳар қильт қийматларини қабул қилиб, қу-йидаги гидравлик элементларни ҳисоблаимиз. Масалан, \(h_i \) ни 5,0 м деб қабул қиламиз, у ҳолда окиминг кўндаланг кесими юзасининг майдони

\[
\omega_i = (b_i + m h_i) h_i = (b_i + 3 \cdot 5) \cdot 5.
\]

Бу ерда \(b_i = \beta_{ak} \cdot h_i \) — канал тубининг кенглиги. Масаладаги \(b \) ни аниклаш учун \(\beta_{ak} \) (каналнинг амалий энг қулай кўнда-ланг кесими)ни топиш керак. Юқорида айтилганидек, \(\beta_{ak} \) каналнинг амалий энг қулай кўндаланг кесими, унинг (сув сарфи \(Q = \text{const} \), \(\omega_{\text{min}} \) ва \(\omega_{\text{max}} \) бўлган ҳол учун) гидравлик энг қулай кўндаланг кесимидан

\[
\beta_{rk} = \left(\frac{h}{h_{rk}} \right)_{\text{rk}} = 2(\sqrt{1 + m^2} - m) = 2(\sqrt{1,0 + 3^2} - 3) = 0,325
\]

фарқ қилади. Тажрибадан маълумки, каналнинг гидравлик энг қулай кўндаланг кесими нисбатан чукур бўлади, яъни \(\beta_{rk} = \left(\frac{h}{h_{rk}} \right)_{\text{rk}} \) жуда қичка бўлади.

Бундай чукур трапециевал шакли каналлар иқтисодий жихатдан нокула бўлиб, уларни қуришда ва ишла-тишда қўл қийинчил<>(қуришда янги тушунча, яъни канал-нинг амалий энг қулай кўндаланг кесими тушунчаси қабул қилинади (бу ҳолда каналнинг кўндаланг кесими майдони

298
ω₄₉дан (3÷4)% га фарқ қилади. Бу фарқни аниқлаш учун 6.5б- рассмнинг I–II вертикаль тўтри чизигининг ўнг томо-нидаги фарқни олиш керак. 6.5б- расмдаги I–II вертикал бўйича белгиланган узук (пунктир) чизиклар βᵣₙдан βₐₙ га ўтиш имкониятини беради.

Каналнинг амалий энг қулат сундурган кесимлари кўйи-даги шартга мунофий олинади

\[\beta_{r_{n}} < \beta_{a_{n}} < (\beta_{r_{n}})_{чегара}. \] (6.56)

Каналнинг гидравлик энг қулат сундурган кесимнинг юқори чегаравий \((\beta_{r_{n}})_{чегара} микдори Р. Р. Чугаев формулалар-сидан аниқланади:

\[(\beta_{r_{n}})_{чегара} = 2,5 + \frac{m}{2} = 2,5 + \frac{3}{2} = 4,0. \]

Амалда эса \(\beta_{a_{n}}\) ни \((\beta_{r_{n}})_{чегара} дан кичик деб қабул қилинган, шунинг учун

\[\beta_{a_{n}} = 3,0 < (\beta_{r_{n}})_{чегара} = 4,0. \]

Биз \(\beta_{a_{n}}\) ни учға тенг деб қабул қилимиз: \(\beta_{a_{n}} = 3,0\), бу ҳолда (6.56) шарт бахарилади, яъни

\[\beta_{r_{n}} = 0,325 < \beta_{a_{n}} = 3,0 < (\beta_{r_{n}})_{чегара} = 4,0. \]

Канал тубининг кенглиги

\[b_{1} = \beta_{a_{n}} \cdot h_{i} = 3 \cdot 5 = 15,0 \text{ м.} \] (6.22) формулалардан окимнинг қулати кесими юзасининг майдони

\[\omega_{1} = (b_{1} + 3 \cdot 5) \cdot 5 = 150,0 \text{ м}^{2}. \]

(6.23) тенғламадан ҳулланган периметрининг узунлиги:

\[\chi_{i} = b_{1} + 2h_{1}\sqrt{1 + m^{2}} = 15 + 2 \cdot 5\sqrt{1,0 + 3^{2}} = 46,62 \text{ м.} \]

(6.24) тенғламадан гидравлик радиус:

\[R_{i} = \frac{\omega_{1}}{\chi_{i}} = \frac{150,0}{46,62} = 3,22 \text{ м.} \]

299
(6.17) тенглимадан сув сарфи модули:

\[K_1 = \omega_1 C_1 \sqrt{R_1} = 150 C \sqrt{3.22} . \]

Бу ерда \(C \) — А. Шези коэффициенти, ун илсеблаш учун бир нечта формулалар мавжуд. Шулардан энг оддийси Н. Н. Павловский формуласи бўлиб, гидравликада кенг қўлланилади:

\[C = \frac{1}{n} R^2 = \frac{1}{0.0275} 3.22^{1.3 \sqrt{0.0275}} = 44 \text{ m}^{0.5}/\text{c}. \]

Бу ерда \(y \) — дарах жўрсатчики бўлиб, тўлик формуласи кўйидагича

\[y = 2.5\sqrt{n} - 0.13 - 0.75\sqrt{R} (\sqrt{n} - 0.10). \]

(6.17) формуладан \(K_1 \) ни аниқлашмиз.

\[K_1 = 150 \cdot C_1 \sqrt{3.22} = 150 \cdot 44 \cdot \sqrt{3.22} = 11873,0 \text{ m}^2/\text{c}. \]

Бундан кўринади, \(K_1 = 11873,0 \) керакли \(K_{керак} \) кийматидан \(K_{керак} = 39528,85 \) анча кам, шунинг учун ҳисоб-китобни давом эттирамиз. Янгидан бошка сув чукурлиги \(h_2 \) кийматини қабул қиламиз ва \(K_2 \) ни топамиз. Уни \(K_{керак} \) билан ҳамкорлишмиз, тўғри келмаса \(h_3 \) ни қабул қиламиз ва ҳоказо. Барча ҳисоб-китоблар жадвал усулида бахариллади (6.6-жадвал).

6.6-жадвалдан кўриниб турибдик, керакли сув сарфи модули \(K_{керак} = \frac{Q}{\sqrt{j}} \) ва ҳисобланган сув сарфи модули

\[K = \omega C \sqrt{R} \) ҳисоблашда кўпинча ўзаро тенг келмайди. Шунинг учун \(K_{керак} \) га мос келувчи сувнинг нормал чукурлиги \(h_0 \) нинг аник кийматини топиш учун 6.6-жадвалдаги \(K \) ва уларга тегишили \(h \) лар ўртасидаги боғланиш графигини ту-замиз, яъни

\[K = f(h). \]

6.10- расмдаги график \(K = f(h) \) га \(K_{керак} \) кийматини кўйиб, шу эғри чизик қорқали ордината ўқида учрашган жойидан
<table>
<thead>
<tr>
<th>(h, \text{м})</th>
<th>(b = \beta_{\alpha} \cdot h, \text{м})</th>
<th>(V, \text{м})</th>
<th>(\omega_2, \text{м}^2)</th>
<th>(\chi, \text{м})</th>
<th>(R, \text{м})</th>
<th>(K = \omega C^* \sqrt{R}, \text{м}^3/\text{с})</th>
<th>(K_{\text{херок}} = \frac{Q}{\sqrt{t}}, \text{м}^3/\text{с})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,0</td>
<td>3,0</td>
<td>9,0</td>
<td>6,0</td>
<td>9,324</td>
<td>0,643</td>
<td>159,148</td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td>6,0</td>
<td>18,0</td>
<td>24,0</td>
<td>18,649</td>
<td>1,287</td>
<td>1045,380</td>
<td></td>
</tr>
<tr>
<td>4,0</td>
<td>12,0</td>
<td>36,0</td>
<td>96,0</td>
<td>37,298</td>
<td>2,574</td>
<td>6866,60</td>
<td></td>
</tr>
<tr>
<td>5,0</td>
<td>15,0</td>
<td>45,0</td>
<td>150,0</td>
<td>46,62</td>
<td>3,217</td>
<td>12586,67</td>
<td></td>
</tr>
<tr>
<td>6,0</td>
<td>18,0</td>
<td>54,0</td>
<td>216,0</td>
<td>55,947</td>
<td>3,860</td>
<td>20650,66</td>
<td></td>
</tr>
<tr>
<td>7,5</td>
<td>22,5</td>
<td>67,5</td>
<td>337,0</td>
<td>69,93</td>
<td>4,826</td>
<td>37853,04</td>
<td></td>
</tr>
<tr>
<td>10,0</td>
<td>30,0</td>
<td>90,0</td>
<td>600,0</td>
<td>93,246</td>
<td>6,435</td>
<td>82676,49</td>
<td>39528,85</td>
</tr>
<tr>
<td>12,5</td>
<td>37,5</td>
<td>112,5</td>
<td>937,0</td>
<td>116,56</td>
<td>8,040</td>
<td>151547,57</td>
<td></td>
</tr>
<tr>
<td>15,0</td>
<td>45,0</td>
<td>135,0</td>
<td>1350,0</td>
<td>139,87</td>
<td>9,65</td>
<td>248640,59</td>
<td></td>
</tr>
<tr>
<td>16,0</td>
<td>48,0</td>
<td>144,0</td>
<td>1536,0</td>
<td>149,19</td>
<td>10,29</td>
<td>296269,05</td>
<td></td>
</tr>
</tbody>
</table>

“С коэффициентини ҳисоблашда Н. Н. Павловский формуласидан ташкари Маннинг, Гантилье-Куттер, И. И. Леви, И. В. Егиазаров, Б. А. Бахметев, И. И. Агроский, В. Н. Гончаров, В. С. Кюрас, Г. В. Железняков, А. Д. Альтшул, А. П. Зегжа, А. Ю. Умаров ва бошқарнинг формуласидан ҳам фойдаланиш мумкин.

Илова: \(\beta_{\alpha} = 3 \) — амалий энг қулақ кўндаланг кесим.
h нинг қийматини оламиз. Бу бизга масаладаги ҳисобланган окимнинг текис илгарланма ҳаракатининг нормал чуқурлариги h_0 нинг қийматини аниқлаймиз.

Бу графикидан (6.10-расм) $K_{кекс}$ га тегишли h_0 нинг қийматини аниқлаймиз:

$$K_{кекс} = 39528,85 \text{ м}^3/\text{с},$$
$$h_0 = 7,78 \text{ м}.$$

4. Сувнинг нормал чуқурлариги h_0 ни аникллагандан кейин, шу окимга тегишли, барча гидравлик элем-ментларни қуйидаги формулалар ёрдамида ҳисоблаймиз.

Очич ҳизнанда суюлликнинг текис илгарланма ҳаракатининг ўртача тезлигини (6.12) формуладан

$$v = C\sqrt{iR},$$
бунда C — А. Шези коэффициенти

$$C = \frac{1}{n} R^z = \frac{1}{0,0275} R^{1,3\sqrt{0,0275}};$$

бу ерда

$$y = 1,3\sqrt{n} = 1,3\sqrt{0,0275} = 0,216.$$

Окимнинг кўндаланг кесими юзасининг майдони

$$\omega = (b + mh)h;$$
бунда b — канал тубининг кенглиги

$$b = \beta_{ак} \cdot h = 3h;$$

302
Ҳулаланган периметриннинг узунлиги

\[\chi = b + 2h\sqrt{1 + m^2} = b + 2 \cdot 3,162h = b + 6,32h \]

Гидравлик радиуси

\[R = \frac{\omega}{\chi} = \frac{(b+3h)h}{b+6,32h} = \frac{6,0h^2}{9,32h} = 0,64h. \]

Итерация усулида топилган \(h_0 \) орқали аникланган сув-нинг ўртача тезлиги \(v \) рухсат этилган тезликка мос келади.

Каналларнинг гидравлик элементларини ҳисоблашда ЭХМ дан фойдаланиш мақсадга муофиқ.

Амалий машифлотлар ўтказиш учун гидродинамикадан материаллар. Очиқ ўзанларда суюкликнинг барқарор текис илгариликма ҳаракатини гидравлик ҳисоблаш

6.6-масала. Трапециада канал берилади, тубининг кенглиги \(b = 0,5 \) м, ён деворининг нишаб коэффициенти \(m = 1,0 \). Канал деворларига тос терилиб, мустахкамланган. Унинг тубининг нишаби \(i = 0,0001 \), каналдаги сувнинг чукурлиги \(h = 1,0 \) м. Каналдаги сув серфани ва оқимнинг ўртача тезлигини аниклаш керак.

6.7-масала. Трапециада каналнинг гидравлик энг ёзилай кўндалган кесими куйидагилярға асосан аникланган: каналнинг ён деворининг нишаб коэффициенти \(m = 1,5 \); фадир-будурликни ифодаловчи коэффициент \(n = 0,025 \); сув серфиф \(Q = 3 \) м\(^3\)/с; канал тубининг нишаби \(i = 0,002 \).

Жавоб. \(h = 1,11 \) м; \(b = 0,68 \) м.

6.8-масала. Трапециада каналнинг амалий энг ёзилай кўндалган кесими ўлчамларини аникланган. \(A_r = 0,97; Q = 20 \) м\(^3\)/с; \(m = 2; n = 0,025; d_r = 1,0 \) мм бўлгани ҳолда канал тубининг нишабини ҳам аникланган.

Ечиш. Бу ерда \(\frac{v}{v_{ГК}} = \frac{\omega}{\omega_{ГК}} \) каналнинг гидравлик ёзилай коэффициенти \(A_{v} = 0,97 - 0,98 \), сув чукурлиги \(h \) нинг қийматини \(h = 2,5 \) м қабул қилиб, 6.1-жадвалдан \(v_{max} \) ни аниклааймиз.
$$u_{\text{max}} = 0,75 \text{ м/с},$$

$$\omega = \frac{Q}{u_{\text{max}}} = 20 / 0,75 = 26,7 \text{ м}^2.$$

$m = 2; \beta_{\text{max}} = 2,91$ бўлганда,

$$h = \sqrt{\frac{\omega}{2,91+2}} = \sqrt{5,43} = 2,33 \text{ м} ;$$

$$b = \beta_{\text{max}} \cdot h = 2,91 \cdot 2,33 = 6,78 \text{ м};$$

$$\chi = b + 2h\sqrt{1 + m^2} = 6,78 + 2 \cdot 2,33\sqrt{5} = 17,23 \text{ м};$$

$$R = \frac{\omega}{\chi} = \frac{26,7}{16,23} = 1,55 \text{ м};$$

$$C = 43,9 \text{ м}^{0,5} / \text{с}.$$

Канал тубининг нишаби

$$i = \frac{u_{\text{max}}^2}{C^2 R} = \frac{0,75^2}{43,9^2 \cdot 1,55} = 0,00019.$$

Такрорlash учун саволлар

6.1. Очиқ ўзанларда баркарор текис илгариланма ҳаракат қандай аниқланади?

6.2. Каналнинг гидравлик ва амалий энг қулақ кўндалант кесими нималардан иборат?

6.3. Нормал чуқурлик ва унинг ҳисоблаш усули қандай?

6.4. Текис илгариланма ҳаракатнинг асосий тенгламаси қандай?
ОЧИҚ ЎЗАНЛАРДА СУЮҚЛИК ОҚИМИНИНГ БАРҚАРОР НОТЕКИС ИЛГАРИЛАНМА ҲАРАКАТИ ВА УНИНГ ГИДРАВЛИК ЭЛЕМЕНТЛАРИНИ ЭҲМ ЁРДАМИДА ҲИСОБЛАШ

Асосий тушунчалар. Олдинги бобда айтиб ўтилгандек, бу ёрда ҳам турбулент ҳаракатдаги, фақат иккинчи дарожа илгарилимга қараб ёқилтилган, яъни тулиқ ғадир-будур ўзандаги суюқлик оқими қарап қолди. Бу ёрда техник ўзгарувчан барқарор нотекис илгарилиман ҳаракат назарда тугилади. Бундай ҳаракат 7.1-расмда келтирилган. Очиқ ўзанлардаги суюқлик оқими барқарор техник илгарилиман ҳаракат тусини олишга интиради, лемак, суюқлик ҳаракати пайтида оғирлик қучининг бажарган иши ишқаланиш кучининг бажарган ишига тенглашишга интиради. Олдинги бобдан маълумки, бу кучлар тенг бўлса, суюқлик оқимининг ҳаракати барқарор техник илгарилиман ҳаракат бўлади. Суюқликнинг бар-
7.1- §. ПРИЗМАТИК ВА НОПРИЗМАТИК ТАБИЙ ВА СУНЪИЙ ОЧИК ЎЗАНЛARDA СУЮҚЛИКНИНГ БАРҚАРОР НОТЕКИС ИЛГАРИЛАНМА ХАРАКАТИ

1. Табий ва сунъий очик ўзанлар призматик бўлиб, унинг туби нишаби \(i > 0 \) бўлса, барқарор нотекис илгариланма харакат қуйидағи ҳолатда мавжуд бўлади:

 а) ўзанда туғон курилса (7.2- расм), бу ёрда туғон олдида белгиланган чукурлик \(h_{\text{белг}} \) пайдо бўлади, сув бетон туғоннинг устидан ошиб ўтади. Қурниб турибдики, ўзанда юқори бъефда \(AB \) чизиғи, яъни суюқликнинг эркин эғри сув сатҳи чизиғи (ЭЭССЧ) пайдо бўлади. \(AB \) чизик, ўзанинг олдинги табий ҳолатидаги барқарор текис илгариланма харакат пайтидағи окимнинг нормал чукурлиги \(h_0 \) дан, яъни \(N-N \) чизиғидан сезиларди даражада фарқ қилади:

 \[h_{\text{белг}} \gg h_0. \]

Бу шароитда ўзанларгач окимнинг чегаракланган \(AB \) uzunli- gi, нотекис илгариланма ҳаракатланаётган суюқлик окими ЭЭССЧ нинг узунлиги бўлади;

б) ўзанда шаршара курилса (7.3- расм), бу ёрда ҳам белгиланган чукурлик \(h_{\text{белг}} \) пайдо бўлади. Юқоридаги а) бандида кўрсатилгандек, бу ёрда белгиланган чукурлик \(h_{\text{белг}} < h_0 \) бўлади, чунки бу ёрда ҳам биз сунъий равишда белгиланган чукурлик \(h_{\text{белг}} \) ни ҳосил қилдиқ, бу эса текис илгариланма ҳаракатдаги окимнинг нормал чукурлиги \(h_0 \) дан маълум даражада фарқ қилади. Натижада ўзанинг узунлиги бўйича барқарор нотекис илгариланма ҳаракат барпо бўлади.

7.2- расм.

306
7.3- расм.

7.4- расм.

v) ўзанда гидротехник иншоот қурилган бўлиб, ундан қўртича сувни чиқариб юбориш учун темирдан ясалган дарвозалар ўрнатилади. Бундай дарвозалар фақат юқорига кўтарилади ва сувни дарвоза остидан чиқариб юборади. Сув дарвозани тубидан чиқиб кетаётган ҳолда (7.4- расм) АВ чиқиб узунлигида барқарор нотекис илгариланма ҳаракат найдо бўлади.

2. Табий ва сунъий очик ўзанлар призматик бўлиб, уларнинг туби нишаби \(i = 0 \) ва \(i < 0 \) бўлса, фақат барқарор нотекис илгариланма ҳаракат мавжуд бўлади; \(i = 0 \) (7.5-расм); \(i < 0 \) (7.6-расм). Бу ҳолларда ўзанда барқарор текис илгариланма ҳаракат бўлиши мумкин эмас, чунки А. Щези

7.5-расм. 7.6-расм.

Ўзаннинг кўндаланг кесими шакли ва ўлчамлари унинг узунлиги чиқича ўзгармас бўлади.
формуласига кўра: \(i = 0 \) бўлган ҳолда суъоқлик окимининг тезлиги \(v = 0 \) (нол) бўлади; \(i < 0 \) бўлган ҳолда суъоқлик окимининг тезлиги \(v = (-) \) (манфий) бўлади, демак бундай ъзанларда барқарор текис илгариланма ҳаракат мутлоқ бўлиши mum-кун эмас.

3. Табий ва сунъий очик ъзанлар нощризматик бўлган ҳолда ундағи суъоқлик ҳаракати барқарор нотекис илгариланма ҳаракатда бўлади (7.7-расм). Суъоқликнинг барқарор текис илгариланма ҳаракати фақат ъзан тубининг нишаби нолдан катта \(i > 0 \) бўlsa ва ъзан деярли узун ҳамда призматик бўлганда содир бўлади. Унинг учун ъзанда табий оким ҳаракатини ўзгартирувчи ин-шотлар қурилмаси бўлмаслиги лозим. Текис ўзгарувчан барқарор нотекис илгариланма ҳаракатни ўрганиш, асосан, окимнинг эркин эғри сув сатҳи чизиғи \(AB \) ни қуришдан iboрат. Бу эса гидротехnika, гидравлика ва ъзандаги оким жараёнларининг динамикиси соҳалари-

* Ъзаннинг қўндаланг кесими шакли ва ўлчамлари унинг узунлиги бўйича ўзгарувчан бўлади.
ла кatta амалий аҳамиятга эга. Масалан: а) \(AB \) эркин эгри сув сатҳи чизигини қуриб, ўзаннинг узунлиги бўйича ҳар хил кўндаланг кесимлардаги сувнинг чуқурликлари \(h \) ни аникилаймиз. Бу чуқурликкнинг ўзаннинг узунлиги бўйича ўзгаришни билсак, биз қурилаёқ қанаъниг узунлиги бўйича сувнинг чуқурликни аникилган бўламиз. Бундан ташқари очиқ ўзанларда кемаларнинг ҳаракати учун ундағи керакли сувнинг чуқурликни билган бўламиз ва ҳоказо; б) ўзанда тўғон қурилган бўлса, унда \(AB \) эгри чизигини ҳосил қилиб, ёш билан юқори бўфлажи сувнинг кўтарилиши натижасида кўмилган майдонлар юзасини ўлчамларининг микдорини аникилаймиз.

Эркин эгри сув сатҳи чизиги \(AB \) ни қуриш масаласи суюқлиқнинг нотекис илгариланма ҳаракати назарияси асосида қуйидалаги тартибда бахарилиши керак:

1. Ўзаннинг геометрик ва гидравлик элементлари, яъни кўндаланг кесимининг шакли, тубининг нишаби, ғадир-будурлиги ва сув сарфи берилган бўлиши керак.

2. Ўзанда элементар оқим найчаси узунл旃ини олиб, унинг учун шу элементар узунликда суюқлик ҳаракатининг дифференциал тенгламасини тузамиз; бу тенглама текис ўзгарувчан нотекис илгариланмана ҳаракатнинг дифференциал тенгламаси дейилади.

3. Олинган дифференциал тенгламани интеграллаш учун қулай ҳолга келтирамиз.

4. Дифференциал тенгламани интеграллаб, натижада ЭЭСС чизигининг тенгламасини оламиз, бу тенглама бар-қарор нотекис илгариланма ҳаракат тенгламаси деб аталади.

5. Шу нотекис илгариланма ҳаракат тенгламасидан фойдаланиб, \(AB \) чизиги нукталарининг координаталарини ҳисоблаймиз ва унинг ёрдамида эркин эгри сув сатҳи чизигини қурамиз. Қуйида нотекис илгариланма ҳаракат қараётганда асосан ҳулмас қўзанилар назарда тутилади. Нодифференциал қўзанилар учун ҳақат В. И. Чарномскин ҳусилли қиқамиз. Юқорида айтилган, ҳулмас қўзан деб унинг кўндаланг кесимининг шакли ва окимининг гидравлик элементлари ўзанининг узунлиги бўйича ўзгарамайдиган, яъни \(\omega = f(h) \) бўлган ўзаниларга айтилди, у ҳолда

\[
\frac{d\omega}{dh} = 0. \tag{7.1}
\]

309
Непризматический угол эса, унинг кўндаланг кесимининг шакли ва оқимнинг гидравлик элементлари ўзаннинг узунлиги бўйича ўзгарувчан бўлади, яъни \(\omega = f(h, S) \), у ҳолда

\[
\frac{\partial \omega}{\partial S} \neq 0.
\]

(7.2)

Нотекис илгариланма ҳаракатда гидравлик нишаб \(J_e \) пье-зометрик нишаб \(J \) ва ўзан тубининг нишаби \(i \) бир-бирига тенг бўлмайди

\[
J_e \neq J \neq i.
\]

(7.3)

Очиқ ўзанларда нотекис илгариланма ҳаракат пайтида сув-нинг сатҳи ҳар доим эгри чизиқ шаклида бўлади. Бу эгри сув сатҳи чизиғининг кўриниш икки шаклда бўлади:

1. Эгри кўтарилма, бу асосан, ўзанда тўғон қурилганда ҳосил бўлади. Бу эгри кўтарилма сув сатҳи чизиғи оқимнинг узунлиги бўйича нормал чукурлик \(h_0 \) дан то белгиланган чукурлик \(h_{теп} \) гача ўсиб боради. Оқимнинг тезлиги эса камайиб боради.

2. Эгри пасайма, бу асосан, табий ва сунъий ўзанлар-даги шаршараларда мавжуд бўлиб, оқимнинг чукурлиги бирдан ўзгарса, ўзан бирдан кенгайса ёки торайса пайдо бўлади. Шу эгри пасайма сув сатҳи чизиғи оқимнинг узунлиги бўйича нормал чукурлик \(h_0 \) дан то критик чукурлик \(h_{кр} \) гача пасайиб боради. Оқимнинг тезлиги эса қатталабиб боради.

7.2- §. СУЮҚЛИҚ ОҚИМНИНГ БАРҚАРОР НОТЕКИС ИЛГАРИЛАНМА ҲАРАКАТИНИНГ АСОСИЙ ДИФФЕРЕНЦИАЛ ТЕНГЛАМАСИ
(ДИФФЕРЕНЦИАЛ ТЕНГЛАМАНИНГ БИРИЧИ КЎРИНИШИ)

Суюқлик оқимнинг барқарор нотекис илгариланма ҳаракати қаралаётгандан, умумий ҳолни, яъни непризматик ўзандаги сувнинг ҳаракати назарда тутилади. Бунинг учун 7.8- расмида қурсатилгандаек, оқим нотекис илгариланма ҳаракатда бўлиб, унда ўзаннинг узунлиги бўйича кўндаланг кесими шакли берилиб. Расмида координата үкла-ри қурсатилган бўлиб, сувнинг \(h \) чукурлиги оринат \(йк \) бўйича, \(S \) ўқи эса ўзан туби чизиғи бўйича йўналган. 7.8-
расмда оkimning ikki kunaldang kesimini: 1—1 kunaldang kesimi boshtang ich W—W kesimdan, yanni koordinat bosidandan S_1 uzunlikda va 2—2 kunaldang kesim esa birinchi kesimdan dS elementlar uzunlikda joylashgan. Birinchi kesimda suv satxidagi A nuktasining koordinatasi taksoslayi tekisliygi O—O ga nisbatan z balandlikda va y kesimdagi yuracha tезликни v deb belgilasak, u holla ikkinchi kesimda B nuktaning koordinatasi z+dz va tезликни v+dv deb belgilaymiz. Endi 1—1 va 2—2 kesimlar uchun D. Bernulli tenglamasini umumiy kуринишда ёзамиз:

$$\frac{\alpha w^2}{2g} + \frac{p_a}{\gamma} + z = \frac{\alpha(v+dv)^2}{2g} + \frac{p_a}{\gamma} + (z + dz) + dh_l,$$ (7.4)

bu erda α — okimning kunaldang kesimi buйicha ўрталаштирилган тезикларнинг нотекис таъсимланишини ифодаловчи коэффициент, $\alpha=1,05+1,10$; dh_l — okimning ds uzunligi buйича йўқотилган напор;
бу ерда

\[dh_i = J_e \cdot ds. \] \hspace{1cm} (7.4)

Гидравлик нишаб (7.4) тенгламадан қуйидагича ёзилади:

\[J_e = -\frac{d}{ds} \left(\frac{\alpha u^2}{2g} + \frac{p}{\gamma} + z \right); \] \hspace{1cm} (7.6)

ёки қавсни очиб чиқсак

\[J_e = -\frac{d}{ds} \left(\frac{\alpha u^2}{2g} \right) - \frac{dz}{ds}. \] \hspace{1cm} (7.7)

(7.7) ни (7.5) га кўйсак

\[dh_t = -d \left(\frac{\alpha u^2}{2g} \right) - dz. \] \hspace{1cm} (7.8)

\[\frac{\alpha u^2}{2g} \] ни \(h_v \) билан белгиласак

\[-dz = dh_v + dh_r \] \hspace{1cm} (7.9)

Бу (7.9) тенглама нотекис илгариланма ҳаракатнинг асосий дифференциал тенгламаси дейилади. (7.9) тенгламадан қўринадики, ЭЭССЧ нинг пасайishi — \(dz \), ёки потенциал энергиянинг камайиш, кинетик энергия ва йўқотилган напорнинг ортиб боришга тенг. Бу ерда (7.8- расмда) \(dz \) — эгри чизик AВ нинг, ёки эркин эгри сув сатҳи чизигининг узунлиги бўйича пасайиб боришни ифодалайди, шунинг учун бу ерда \(dz \) манфий. Умуман \(dz \) ҳам манфий, ҳам мусбат бўлиши мумкин, бу эркин эгри сув сатҳи чизигининг шаклига боғлиқ, (7.9) тенгламанинг иккала томонини \(ds \) га бўлиб чиқсак,

\[-\frac{dz}{ds} = \frac{dh_v}{ds} + \frac{dh_r}{ds}. \] \hspace{1cm} (7.10)

Очиқ ўзанларда пьезометрик чизик \(P \) — \(P \) сув сатҳи билан бир чизикда ётади

\[\sim \frac{dz}{ds} = J. \] \hspace{1cm} (7.11)

бу ерда \(J \) — пьезометрик нишаб.

312
Икрамиқ нишаб J_e (7.10) тенгламадан қуйидагиная:

$$\frac{dh}{ds} = J_e = i_f \quad \text{(белги)},$$

(7.12)

Фуру қўр i_i — ишқаланиш нишаби. (7.11) ва (7.12) ни (7.10) га қўйсак,

$$J = \frac{d}{ds} \left(\frac{qv^2}{2g} \right) + i_f.$$

(7.13)

Бу сурда суюқликнинг текис ўзгарувчан нотекис илгарийланма қириқати пайтида йўқотилган напор текис илгарийланма ҳаракат тенгламалари билан ифодаланади деб қабул қилиб, ишқаланиш нишаби i_f ни А. Шези формуласи орқали аниқлайдимиз

$$i_f = \frac{v^2}{C^2 R} = \frac{Q^2}{K^2},$$

(7.14)

Бу сурда v, C, R, K лар факат $1—1$ кўндаланг кесимга тегишли. (7.14) ни (7.13) тенгламага қўйсак, қуйидаги тенгламани оламиз:

$$J = \alpha \frac{d}{ds} \left(\frac{qv^2}{2g} \right) + \frac{v^2}{C^3 R}.$$

(7.15)

Бу (1) тенглама ихтиёрий шаклдали нопримматик ўзанлардаги суюқлик окимининг барқарор нотекис илгарийланма ҳаракати дифференциал тенгламасининг биринчи қўриниши. (7.15) тенгламадан, яъни нотекис илгарийланма ҳаракатнинг дифференциал тенгламасининг биринчи қўринишидан текис илгарийланма ҳаракат тенгламасини, юқорида айтилгандек, $i > 0$ бўлган ҳольда, келтириб чиқариш мумкин. Бизга маълумки, текис илгарийланма ҳаракат пайтида окимининг кўндаланг кесими ҳусасининг майдони бўйича олинган v ўртача тезлиги ва h сувниги чукурлиги ўзанинг узунлиги бўйича ўзгармас бўлади. Шундай экан, (7.15) тенгламанинг ўнг томонининг биринчи ҳади нолга тенг:

$$\alpha \frac{d}{ds} \left(\frac{v^2}{2g} \right) = 0,$$

(7.16)
чунки \(v = \text{const} \) (окимининг узунлиги бўйича). У ҳолда (7.15) тенглама қуйидагича ёзилади:

\[
J = \frac{v^2}{C^2 R}.
\]

(7.17) дан А. Шези тенгламасини оламиз:

\[
v = C \sqrt{RJ},
\]

(7.18) яъни окимининг барқарор текис илгариланма ҳаракатининг тенгламаси келиб чиқди. Нотекис илгариланма ҳаракатининг дифференциал тенгламаси (7.15) га сувнинг чукурлиги \(h \) ни киритсак, сув сарфи \(Q \) ва ўзаннинг шакли ҳамда геометрик ва гидравлик элементлари берилган деб қабул қилинган ҳолда, (7.15) нинг ҳар бир ҳадини бўлак-бўлак қараб чиқсак, унда нотекис илгариланма ҳаракат умумий дифференциал тенгламасининг иккичи кўринишни ола-миз.

7.3- §. СУЮКЛИК ОКИМИНИНГ БАРҚАРОР НОТЕКИС ИЛГАРИЛАНМА ҲАРАКАТИНИНГ АСОСИЯ ДИФФЕРЕНЦИАЛ ТЕНГЛАМАСИ
(ДИФФЕРЕНЦИАЛ ТЕНГЛАМАНИНГ ИККИЧИ КЎРИНИШИ)

1. Тенгламанинг биринчи ҳади \(J \) (пьезометрик нишаб). Бунинг учун 7.9- расмда (окимининг узунлиги
(7.19) бу Ềдд a = const — координатан бошнини такролаш техисланин $\Omega \rightarrow 0$ га нисбатан жойлашган ўрни. Агар (7.19) ни лифференциалласак, у ҳолда

$$dz = dh - ids, \quad (7.20)$$

чунки масофа a ўзгармас бўлгани учун $da = 0$ бўлади.

(7.20) тенгламанинг иккала томонини ds га бўлсак,

$$\frac{dz}{ds} = \frac{dh}{ds} - i, \quad (7.21)$$

бу қерда $\frac{dz}{ds}$ пьезометрик нишаб J га тенг

$$J = - \frac{dz}{ds}. \quad (7.22)$$

(7.22) тенгламани (7.21) тенгламага қўйсак, J учун тенгламани оламиз

$$J = i - \frac{dh}{ds}. \quad (7.23)$$

2. Иккинчи хади $\alpha d \left(\frac{v^2}{2g} \right)$. Бу тезлик напорининг ўзгариси, энергетик маънода айтсак, бу солиштира мақ нетик энергиянинг ўзгариси. Бу қерда v ўртача тезликни Q сув сарфи орқали ифодалаб, иккинчи хадни қараб қиқамиз:

$$\alpha \frac{d}{ds} \left(\frac{v^2}{2g} \right) = \alpha \frac{d}{ds} \left(\frac{Q^2}{2g} \right) = \alpha \frac{Q^2}{2g} \frac{d}{ds} \left(\frac{1}{\omega^2} \right) = - \frac{\alpha Q^2}{g} \frac{1}{\omega^3} \frac{d\omega}{ds}. \quad (7.24)$$

Юқорида айтилгандек, нопразматик, ихтиёрий шаклдаги ўзан қарабяпти. Шунинг учун

$$\omega = f(h, s). \quad (7.25)$$

У ҳолда

$$\frac{d\omega}{ds} = \left(\frac{\partial \omega}{\partial s} + \frac{\partial \omega}{\partial h} \frac{dh}{ds} \right) = \left(\frac{\partial \omega}{\partial s} + B \frac{dh}{ds} \right), \quad (7.26)$$

315
бурида

\[\frac{\partial \omega}{\partial h} = B, \quad (7.27) \]

бу урда \(B\) — ўзаннинг қўлдalanг кесимидаги сув сатҳининг кенглиги (7.10-рasm). (7.26) тенгламани (7.24) тенгламага қўйиб чиқсақ, (7.28) тенгламасини оламиз:

\[\alpha \frac{d}{ds} \left(\frac{v^2}{2g} \right) = \frac{\alpha Q^2}{\rho} \left(\omega \frac{\partial \omega}{\partial s} + B \frac{dh}{ds} \right). \quad (7.28) \]

3. Учинчи ҳади \(\frac{v^2}{C^2R}\). Буни қуйидагича ё Zamiz

\[\frac{v^2}{C^2R} = \frac{Q^2}{C^2\omega^3 R}. \quad (7.29) \]

4. Суюқлик окимининг нотекис илгариланма ҳаракатининг дифференциал тенгламаси биринчи қуришни бўйича-бўлақ-бўлақ қараб чиққандан кейин олинган натижаларини (7.15) тенгламага қўйиб чиқсақ

\[i - \frac{dh}{ds} = \frac{\alpha Q^2}{\rho} \left(\frac{1}{\omega^3} \left(\frac{\partial \omega}{\partial s} + B \frac{dh}{ds} \right) + \frac{Q^2}{\omega^3 C^2 R} \right); \quad (7.30) \]

(7.30) тенгламани \(\frac{dh}{ds}\) га нисбатан ечсак

\[(II)_{ноприяматик} \quad \frac{dh}{ds} = \frac{i - \frac{Q^2}{\omega^2 C^2 R} \left(\frac{1 - \alpha C^2 R \frac{\partial \omega}{\partial s}}{\frac{\alpha Q^2 B}{\omega^3}} \right)}{1 - \frac{\alpha Q^2 B}{\omega^3}}. \quad (7.31) \]

Бу (II) ноприяматик тенглама иқтиёрий шаклдаги ноприяматик ўзан учун суюқлик окими барқарор нотекис илгариланма ҳаракатининг дифференциал тенгламасининг иккичи қуришни.

Бу тенгламадан биз ўзаннинг \(ds\) элементар узунлиги бўйича сув чуқурлигининг \(dh\) ўзгаришини аниқлашмиз мумкин. (7.31) тенглама сув сарфи ўзгармас \(Q\) = const бўлган
7.4- §. ПРИЗМАТИК ЎЗАНЛARДАГИ СУЮДЛИК ОКИМИНинг БАРКАРОР НОТЕКИС ИЛГАРИЛАНМА ҲАРАКАТИ

Бу ёрда дифференциал тенгламанинг иккинчи кўрингишини қараб чиқамиз.

1. Ўзан туби нишаби \(i > 0 \) бўлган ҳол (тўғри нишабли ўзан: 7.3- расм)
\[
\omega = f (h).
\]
(7.32)

Бундай ўзанлар учун хусусий хосила

\[
\frac{\partial \omega}{\partial s} = 0.
\]
(7.33)

(7.33) ни назарда тутган ҳолда, (7.31) тенглама призматик бўлган ўзан учун қуйидагича кўчириб ёзилади:

\[
\frac{dh}{ds} = \frac{i - \frac{Q^2}{\omega^2 C^2 R}}{1 - \frac{\alpha Q^2}{\varepsilon} \frac{B}{\omega^2}}.
\]
(7.34)

(7.34) тенгламани сув сарфи модули \(K \) орқали ифодалаб
\[
\omega^2 C^2 R = K^2.
\]
(7.35)

(7.34) тенгламани қуйидагича кўчириб ёзамиз

\[
(\Pi)_{\text{пружиник; } i > 0} \quad \frac{dh}{ds} = \frac{i - \frac{Q^2}{K^2}}{1 - \frac{\alpha Q^2}{\varepsilon} \frac{B}{\omega^2}}.
\]
(7.36)

(\Pi)_{\text{пружиник; } i > 0} тенглама нишаби \(i > 0 \) бўлган призматик ўзан учун барқарор нотекис илгариланма ҳаракат дифференциал тенгламасининг иккинчи кўрингиши. Бу тенгламадан, юқорида кўрсатилгандек, бизга маълум бўлган барқарор текис илгариланма ҳаракатнинг тенгламасини олиш мумкин. Уни қуйидагича исботлаймиз. Маълумки, текис илгариланма ҳаракат учун

317
\[
\frac{dh}{ds} = 0; \quad (7.37)
\]
y ҳолда (7.36) тенгламадан унинг сурати (математик қоида-ларга асосан) нолга тенг
\[
i - \frac{Q^2}{K^2} = 0, \quad (7.38)
\]
Бундан қўринадики
\[
Q = K \sqrt{i}. \quad (7.39)
\]
(7.35) тенгламадан \(K\) ни (7.39) тенгламага қўйиб, унги тезликка нисбатан ечсак
\[
v = C \sqrt{iR}. \quad (7.40)
\]
А. Щези формуласи келиб чиқди. Бу барқарор текис илгариланма ҳаракатнинг тенгламаси. Шундай қиъиб (7.36) тенгламадан \(\bar{y}z\)ан туби нишаби \(i > 0\) бўлган ҳолда текис илгариланма ҳаракат тенгламасини олиш мумкин.

2. \(\bar{y}z\)ан туби нишаби \(i = 0\) бўлган ҳол (горизонтал ҳолатдаги \(\bar{y}z\)ан; 7.5- расм). (7.36) тенгламага \(\bar{y}z\)ан туби нишаби \(i = 0\) ни қўйсак

\[
(II)_{\text{приматик}, i=0} \quad \frac{dh}{ds} = - \frac{Q^2}{K^2} \cdot \frac{g}{g} \cdot \frac{B^2}{\omega^2}. \quad (7.41)
\]

3. \(\bar{y}z\)ан туби нишаби \(i < 0\) бўлган ҳол (тескари нишабли \(\bar{y}z\)ан; 7.6- расм). (7.36) тенгламага \(\bar{y}z\)ан туби нишаби \(i < 0\) ни қўйсак

\[
(II)_{\text{приматик}, i<0} \quad \frac{dh}{ds} = - \frac{i' + Q^2}{K^2} \cdot \frac{g}{g} \cdot \frac{B^2}{\omega^2}. \quad (7.42)
\]
бу ҳолда \(i < 0\) бўлгани учун, уни \(i'\) деб ифодалаб, формулага i нинг мутлақ қийматини қўйиш усули билан ечилади

318

www.ziyouz.com kutubxonasi
$$i' = \sin \theta = |i| \quad (7.43)$$

Юқорида келтирилган нотекис илгарилганма ҳаракатни интеграллаш учун янги тушунчалардан фойдаланишнимиз керак. Бунинг учун бу тушунчаларни бирма-бир қарраб чи-қамиз.

7.5- §. Тўртта Ёрдамчи Тушунча: Оқимнинг Кўндаланг Кесиммининг Солиштирма Энергияси, Критик Чукурлик, Нормал Чукурлик, Критик Нишаб

Оқимнинг кўндаланг кесиммининг солиштирма энергияси. Ғакқослаш текислиғи $O-O$ га нисбатан 7.11-рассмда кўрсатилган кесим учун окимнинг тўлиқ солиштирма энергиясининг (тўлиқ напорининг) тенгламасини тўзмиз (суюқлиқнинг оғирлик бирлигин сусбатан):

$$\frac{\alpha Q^2}{2g} + \frac{P}{\gamma} + z = H_e. \quad (7.44)$$

Кесимнинг солиштирма энергияси \mathcal{E} ўзанинг кўндаланг кесимнинг ёнг паркти нуқтасидан ўтказилган такқослаш текислиги O_T-O_T га нисбатан олинади (7.11-рассм):

$$\frac{P}{\gamma} + z = h, \quad (7.45)$$

у ҳолда (7.44) тенгламадан оқим кўндаланг кесимнинг солиштирма энергиясини оламиз

$$\mathcal{E} = \frac{\alpha Q^2}{2g} + h, \quad (7.46)$$

ёки

$$\mathcal{E} = \frac{\alpha Q^2}{\omega^2 2g} + h. \quad (7.47)$$

Тўғри бурчакли тўртбurchak шаклида-ги ўзан учун

$$\mathcal{E} = \frac{\alpha Q^2}{h^2 2g} + h. \quad (7.48)$$

7.11-рассм.

319
Маълумки, ўзгармас сув сарфи \(Q = \text{const} \) ўзаннинг берилиган қўндаланг қесими орқали ҳар хил чукурликда оқиб ўтиши мумкин (бу ўзан тубининг нишабига ва ғадир-бу-дурлигига боғлик). Шу ҳар хил чукурликлар учун \(Q = \text{const} \) ҳолда (7.48) тенгламалан \(\theta\) нинг ҳар хил қийматини олишмиз мумкин. У қуйидагича ёзилади

\[\theta = f(h). \]
(7.49)

(7.49) тенгламадан кўринадики, \(\theta\) нинг қиймати фақат сув-нинг чукурлиги боғлик:

а) \(h \to 0\) ҳолда, \(\theta \to \infty\) бўлади (чунки \(h_0 \to 0\) (7.46) ёки (7.47) тенгламанинг ўнг томонидаги иккиччи ҳади \(\infty\) га интилади);

б) \(h \to \infty\) ҳолда, \(\theta \to \infty\) бўлади. Ҳақиқатан ҳам функция (7.49) \(\theta = f(h)\) графигини кўрсак (7.12 ҳам), у (математикада маълум назарияга асосан) бир минимумга (\(\theta_{\text{ниш}} \to h_{\text{кр}}\)) ва икки асимптота (\(OM\) ва \(OE\) чизиклар)га эга бўлган эгри чизик шаклида бўлади.

1) \(OM\) тўғри чизик, координатан ўқларига нисбатан 45° бурчак билан йўналган, ва 2) \(OE\) тўғри чизик, координатанинг горизонтал ўқи бўйича йўналган. Графикда штриховка билан белгилangan майдон эса, бизга тезлик напори \(\frac{Qv^2}{2g}\) элпорасининг ўзгаришини беради. Бу ерда шуни айтб
ўтиш керакки, текис илгариланма ҳаракатда ($h =$const окимнинг узунлиги бўйича) H_e нинг қиймати (йўқотилган напор хисобиға) ўзаннинг узунлиги бўйича камайиб боради; Э нинг қиймати эса текис илгариланма ҳаракат учун окимнинг узунлиги бўйича ўзгармайди ($\Theta =$const окимнинг узунлиги бўйича), чунки таккослаш текислиги $O_T - O_T$ ҳар бир кесим учун ўзаннинг тубидан (кесим тубининг энг пастки нуктасидан) ўтказилади (7.13- рам), яъни

$$H_{e_1} = H_{e_2} = H_{e_3} = \ldots$$
$$\Theta_1 = \Theta_2 = \Theta_3 = \ldots$$

Окимнинг критик чукурлиги. 7.12- рамдадан кўриниб турибдики, графикалари энг кичик қийматга эга бўлган солиштирма энергия Θ_{min} га тегишил сув чукурлиги критик чукурлик деб аталади ва $h_\text{кр}$ белги билан ифодаланади. Агар ўзаннинг кўндаланг кесими юзаси майдонни ҳер ишлатилган ва сув сарфии Q маълум бўлса, у ҳолда критик чукурлик қуйидалаги тенглашадан аниқланади:

$$\frac{\partial \Theta}{\partial h} = 0. \quad (7.50)$$

Критик чукурлик ўзаннинг кўндаланг кесими шаклига боғлиқ. Қуйида ўзаннинг кўндаланг кесими шаклининг бир неча турини қараб чиқамиз.

I. Ўзаннинг кўндаланг кесими шакли тўғри тўртбурчак бўлса, у ҳолда (7.50) га (7.48)ни
куйиб, уни чукурлик h га нисбатан ечсак, критик чукур-лигини топамиз

$$
\frac{\partial}{\partial h} \left(\frac{\alpha q^2}{h^2 g} + h \right) = 0,
$$
(7.51)

ёки

$$
\frac{\partial}{\partial h} \left(\frac{\alpha q^2}{h^2 g} \right) + \frac{\partial h}{\partial h} = 0,
$$
(7.52)

бундан

$$
\frac{\alpha q^2}{h^3 g} - 1 = 0,
$$
(7.53)

бу ерда $h=h_{кр}$, (7.53) тенгламадан

$$
\frac{\alpha q^2}{h_{кр}^3 g} = 1; \quad h_{кр}^3 = \frac{\alpha q^2}{g},
$$
(7.54)

бундан келиб чиқадикки

$$
h_{кр} = \sqrt[3]{\frac{\alpha q^2}{g}} = \sqrt[3]{\frac{\alpha Q^2}{b^2 g}}.
$$
(7.55)

(7.54) тенгламани яна бошқача кўринишда кўчириб ёзиш мумкин

$$
h_{кр} = \frac{\alpha q^2}{h_{кр}^3 g} = \frac{\alpha q^2}{g},
$$
(7.56)

яъни

$$
\frac{\alpha q^2}{2g} = \frac{1}{2} h_{кр}.
$$
(7.57)

(7.57) дан шундай ажойиб хулоқа келиб чиқадикки, тўғри тўртбурчакли ўзан учун, $h = h_{кр}$ бўлган ҳолда тезлик напоринг қиймати h_0, ўзандаги сув чукурлигини ярмиға тенг, яъни напор чизиги $E-E$ бу ҳолатда кесимдаги сув сатҳидан $\frac{h}{2}$ баландликда жойлашган бўлади (7.14-расм).

2. Симметрик учбурчак шаклдаги ўзан учун

$$
h_{кр} = \sqrt[3]{\frac{2\alpha Q^2}{gm^2}},
$$
(7.58)

бу ерда m — ўзан ён деворининг нишаб коэффициенти.
3. Симметрик трапеция шаклидағи ва бошқа иктиёрий шакллардағи ўзанлар учун. Ёу ҳолда критик чуқурлик итерация (кетма-кет яқинлашув) усулида аниқланади. Бунинг учун (7.47) ва (7.27) ни назарда тутган ҳолда (7.50) тенгламани кўчириб ёзамиз

$$\frac{\partial \varphi}{\partial h} = \frac{\partial}{\partial h} \left(\frac{\alpha Q^2 + h}{\omega^2 g} \right) = \frac{\alpha Q^2}{2g} \frac{\partial}{\partial h} \left(\frac{1}{\omega^3} \right) = 1 = -2 \frac{\alpha Q^2}{2g} \frac{1}{\omega^3} \frac{\partial \omega}{\partial h} + 1 = -\frac{\alpha Q^2}{g} \frac{B}{\omega^3} + 1 = 0 \quad (7.59)$$

ёки

$$\frac{\partial \varphi}{\partial h} = 1 - \frac{\alpha Q^2}{g} \frac{B}{\omega^3} = 0. \quad (7.60)$$

Бунда B ва ω критик чуқурликка жавоб бериши керак, шунинг учун уларга ҳам «kr» индексини қўйамиз, у ҳолда

$$\frac{\omega^3}{B_{kr}} = \frac{\alpha Q^2}{g}. \quad (7.61)$$

Ўзанда окимнинг чуқурлиги фақат критик h_{kr} бўлганда (7.61) тенглик шарти бажарилади. Бошқа ҳолларда (7.61) тенглик шарти бажарилмайди. (7.61) тенгламанинг юқорида айтилган хоссасидан фойдаланиб критик чуқурлик h_{kr} ни аниқлаймиз, бунинг учун h га қатор қийматлар бериб бориб, $\frac{\omega^3}{B} = f(h)$ графикни тузамиз (7.15- расм). Кейин $\frac{\alpha Q^2}{g}$ кийматини хисоблаб, 7.15- расмдаги графикдан h_{kr} кий-
матини аниклаймиз. Бунинг учун \(\frac{Q^2}{g} \) қийматини \(\frac{Q^3}{B} \) ўкига кўйиб, уни эгри чизик билан учрашган нуктасидан \(h \) ўкига томон йўналишиб, унда учрашган нуктаси \(h_{kp} \) чукурликни беради. Бундай усул ёрдамида ўзанинг иҳтиёрий кўндаланг кесимининг шакли учун \(h_{kp} \) ни аниклаймиз.

Оқимнинг нормал чукурлиги. Очқ ўзанларда оқимнинг нормал чукурлиги деб, сувнинг шундай чукурлигига айтиладики, унда текис илгариланма ҳаратан бўлганда ўзанинг кўндаланг кесими берилган \(Q \) сув зарфи ўтказади. Бу чукурликни \(h_0 \) белги билан ифодалаймиз. Оқимнинг шу нормал чукурлигига тегишли барча гидравлики элементлари «0» индекс билан белгиланади. Маълумки, очқ ўзанларда сувнинг чукурлиги нормал чукурликка тенг бўлса \(h = h_0 \), у ҳолда \(\omega_0, \chi_0, R_v, Q, v_0 \) ва \(i_0 \) ларни хисоблашда текис илгариланма ҳаратнинг формулалиридан фойдаланилади, масалан,

\[Q = \omega_0 C_0 \sqrt{i_0 R_0} = K_0 \sqrt{i_0}, \quad (7.62) \]

бу ерда \(K_0 \) — текис илгариланма ҳаратнинг (нормал чукурлигига тегишли) сув зарфи модули \(K_0 = \omega_0 C_0 \sqrt{R_0} \); \(\omega_0, \]
\(C_0, R_v, K_0 \) — бу гидравлики элементлардаги «0» индекслар оқимнинг нормал чукурлиги \(h_0 \) га тегишли ифодалар (7.16-расм). Оқимнинг текис илгариланма ҳаратнинг нормал чукурлиги итерация (кетма-кет яқинлашув) усулида аниқланади. Бунинг учун аввало керакли сув зарфи модули \(K_{kerak} \) хисобланади:

\[K_{kerak} = \frac{Q}{\sqrt{i}}. \quad (7.63) \]
Кейин қатор h чукурликлар ии қабул қилиб, қолган бошқа гидравлик элементлар, шу жумладан K ҳам ҳисобланади ии у $K_{крет}^{-}$ бўлган такқосланади. K кўйидағи формуласдан ҳисобланади

$$K = \sqrt[3]{R}.$$
(7.64)

Агар $K = K_{крет}^{-}$ бўlsa, масала ечилган ҳисобланади. У ҳолда қабул қилинган h оқимнинг h_0 нормал чукурлиги деб қабул қилинади. Агар $K > K_{крет}^{-}$ бўlsa, у ҳолда бошқа h қабул қилиниб, ҳисобни токи $K = K_{крет}^{-}$ бўлмагунча давом этишаверамиз. Кейинчалик h_0 нормал чукурлик ва $h_{крет}$ критик чукурлик тушунчаларидан қенг фойдаланамиз. Унинг учун яна янги туашунчалар қабул қиламиз. Масалан, $K - K$ тўғри чизиғи, бу чизик ўзаннинг туби чизиғига параллел бўлиб, ундан критик чукурлик $h_{крет}$ оралиқда (баландлиқда) жойлашган бўлади, у критик чукурлигининг чизиғи дейилади. $N - N$ тўғри чизиғи эса ўзан тубининг чизиғига параллел бўлиб, ундан h_0 нормал чукурлик оралиқда (баландлиқда) жойлашган бўлади, у нормал чукурлигининг чизиғи дейилади (7.16-расм).

ўзан тубининг критик нишаби. Очиқ ўзанларда $i_{крет}$ критик нишаб деб шундай нишабга айтилади, унда оқимнинг h_0 нормал чукурлиги $h_{крет}$ критик чукурликка тенг бўлади. Бундан кўринади, $i_{крет}$ критик нишаб учун сувнинг чукурлиги $h_0 = h_{крет}$ бўлиб, унда текис илгарилишма ҳаракат бўлади, у ҳолда сув сарфини анинглиш формуласи кўйида гирич бўлади ва барча гидравлик элементларга «крет» индекси қўйилади

$$Q = \frac{\omega_{крет} C_{крет} \sqrt{i_{крет} R_{крет}}}{},$$
(7.65)

уни (7.61) тенглашада қўйисак,

$$i_{крет} = \frac{g}{\alpha C_{крет}^2 \frac{\omega_{крет}}{B_{крет} R_{крет}}}.$$
(7.66)
бу ерда \(R_{kr} = \frac{\omega_{kr}}{\chi_{kr}} \) ни (7.66) га кўйсак

\[
i_{kr} = \frac{g}{\alpha C_{kr}^2 B_{kr}} \cdot \tag{7.67}
\]

бунда \(C_{kr}, \chi_{kr}, B_{kr} \) — критик чукурликка тегишилки оқимнинг гидравлик элементлари. Агар (7.65) га критик сув сарфи модулини киритсак

\[
K_{kr} = \omega_{kr} C_{kr} \sqrt{R_{kr}} \cdot \tag{7.68}
\]

у ҳолда (7.65) ни қўйидагича кўчириб ёзамиз:

\[
Q = K_{kr} \sqrt{i_{kr}} \cdot \tag{7.69}
\]

kritик нишаб қўйидаги кўринишда бўлади (7.17- расм)

\[
i_{kr} = \frac{Q^2}{K_{kr}^2} \cdot \tag{7.70}
\]

7.6-§. ОЧИҚ ЎЗАНЛARDA СУЮҚЛИК ОҚИМНИНГ СОҚИН, ЖЎШҚИН VA КРИТИК ЩОЛАТЛАРИ

1. \(h > h_{kr} \) бўлганда, суюқлик ҳаракати сокин ҳолатда бўлadi.
2. \(h < h_{kr} \) бўлганда, суюқлик ҳаракати жўшқин ҳолатда бўлadi.
3. \(h = h_{kr} \) бўлганда эса, суюқлик ҳаракати критик ҳолатда бўлади.

7.12- расмда келтирилган графикдаги \(\Theta = f(h) \) эгри чизикнинг юқоридаги 1 новдаси сокин ҳаракатга жавоб беради, уни қўйидаги кўринишда ёзиш мумкин

\[
\frac{\partial \Theta}{\partial h} > 0, \tag{7.71}
\]

326

www.ziyouz.com kutubxonasi
7.18- расм.

ва у (7.71) тенгламада кўрсатилган шарт билан характерланади, яъни сувиш чукурллиги ортиши билан кесимнинг солиштирма энергияси \mathcal{E} ўса боради. 7.12-рasmda келтирилган графикда $\mathcal{E} = f(h)$ эгри чизикнинг пастки II новласси жўшқин ҳаракатга жавоб беради ва у қуйидаги кўрипишида ёзилади

$$\frac{\partial \mathcal{E}}{\partial h} < 0, \quad (7.72)$$

ва у (7.72) тенгламада кўрсатилган шарт билан характерланади, яъни сувиш чукурллиги h ортиши билан \mathcal{E} нинг микдори камайиб боради. Тажрибалар шуни кўрсатадики:

1. Жўшқин оким $A'B'$ дан сокин оким $A''B''$ га ўтиш фақат гидравлич сакраш Ёрдамида бажарилади (7.18-расм).
2. Оқимнинг $A'B'$ сокин ҳаракати дан $A''B''$ жўдкин ҳаракатга ўтиш ҳолати фақат шов ва (водопад) ёрдамида бажарилади (7.19- расм).

7.7-§. Ёркин ёғри сув сатҳи чизифи (ЭЭССЧ) нинг шакли

Оқимнинг барқарор нотекис илгариланма ҳаракатининг дифференциал тенгламасини интеграллашдан илгари, шу қидирулаётган эркин эғри сув сатҳи чизиги ЭЭССЧ кандаи шаклда эканлигини аниклаш лозим. Бунинг учун илгари олинган (7.36) тенгламанинг суратини ва маҳражини бўлак-бўлак қараб чиқамиз. Шуни эслатиб ўтиш қеракки, бу ёрда биз приматик ўзанни қарайпмиз. Шу берилган приматик ўзанни узунаси бўйича кесимини қараб чиқамиз (7.20- расм) ва бу ўзандаги суюқлик ҳаракатларининг барча ЭЭССЧ ларини бўлажакда жойлашиши мумкин бўлган суюқлик областини учта бўлак-бўлак a, b, с зоналарга бўлиб ахратиб чиқамиз. Бу зоналарни N–N ва K–K тўғри ва ўзан туби T–T чизигига паралел чизиклари билан ахратамиз. 7.20 а-расмда N–N чизиги K–K чизигидан юқорида жойлашган; аммо, бошқа ҳолатда K–K чизиги N–N чизигидан юқорида жойлашган бўлиши мумкин, бу суюқлик ҳаракатининг ҳолатига боғлиқ (7.20 б-расм). Гидравликада қабул қилнганидек, N–N чизиги h_0 ни, яъни оқимнинг текис илгариланма ҳаракати пайтидағи унинг нормал чукурлигини ифодалайди; K–K чизиги эса $h_{ср}$ ни, яъни шу ўзандаги критик чукурликни билдиради (бу ҳолатда ҳам ҳаракат текис илгариланма бўлади). K–K ва N–N чизикларининг қандай жойлашишидан қатъи назар K–K би-

![Diagram](image.png)
$$N = \frac{q_0 \rho_0}{N}$$

$$a = \frac{q_0 \rho_0}{N}\Lambda$$

$$c = \frac{q_0 \rho_0}{N}\Lambda$$

$$Q = \frac{Q_0 \rho_0}{N}\Lambda$$
Бу ерда Λ фақат сувнинг чукурлигига боғлик

$$\Lambda = f(h).$$ \hspace{1cm} (7.78)

Λ_{kr} эса Λ нинг хусусий ҳоли бўлиб, у $h = h_{kr}$ бўлганда
gи микдори. Белги Λ ва Λ_{kr} лардан фойдаланиб, (7.75) тенгламани кўчириб ёзамиз:

$$m = 1 - \frac{\Lambda_{kr}}{\Lambda}. \hspace{1cm} (7.79)$$

Сурат с ва махрақ m учун олинган микдорларни (7.36) тенгламага қўйиб чиқсак, қўйидаги тенгламани оламиз:

$$(\text{III}_{\text{приматик}}, i > 0 \hspace{1cm} dh \hspace{1cm} ds = \left(1 - \frac{\frac{K^2}{K^2}}{1 - \frac{\Lambda_{kr}}{\Lambda}} \right) = \frac{\xi}{m}. \hspace{1cm} (7.80)$$

(III)приматик; $i > 0$ тенглама барқарор нотекис илгарила
am харакатнинг дифференциал тенгламасининг у ч и н ч и
cўриниши бўлиб, интеграллаш учун қулай ҳолатга келти
рилган.

Узаннинг нишаби $i > 0$ бўлганда, окимнинг барқарор	nотекис илгариланма харакати табиатда уч хил ҳолатда
учрайди:

Биринчи ҳолати қўйидагича характерланади

$$h_0 > h_{kr} \text{ ва } i < i_{kr}; \hspace{1cm} (7.81)$$

бу шартга биноан эркин эгри сув сатҳи чизигининг уч та
шаклининг олиш муқмим, булаар a_i, b_i, c_i шаклларидир, улар
cўйида алоҳида қараб чиқмасиз.

Иккинчи ҳолати қўйидагича характерланади

$$h_0 < h_{kr} \text{ ва } i > i_{kr}; \hspace{1cm} (7.82)$$

бу шартга асосан, бу ерда ҳам, ЭЭССЧ нинг уч та шак
cлининг олиш муқмим, булаар a_{II}, b_{II}, c_{II} шаклларидир, була
cўйида ҳам қўйида алоҳида қараб чиқмасиз.

Учинчи ҳолати эса қўйидагича характерланади

$$h_0 = h_{kr} \text{ ва } i = i_{kr}; \hspace{1cm} (7.83)$$

бу шартга биноан ЭЭССЧ нинг фақат икки та шаклини
cўйида алоҳида қараб чиқмасиз.
7.21- рasm.

Кўриниб туриндики, \(i > 0 \) бўлган ҳолда, ҳаммаси бўлиб ҚУЭСЧ нинг саккизта шаклининг оламиз; улардан олтиаси — әгри кўтарилма; иккитаси — әгри пасайма.

Ўзаннинг узунлиги бўйича окимнинг чукурлиги каттаалашин борса, ундаи ҚУЭСЧ әгри кўтарилма деб аталади. Әгри пасаймада ўзаннинг узунлиги бўйича окимнинг чукурлиги кичиклашиб боради. Юқорида айтилган уч ҳолатнинг ҳар бирини қуйида бўлак-бўлак қараб чиқамиз.

Биринчиси ҳолат. (7.81) шартли билан характерлапувчи ҳолат. Бу ҳолатда 7.21- расмда кўрсатилган деб, учта ҚУЭСЧ лар мавжуд бўлади. Булар \(a_i, b_i, c_i \) уч хил алоҳида окимларни ифодалайди. Расмда улар бирлаштирилган, кейинчалик уларнинг ҳар бири табиатда қандай ҳолатда учретиши алоҳида кўрсатиб тушунтириб ўтамиз. Бу ёрда шуни айтиб ўтиш керакки, расмда кўрсатилган ҚУЭСЧлари \(a_i, b_i, c_i \) дан бирор таси ҳам \(N-N \) ёки \(K-K \) чизикларни кесиб ўтмайди. ҚУЭСЧ ларнинг \(a_i \) ва \(c_i \) шакллар — әгри кўтарилма, \(b_i \) шакли эса — әгри пасайма.

Энди ҳар бир ҚУЭСЧ \(a_i, b_i, c_i \) шаклларни алоҳида алоҳида қараб чиқамиз. Улар худди шу 7.21- расмда қандай кўрсатилган бўлса, аслида ҳам шундай эканланинг изболлаймиз.

ҚУЭСЧ нинг \(a_i \) шакли. Бу әгри чизик \(a_i \) шаклидаги әгри кўтарилма деб аталади. Бу шаклдаги ҚУЭСЧ фақат ўзанда тўғон курилганда, унинг юқори томонида
(юқори бөфда) пайдо бўлади, яъни 7.22- расмда кўрсатилганда, тўғон курилган жойда белгилangan \(h_{bези} \) чукурлик пайдо бўлади, у шу ерда сув сатҳида \(B \) нуктасини бар-по этади. У ҳолда
\[
h_{bези} > h_0 > h_{kr}. \tag{7.84}
\]
Кўриниб турибдики, нотекис илгариланма ҳаракатнинг \(a_1 \) шаклдаги ЭЭССЧ учун окимнинг чукурликлари қуйидаги шартни қониқтириш керак:
\[
h > h_0 > h_{kr}. \tag{7.85}
\]
Учинчи кўринишдаги (7.80) дифференциал тенгламадан фойдаланиб, барқарор нотекис илгариланма ҳаракатнинг \(a_1 \) шакли ҳам 7.21 ва 7.22-расмларда кўрсатилгандек эканлигини исботтаймиз.
1. Бу ЭЭССЧ (7.85) тенглама шартига ҳаққа эга экан, унда бу эзгри кўтарилма \(a_1 \) қуйидаги тенгсизлик билан характерланади
\[
K^2 > K_0^2; \
\Lambda > \Lambda_{kr}; \tag{7.86}
\]
бу ҳолда
\[
c > 0 \ 	ext{ва} \ m > 0, \tag{7.87}
\]
шунинг учун [(7.80) тенгламага қаранг]
\[
\frac{dh}{ds} = \frac{\pm c}{+m} > 0; \tag{7.88}
\]
кўриниб турибдики, окимнинг нотекис илгариланма ҳаракати пайдада сувнинг \(h \) чукурлиги окимнинг йўналиши
2. Сувнинг h чукурлари чексизликка интилса $h \to \infty$ у қнимда K^2 ва Λ ҳам худди ўшндай чексизликка интилдир; шу ҳайтда K_0^2 ва $\Lambda_\text{кр}$ ўзгармасдан, ўзининг қийматини ғиълаб қолади. $K_0^2 = \text{const}$ ва $\Lambda_\text{кр} = \text{const}$. Шундай экан, h чексизликка интилса $h \to \infty$ [((7.80) тенгламага қараб]

$$\left(\frac{dh}{ds}\right)_{h\to\infty} = \left(\frac{\xi}{\lambda}\right)_{h\to\infty} \to i; \quad (7.89)$$

бундан келиб чиқадики, ЭЭССЧнинг a_i шакли ўзининг пастки томонида горизонтал $a\rightarrow b$ асимптотасига қа бўлади. Ҳакиқатан ҳам $a\rightarrow b$ горизонтал тўгри чизик қуйидаги шарт билан хатарланади (7.23- расмда кўрсатилган белгиларга қараб)

$$\frac{dh}{ds} = i. \quad (7.90)$$

Шундай қилиб, окимнинг йўналиши бўйича барқарор нотекис илгарланма ҳаракатнинг a_i шакли пастга борган сари горизонтал тўгри чизикқа асимптотик равишда яқинлашиб боради, аммо ЭЭССЧ горизонтал чизикқа айланмайди.

7.23- расм.
3. Барқарор нотекс илгариланма ҳаракатдаги сувнинг чукурлиги \(h \rightarrow h_0 \) га интилса (ЭЭССЧ нинг \(a_i \) шаклининг чап томониға қарάнг), у ҳолда \(K^2 \) микдори \(\rightarrow K_0^2 \) га интинлادي, шунинг учун \((7.80ға қаранг)\)

\[
\left(\frac{dh}{ds}\right)_{h \rightarrow h_0} = \left(\frac{c}{m}\right)_{h \rightarrow h_0} \rightarrow 0;
\]

(7.91)

булдан келиб чиқадики, ЭЭССЧ нинг \(a_i \) шакли юқори томони (чап томони)да \(N-N \) чизиқлари асимптотага эга бўлиб, қуйидаги шарт билан ҳаракетланади

\[
\frac{dh}{ds} = 0.
\]

(7.92)

4. ЭЭССЧ нинг \(a_i \) шакли иккита асимптотага (ўғғо томонидаги туғри горизонтал чизик кўринишдаги \(a - b \) ва чап томонидаги ўзан тубига параллель \(N-N \) чизиклари) эга эканлигини назарда туқсак, унинг бўрт иб чиққан (выпуклость) томони пастга қароған бўлади.

5. ЭЭССЧ нинг \(a_i \) шакли \(N-N \) туғри чизиғига асимптотик равишда яқинлашган учун, маълумки, туғон таъсирида сувнинг кўтарилиши (7.22-расм) оқимга тескари йўналишда, назарий томонидан олганда, чексиз узунликка тарқалади. Амалда эса, ЭЭССЧ нинг окимнинг нормал чукурлиги, масалан, \(\Delta h = (0,01 \div 0,02) h_0 \) м микдорда яқинлашган узунлигини, эгри кўтарилма узунлигининг «охир» деб қабул қилинади ва \(L_{кўтарима} \) белги билан инфодаланади.

6. Қўндаланг кесимнинг солиштирима энергияси ЭЭССЧ нинг \(a_i \) шаклида окимнинг йўналиши бўйича катталашиб боради.

ЭЭССЧ нинг \(b_i \) шакли. Бу эғри чизик \(b_i \) шаклидаги эгри пасайма деб аталади. Бу ҳол 7.24- расмда қўрса-тилгандек, ўзанда бирор иншоот, масалан, қаршара курилса, унда сувнинг белгиланган чукурлиги \(h_{белги} \) пайдо бўлиб, у сув сатхидан \(B \) нуқтасини ҳосил қилади. Бундай ЭЭССЧ \(b \) зонада жойлашган бўлади (7.24- расмға қаранг).

\[
h_0 > h_{белги} > h_{кр}.
\]

(7.93)
7.24- рasm.

Кўриниб турибдики b_i шаклда ЭЭССЧ қуйидаги шартни қониқтириши керак

$$h_0 > h > h_{kr}.$$ (7.94)

(7.80) тенгламани тахлил қилб чиқсак:

1. b_i шаклдаги ЭЭССЧ (7.94) тенглама шарт билан харателанан эка, у ҳолда бу эгрі пасайма учун

$$K_0 > K \text{ ва } \Lambda > \Lambda_{kr},$$ (7.95)

dемак

$$\frac{dh}{ds} = -\frac{c}{k} < 0.$$ (7.96)

Хўлоса: b_i шакллари ЭЭССЧ да сувнинг чукурлиги (7.21 ва 7.24- расмларда кўрсатилгандек) окимнинг йўналиши буйича кичиклашиб боради, яъни ҳақиқатан ҳам биз бу қерда эгрин пасайма чизигини оламиз.

2. ЭЭССЧ нинг b_i шаклли нотекис илгариланма харатадаги окимнинг чукурлиги $h \rightarrow h_0$ га интиласа, $K^2 \rightarrow K_0^2$ га интилади, бундан келиб чиқадикни

$$\left(\frac{dh}{ds}\right)_{h \rightarrow h_0} = \left(\frac{c}{k}\right)_{h \rightarrow h_0} \rightarrow 0,$$ (7.97)
якъли b_1 шакли ЭЭССЧ нинг юқори (чап) томонида ўзининг тўғри чизикли $N-N$ асимптотасига эга бўлади.

3. $h = h_0$ бўлса, b_1 шакли эгри чизик пастки (ўнг) томонида ўзининг тик (вертикал) $W-W$ уринмасига эга бўлади.

4. ЭЭССЧнинг b_1 шакли ўзининг $N-N$ асимптотасига ва $W-W$ (вертикал) тик уринмасига (7.21- расм) эга бўлган нини назарда тутсак, бу эгри сув сатҳи чизигининг бўритчиққан томони юқорига қараган бўлади (7.24-расм).

5. b_1 шакли ЭЭССЧ узунлиги назарий жиҳатдан қараданда чексизликка эга, чунки $N-N$ чизиги асимптотик равишда якинлашади, аммо амалиётда уни чексиз эмас деб қабул қилинади (биринчи ҳолатнинг 5- бандига қараган). Нотексис илгариланма ҳаракатнинг ЭЭССЧнинг b_1 шаклида унийнг чап томонида сувниг чуқурлиги $h = (h_0 + 0,01)$ м га якин бўлса, уни ЭЭССЧ узунлигининг охири деб қабул қилса бўлади (бу ёрда $\Delta h = h - h_0 = 0,01$ м).

6. b_1 шакли ЭЭССЧ учун оқимнинг қўндаланг кесимининг солиштирма энергияси E сув оқимнинг йўналиш бўйича камайиб боради, чунки b_1 эгри чизиги сув оқимнинг йўналиши бўйича $K-K$ чизигида якинлашади. Мавлумки, $K-K$ чизиги кесимнинг энг кичик солиштирма энергияси E_{\min} ни ифодаловчи чизик.

ЭЭССЧнинг c_1 шакли. Бу эгри кўтарилма бўлиб, ўзанда юқориға кўтариладиган сув туткич дарбо zmq тагидан ўтаётган суюқлик c_1 шаклига эга бўлади ва ҳзнозада жойлашган бўлади (7.21 ва 7.25- расмлар).
Ин сёрдага

\[h_{\text{безз}} < h_{\text{кр}} < h_0. \] \hspace{3cm} (7.99)

c) шакли ЭЭССЧ билан чегаралган гаокимнинг барчаси қўчурликлари қўйиладиги шартни қониқтириши керак:

\[h_0 > h_{\text{кр}} > h. \] \hspace{3cm} (7.99)

д) шаклидиаги ЭЭССЧ, юқорида айтилган, қўйиладиги мосаларга эга:
1) у эгрини кўтарилма;
2) сув окимнинг йўналиши бўйича ЭЭССЧ нинг ўнг томонида (охирида) тик уринма \(W-W \) га эга;
3) асимптотага эга эмас;
4) эгрин сув сатҳи чизижининг бўртиб чиққан томони настга қараган (7.25-расм);
5) кесимнинг солиштирима энергияси Э сув окимнинг йўналиши (ЭЭССЧ узунаси) бўйича камайди боради;
6) ЭЭССЧнинг узунлиги чегаралган (7.25-расм).

Иккинчи холат. (7.82) шарти билан характерланувчи холат. Бу холатда 7.26-расмда кўрсатилгандек уцта ЭЭССЧлар мавжуд бўлади

\[h_0 < h_{\text{кр}} \text{ ва } i > i_{\text{кр}}, \]

7.26-расм.
бу шартга асосан, булаар а_II, b_II, c_II уч хил алоҳида шаклли оқимлардан иборат. Бу ёрда ҳам, худди биринчи ҳолатда-гидек, баркарор нотекис илгарланма ҳаракатнинг дифференциал тенгламасининг учичи қўринишни ўрганиб чиқиб, (7.82) шартта асосан 7.26- расмда кўрсатилган ЭЭССЧ ларни ибтотлаш мумкин. 7.26- расмдаги чизмадан қўринадики:

1) шу эгри чизиклардан қайси бири эгри кўтарилма ва қайси бири эгри пасайма; 2) шу эгри чизикларнинг қайси бири ва қайси томони асимптотага ёки W—W вертикал уринмaga эга; 3) сув сатҳи чизигининг бўртиб чиққан (выпуклость) томони қәёкқа қаратилган (пастгами ёки

7.28-расм.
4) ҳар хил эгри чизиклар учун Э нинг микдори сув окимининг йўналиши бўйича қандай ўзгариб боради.

Юқорида қўриләётган эгри чизиклар ҳолати биз қайси ўзона белгиланган сув сатхини олишими зиға боғлик; a зонадами, b зонадама ёки c зонадами. Масalan, 7.27- расмда кўрсатилгандек, ўзанда бирон-бир тўсик пайдо қилдик дейлик. Бунинг натижасида сунъий равишда ўзанда белгиланган сув чукурлғи пайдо бўлди ва тўсик олдида B нуктасини олдик, у a зонасида ётади. Натижада a II шаклли ЭЭССЧ ҳосил бўлади (7.26 ва 7.27- расмларга қаранг). Худдишу усулда b II (7.28- расм) ва c II (7.29- расм) шаклдаги ЭЭССЧ ларини олишими мумкин.

Учичи ҳолат. (7.83) шарт билан характеристикучи ҳолат. Бу ҳолатда 7.30- расмда кўрсатилгандек, иккита ЭЭССЧ мавжуд бўлади:

7.30-расм.
7.31-rafta.

\[h_0 = h_{kr} \text{ ва } i = i_{kr}. \]

Бу ҳолда \(N-N \) ва \(K-K \) чизиклари бир-бирин билан кўшилиб \(b \) зонаси йўқ бўлади. Бу ёрда фақат иккита \(a \) ва \(c \) зоналари қолади. Шунтага қараб бу ёрда иккита ЭЭССЧ ни оламиз, улар \(a_{iii} \) ва \(c_{iii} \) шакллари бўлиб, икки хил алоҳида оқимлари ифодалайди. \(a_{iii} \) шаклли ЭЭССЧ қуйидагича характеристканади:

\[h > h_{kr} = h_u. \] (7.100)

\(c_{iii} \) шаклли ЭЭССЧ учун эса

\[h < h_{kr} = h_v. \] (7.101)

2°. Ўзан тубининг нишаби \(i = 0 \) (горизонтал ҳолдаги ўзан). Нотекис илгариланма ҳароат дифференциал тенгламасининг учиччи кўринишни ўрганиб чиқсак, \(i = 0 \) бўлганда, 7.31- расмда қурсатилгандек, биз икки ЭЭССЧ мавжуд эканлигини биламиз. Улар: эгри пасайма \(b_0 \) ва эгри кўтарилма \(c_0 \). Бу ҳолда \(h_0 = \infty \) бўлади, шунинг учун \(a \) зонаси йўқ бўлиб кетади (яъни \(N-N \) чизиги ўзанинг туби чизиги \(T-T \) дан чексиз масофада жойлашган бўлади). Бу ёрда фақат икки \(b \) ва \(c \) зоналари қолади. Бу иккада зоналарда \(b_0 \) шаклли эгри пасайма ва \(c_0 \) шаклли эгри кўтарилмалар мавжуд.

3°. Ўзан тубининг нишаби \(i < 0 \) (тесқари нишабли ўзан). Бу ёрда ҳам фақат иккита ЭЭССЧ ни оламиз; улар \(b' \) шаклли эгри пасайма ва \(c' \) шаклли эгри кўтарилмалар (7.32-расм).

Хулоса: призматик ўзанда барқарор нотекис илгариланма ҳароатдаги оқимда биз ҳаммаси бўлиб ЭЭССЧ нинг
7.32-рақ.

7.8-§. СУЮҚЛИҚ ОҚИМИНИНГ БАРҚАРОР НОТЕКИС ИЛГАРИЛМАҲА ХАРАКАТИНИНГ ДИФФЕРЕНЦИАЛ ТЕНГЛАМАСИНИНГ ИККИНЧИ КЎРИНИШИНИ ИНТЕГРАЛЛАШ УЧУН КУЛАЙ ХОЛАТГА КЕЛТИРИШ

1. Призматик ўзан тубининг нишаби $i > 0$ бўлган ҳол. (7.36) тенгламанинг ўнг томони махрażини ќараб чиқа-миз

$$M = 1 - \frac{\alpha Q^2}{g} \frac{B}{\omega^3} = 1 - \frac{\alpha(iK_0^2)}{g} \frac{B}{\omega^2} \frac{C^2 R}{g},$$ \hspace{1cm} (7.102)

бу әрда

$$\omega^2 C^2 R = K^2 \text{ ва } \frac{\omega}{R} = \chi.$$ \hspace{1cm} (7.103)
<table>
<thead>
<tr>
<th>Каталаглари</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Эрти пасайма</td>
<td>b_1</td>
<td>a_1</td>
<td>c_5</td>
<td>a_n</td>
<td>b_n</td>
<td>c_n</td>
<td>a_m</td>
<td>c_m</td>
</tr>
<tr>
<td>Эрти пасайма</td>
<td>$h_0 > h_\infty$</td>
<td>$h_0 < h_\infty$</td>
<td>$i > i_0$</td>
<td>$i < i_0$</td>
<td>$i = i_0$</td>
<td>$i < 0$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Эрти кутармалар</th>
<th>a_0</th>
<th>b_0</th>
<th>c_0</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Эрти пасайма</td>
<td>$h_0 = h_\infty$</td>
<td>$h_0 = \infty$</td>
<td>$h_0 = \infty$</td>
<td>$h_0 = \infty$</td>
<td>$h_0 = \infty$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Эрти кутармалар</th>
<th>a_0</th>
<th>b_0</th>
<th>c_0</th>
<th>β</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Эрти пасайма</td>
<td>$h_0 = h_\infty$</td>
<td>$h_0 = \infty$</td>
<td>$h_0 = \infty$</td>
<td>$h_0 = \infty$</td>
<td>$h_0 = \infty$</td>
</tr>
</tbody>
</table>
булгани учун (7.102) тенгламани қуйидагича ёзиш мумкин

\[m = 1 - \frac{\alpha i K_0^2}{g} \frac{BC}{\chi K^2} = 1 - \frac{\alpha i C^2}{g} \frac{B}{\chi} \frac{K_0^2}{K^2}. \] (7.104)

Белги қабул қиламиз:

\[\frac{\alpha i C^2}{g} \frac{B}{\chi} = j; \] (7.105)

у ҳолда (7.104) қуйидаги кўринишга эга бўлади

\[m = 1 - j \frac{K_0^2}{K^2}. \] (7.106)

Ўзан кенг бўлса, унда \(B \approx \chi \) деб қабул қилинади ва (7.105) қуйидагича кўринишда бўлади:

\[j = \frac{\alpha i C^2}{g}. \] (7.107)

(7.36) га (7.74) ва (7.106) тенгламаларни қўйиб чиқсак, қуйидагини оламиз

\[\frac{dh}{ds} = \frac{1 - \frac{K_0^2}{K^2}}{1 - j \frac{K_0^2}{K^2}} i. \] (7.108)

Қўшимча белги киритамиз:

\[\frac{K}{K_0} = \kappa, \] (7.109)

буерда \(\kappa \) — нисбий сув сарфи модули. Бубелгини қабул қилиб, (7.108) тенгламанинг ўрнига қуйидаги тенгламани оламиз:

\[(IV)_{прозматик, i > 0} \quad \frac{dh}{ds} = \frac{k^2 - 1}{k^2 - j} i. \] (7.110)

\[(IV)_{прозматик, i > 0} \] тенглама прозматик ўзандаги суюқликнинг барқарор нотекис илгариланма ҳаракатининг диф-
2. Призматик ўзан тубининг нишаби \(i = 0 \) бўлган ҳол.
Бу ёрда (7.41) тенгламан ҳушли юкоридаги бандди кўрсатилгандек қараб чиқамиз, натижада куйидағи тенгламани оламиз:

\[
(IV)_{	ext{приматик; } i = 0} \quad \frac{dh}{ds} = -\frac{1}{\kappa_{kr} - j_{kr}} i_{kr}, \tag{7.111}
\]

бунда \(i_{kr} \) — критик нишаб; \(\kappa_{kr} \) — янги белги, у куйидағича ифодаланади:

\[
\kappa_{kr} = \frac{K}{K_{kr}}; \tag{7.112}
\]

бу ёрда \(K_{kr} \) — ўзандаги окимнинг чукурлиги критик чукурликка тенг бўлгандағи критик сув сарфи модули. Бунда \(j_{kr} \), куйидағича ёзилади:

\[
j_{kr} = \frac{\alpha i_{kr} C^2}{g} \frac{B}{\chi}, \tag{7.113}
\]

бу ёрда \(C, B, \chi \) лар ҳақиқий оким чукурлиги \(h \) орқали аникланади (kritik чукурлиги \(h_{kr} \) орқали эмас). Ўзан кенг бўлса, яъни \(B \approx \chi \), у ҳолда

\[
j_{kr} = \frac{\alpha i_{kr} C^2}{g}; \tag{7.114}
\]

Агар бу (7.114) тенгламага \(i_{kr} \) нинг қийматини (7.67)дан олиб ўрнига қўйсак, у ҳолда \(h = h_{kr} \) бўлади. Ўзаннинг кенглиги жуда катта бўлган ҳолда, деб қабул қилсак

\[
j_{kr} = \frac{C^2}{C_{kr}^2}; \tag{7.115}
\]

бундан кўриниб турардики, юкоридаги айтилган ҳолат учун сувнинг чукурлиги \(h \) ўзгариши билан А. Шеzi коэффициенти \(C \) нинг ўзгаришини назарда тутмасак, ҳушнингдек кенг ўзан \(B \approx \chi \) учун \(j_{kr} \) нинг миқдори бирга тенг бўлади:

345
3. Призматик ўзан тубининг нишаби \(i < 0 \) бўлган ҳол. Бу ерда эса (7.42) тенгламани қараб чиқамиз, натижада қуйидаги тенгламани оламиз

\[
(IV)_{приматик; \ i < 0} \quad \frac{dh}{ds} = -\frac{\kappa^2 + 1}{\kappa^2 - j'} j', \tag{7.117}
\]

бу ерда

\[
\kappa' = \frac{K}{k_0}, \tag{7.118}
\]

ва

\[
j' = \frac{au'C^2}{g} \frac{B}{\chi}. \tag{7.119}
\]

бунда \(j' \) — ўзан туби нишабининг мутлақ қиймати: \(j' = |j| \). Бу ерда ўзан туби нишаби манфий, яъни \(i < 0 \) бўлгани учун масалани ечишда унинг фақат мутлақ қиймати олинади

\[
i' = |i|, \tag{7.120}
\]

\(K_0' \) — сувнинг ўнгдан чапга текис илгариланма ҳаракат қилаётти деб фараз қилган ҳолдаги (7.33-рasm) сув сарфи модули (ҳақиқатда, эса сув чапдан ўнгга окъяти, бу ерда \(N' - N' \) ва \(k_0' \) лар ҳаёлий, улар фақат тенгламани олиш учун керак).

Баркарор нотекис илгариланма ҳаракатнинг дифференциал тенгламасини интеграллашнинг бир неча усуллари мавжуд. Улардан Бресс, Толькмитт, Дюпюй-Рюльман, Батикль, Б. А. Бахметев, В. И. Чарномский, Н. Н. Павловский, И. И. Леви, А. Н. Рахманов, Вен Те Чау, М. Д. Чертоусов ва бошқалар-нинг усуллари амадда кенг қўлланилмоқда. Биз қуйида фақат Б. А. Бах-
7.9- §. ДАРАЖА КЎРСАТКИЧЛИТЕНГЛАМА, СУВ САРФИ МОДУЛЛАРИНИСБАТИ УЧУН. ЎЗАННИНГ ГИДРАВЛИК КЎРСАТКИЧИ

Нотекис илгариланма ҳаракатнинг дифференциал тенгламасини интеграллашда Б. А. Бахметев алоҳида маъсус даража кўрсаткичли тенгламани (сув сарфи модуллари нисбати учун) қўллаб масалани ечган. Қуйида шу усулни мукаммал қараб чиқамиз.

Маълумки, нотекис илгариланма ҳаракат тенгламасига \(IV_{призматік} > 0 \) ёки (7.110) тенгламага қарабнг] масалан, сув сарфи модуллари \(\frac{K^2}{K_0^2} = \kappa^2 \) нисбати қиради. Бу нисбат етарли даражада мураккаб ҳолда \(h \) га боғлик, чунки

\[
K = \omega C \sqrt{R},
\]

(7.121)

бу ғерда \(\omega \), \(C \), \(R \) лар \(h \) билан мураккаб ҳолда боғланган. Щунинг учун барқарор нотекис илгариланма ҳаракатнинг дифференциал тенгламаси \(IV \) қўришишининг интегрални топиш анча мураккаб. Ўқоридаги масаланинг ечимини ёнгиллаштириш учун Б. А. Бахметев А. Шези формуласи ўрнига (7.110) тенгламани интеграллаш учун мазкур даража кўрсаткичли тенглама таклиф этган, бунда \(K \) билан \(h \) ўртасидаги боғланиш ниҳоятда содалаштирилган, у қуйидала қўринисида ёзилади:

\[
\left(\frac{K'}{K} \right)^2 = \left(\frac{h'}{h} \right)^x,
\]

(7.122)

бу ғерда \(h' \) ва \(h' \) — ўзаннинг иккита иктиёрий олинган кўндаланг кесимларидаги сувнинг чукурликлари; \(K' \) ва \(K' \) — ёш кесимлардаги чукурликларга тегишили сув сарфи мо-
7.34-расм.

dullari (7.34a- rasm); x — daража кўрсаткичи ўзаннинг гидравлик кўрсаткичи дейилади. Бу кўрсаткич фат ўзан қундааланг кесимининг шаклига боғлик, ўзандаги сувнинг чукурлигига боғлик эмас.

Агар \(K^* = K \) деб ифодаласак, у ҳолда (7.122) тенгламани куйидагича кўчириб ёзиш мумкин

\[
K = \frac{K'}{\sqrt{(h')^x}}, \quad (7.123)
\]

бунда

\[
\frac{K'}{\sqrt{(h')^x}} = A = \text{const}. \quad (7.124)
\]

(7.122) тенгламани интегралласак, у ҳолда

\[
x = \frac{2 \log K^* - 2 \log K'}{\log h^* - \log h'}. \quad (7.125)
\]

Шундай айтиб ўтиш керакки, (7.123) тенглама бир хил «тўғри» шакли ўзанлар учун (7.121) тенглама сингари назариий «аник» ечимни билмайти.

348
унун «аник» ечимини бермаслиги ва (7.121) тенгламадан катта фарқ қилиши мумкин.

(7.122) тенгламани, амалда учрайдиган узан-дармийин кўндаланг кесимлари учун қўллашда мазкур графикини чизиш лозим, у логарифмик анаморфоза деб аталади (7.34 б-расм). Бу график ҳар бир ӯзан-диннинг берилиган кўндаланг кесими учун аложила тузилади. 7.34 б-расмдаги графикинг ордината уқида $lg h$ горизонтал үқида эса $2lg K$ жойлашган. Бу графика қийки чизик мавjud: I (эгри) ва II (тўғри) чизиклар, уларнинг ҳар бири

$$2 \ lg K = f(lgh),$$

тенгламаси ёрдамида тузилаган. Бу графика I чизик эса (7.121) тенглама ёрдамида тузилаган. Бу графики тузалганда шу чизик учун h га ҳар хил қийматлар бериб бориб, lgh ни ва $2lg K$ ни ҳисоблаймиз [K ни (7.121)тенгламадан шилдаймиз]. Бу I чизик А.Шези чизилган деб аталади. (7.34 б-расмдаги I чизик). II чизик бу тўғри (пунктир) чизик. Бу чизикни тузиш учун (7.122), яъни даража кўрсаткичли тенгулмадан фойдаланилади (7.34 б-расмдаги II чизик).

Бу ерда қуйидатича мулоҳаза қилдимиз. Барқарор нотекис илгариллама ҳаракатнинг дифференциал тенгламаси-ни интеграллеш учун даража кўрсаткичли тенгламани (7.122) $i > 0$ бўлган ҳол учун Б. А. Бахметев усулига биноан қуйидатича кўчириб ёзамиз

$$
\left(\frac{K}{K_0} \right)^2 = \left(\frac{h}{h_0} \right)^x, \quad (7.127)
$$

бу ерда h — окимнинг иктиёрий кўндаланг кесимидаги сувнинг ўртача чукурлиги; h_0 — нормал чукурлик (А. Шези формуласи ёрдамида аникланади); K_0 — нормал чукурликка тегишли сув сарфи модули. (7.127) тенгламанин интегралласак, унда

$$
2 \ lg K = (2 \ lg K_0 - x \ lg h_0) + x \ lg h. \quad (7.128)
$$

(7.128) тенгламадан фойдаланиб, II чизикни қурамиз. Бу тўғри чизик бўлиб, уни Б. А. Бахметев чизиги дейилади. II
чисик 7.34 б-рамсда кўрсатилган дек, албатта I чизикдаги 0 нуктадан ўтиши шарт, унинг координаталари \(\lg h_0 \) ва 2\(\lg K_0 \). Шундай қилиб, графики (7.34 б-рамс) ёки бошқача қилиб айтганда, логарифмик аноморфозани тузиб, I чизик (A. Шезги чизиғи) ва II чизик (B. А. Бахметев чизиғи) ларни ташкил этганда кейин қўринадики, агар шу графика II тўғри чизик (I чизикдаги) O нукта орқали яхтирий бурчак коэффициенти \(\theta \) ни ташкил этиб ўтса, бу \(\theta \) бурчак бизга шу қаралаётган ўзан учун \(x \) нинг қийматини беради. II тўғри чизик I эгри чизиққа яқин жойлашса, у ҳолда қаралаётган ўзани, даража кўрсаткичлари (7.122) тенглама ёрдамида ҳисоблаш маъкун деб ҳисобланади, яъни шу ўзан учун Б. А. Бахметев усулини қўллаш мумкун бўлади. Агар I эгри А. Шезги чизиғи ўзининг ғэрилиги трафайли II тўғри чизикдан узоқлашиб кетса, у ҳолда Б. А. Бахметев усулини қўллаш мумкун эмас. Б. А. Бахметев усули қўллашни ўзини бўлган ҳолда, шу қаралаётган ўзан учун гидравлик кўрсаткич \(x \) нинг қийматини шу қурилган логарифмик аноморфозадан фойдаланиб аниқланидир. Бунинг учун куйидаги иш тутамиз:

а) I эгри А. Шезги чизиғида O нуктани белгилаймиз (у \(\lg h_0 \) ва 2\(\lg K_0 \) координаталари орқали аниқланадиган нукта); б) шу I эгри чизиққа \(a \) ва \(b \) нукталарини белгилаймиз, улар \(\lg h_1 \) ва \(\lg h_2 \) ларга жавоб беради; бу ерда \(h_1 \) ва \(h_2 \) — ўзандаги нотекис илгариланма ҳаракатнинг узунлиги бўйича бошланган ва охирги чукурлиқлар (яъни қиймининг ЭЭССЧ нинг бошланган ва охирги чукурлиқлари); в) O нуктаси орқали II тўғри Б. А. Бахметев чизиғи ўта-ди ва у чизик I эгри чизиғидаги \(a \) ва \(b \) нукта оралигидаги бўлакка яқин жойлашиш ёки керак (бошқача қилиб айтганда II чизик I чизиқнинг \(ab \) бўлагида унга яқин жойлашиш ёки керак);

г) \(x \) нинг қиймати II тўғри Б. А. Бахметев чизиғининг бурчак коэффициентидек аниқланади:

\[
x = \tan \theta,
\]
(7.129)

бу ерда \(\theta \) — 7.34 б-рамсда кўрсатилган бурчак. Энди Б. А. Бахметевни даража кўрсаткичлари тенгламасидан фойдаланиб қуйида нотекис илгариланма ҳаракатнинг дифференциал тенгламасини интеграллаш усулларини қараб чиқа-миз.

350
§. СУЮҚЛИК ОҚИМИНИНГ БАРҚАРОР НОТЕКИС ИЛГАРИЛАНМА ХАРАКАТИНИНГ ДИФФЕРЕНЦИАЛ ТЕНГЛАМАСИНИ Б. А. БАХМЕТЕВ УСУЛИДА ИНТЕГРАЛЛАШ

1. Ўзап тубининг пишаби \(i > 0 \) бўлган ҳол (тўғри пишаб-дан ўтган). Биз юқорида барқарор нотекис илгариланма харақатининг дифференциал тенгламаси (IV) тузувчи: \(i > 0 \) кўринишини олган эдик, у қуйидагича:

\[
\frac{dh}{ds} = \kappa^2 - 1 \ j. \tag{7.130}
\]

(7.130) тенгламани интеграллаш учун Б. А. Бахметевнинг сув сарфи модуллар нисбати тенгламаси (7.127) ни қуйидагича қўчириб ёзамиз

\[
\kappa^2 = \eta^x, \tag{7.131}
\]

бу ерда

\[
\kappa = \frac{K^2}{K_0^2} \ ва \ \eta = \frac{h}{h_0}, \tag{7.132}
\]

бунда \(\eta \) — нисбий чуқурлик. (7.131) тенгламани (7.130) тенгламага кўйсак

\[
h_0 = \frac{d\eta}{ds} = \frac{\eta^x - 1}{\eta^x - j} \ j. \tag{7.133}
\]

бу ерда

\[
h_0 d\eta = dh. \tag{7.134}
\]

(7.133) ни қуйидагича қўчириб ёзамиз

\[
\frac{i}{h_0} \ ds = \frac{\eta^x - j}{\eta^x - 1} \ d\eta = \left(1 - 1 + \frac{\eta^x - j}{\eta^x - 1}\right) d\eta, \tag{7.135}
\]

бундан қуйидагини оламиз

\[
\frac{i}{h_0} \ ds = d\eta - \frac{1 - j}{1 - \eta^x} \ d\eta. \tag{7.136}
\]

Энди расмга мурожаат этамиз. 7.35- расмда оқимнинг узунлиги бўйича кесими келтирилган, бунда \(AB \) қидирла-
ётган эркин эгри сув сатҳи чизиғи. Маълумки, барқарор нотекис илгариланма ҳаракатнинг дифференциал тенгламаси окимнинг иҳтиёрый элементар узунлиги dS учун тузиғлан эди. 7.35-расмда окимнинг 1–1 ва 2–2 кўндаланг кесиларини белгилаймиз, ульарнинг оралниг l бўлсин, 1–1 кесим 2–2 кесимдан суюқлик окимнинг йўналиши бўйи-ча юқорида жойлашган. Бундан бўён 1–1 кесимга теғишили гидравлик элементларни «1» индекси ва 2–2 кесимга теғишили гидравлик элементларни «2» индекси билан ифодалаймиз.

Шундан кейин (7.136) тенгламани 7.35-расмда кўрсатилгандек 1–1 кесимдан 2–2 кесимгақа интеграллаймиз

$$\frac{I}{h_0} (S_2 - S_1) = \eta_2 - \eta_1 - \int_{\eta_1}^{\eta_2} \left[\frac{l-i}{l-x} \right] d\eta.$$ (7.137)

бу ерда

$$\eta_1 = \frac{h_1}{h_0} \text{ ва } \eta_2 = \frac{h_2}{h_0}.$$ (7.138)

Ҳисоб-китобларга қараганда j сувнинг чуқурлиги h нинг ўзгариши билан жуда кам ўзгарар экан, шунинг назарда тутган ҳолда (1 – j) ни интегралдан ташқарига чиқаришимиз мумкин, бу ерда j қандайдир ўртача қийматга эга деб қабул қилиб, бундан кейин j ни \bar{j} деб белгилаймиз. Қўшимча белги

$$S_2 - S_1 = l.$$ (7.139)

352
(7.139) тенгламани назарда тутган χолда (7.137) тенглама урнига қуйидагини оламиз

\[
\frac{IL}{h_0} = \eta_2 - \eta_1 - (1 - \bar{j}) \int_1^{\eta_2} \frac{d\eta}{1-\eta^x},
\]

(7.140)

Қаралаётган ўзан учун \(x\) ни ўзгармас, яъни

\[
x = \text{const},
\]

(7.141)
dеб қабул қилсак (7.140) тенгламадаги интеграл остидаги боғланиши (функцияни) факат \(\eta\) функцияси деб, интегралнинг ўзини қуйидагича ёзамиз

\[
\int \frac{d\eta}{1-\eta^x} = \varphi(\eta) + C,
\]

(7.142)
бу ерда \(C\) — интегралашнинг ихтиёрий ўзгармас сони. (7.142) тенгламадан фойдаланиб (7.140) тенгламани қуйидагича ёзиш мумкин

\[
\frac{IL}{h_0} = \eta_2 - \eta_1 - (1 - \bar{j}) [\varphi(\eta_2) - \varphi(\eta_1)],
\]

(7.143)
(7.143) тенглама окимнинг \(AB\) ЭЭССЧнинг тенгламаси, у окимнинг барқарор нотекис илгарилишма ҳаракатининг тенгламаси деб аталади ёки Б. А. Бахметев тенгламаси дейилади (ўзан туби нишаби \(i > 0\) бўлган χол учун). (7.143) тенгламадан фойдаланиб қуйидаги амалий масалаларни ечиш мумкин:

а) ўзаннинг узунлиги бўйича ораслиги \(l\) бўлган 1–1 ва 2–2 кесимлар белгиланган. Шу кесимларда окимнинг чукурликлари \(h_1\) ва \(h_2\). Чукурлик \(h_1\) берилаган, \(h_2\) ни анниклаш керак;

б) окимнинг иккада чукурлиги \(h_1\) ва \(h_2\) берилаган. Иккада кесим ораслиги / анниклансин;

в) белгиланган окимнинг қўндаланг кесимида сувнинг чукурлиги \(h_1\) (ёки \(h_2\)) берилаган, \(AB\) ЭЭССЧни қуриш керак.

2. Ўзан тубининг нишаби \(i = 0\) бўлган χол (горизонтал χолдаги ўзан). Бу χолда даража қўрсаткичили тенглама нисбий сув сарфи модуллари учун қуйидагича кўчириб ёзилади:

\[
\left(\frac{K}{K_{\text{кр}}} \right)^2 = \left(\frac{h}{h_{\text{кр}}} \right)^x,
\]

(7.144)

23—К-24
353

www.ziyouz.com kutubxonasi
ёки бошқача кўринишда

\[\kappa_{kr}^2 = \xi^x, \] \hspace{1cm} (7.145)

бу ерда \(\kappa_{kr} \) — нисбий сув сарфи модули

\[\kappa_{kr} = \frac{K}{K_{kr}}, \] \hspace{1cm} (7.146)

\(\xi \) — нисбий чукурлик

\[\xi = \frac{h}{h_{kr}}. \] \hspace{1cm} (7.147)

Бу ерда ҳам, юкоридаги каби (7.111) тенгламадан фойдаланиб (IV)празматик; \(i < 0 \) бўлган ҳол учун нотекис илгариланма ҳаракатнинг тенгламасини оламиз:

\[\frac{h_{kr}l}{h_{kr}} = (\bar{j}_{kr} - 1)(\xi_2 - \xi_1) - [\Phi(\xi_2) - \Phi(\xi_1)]_{i=0}. \] \hspace{1cm} (7.148)

3. Ўзан тубининг нишаби \(i < 0 \) бўлган ҳол (тескари нишабли ўзан). Бу ҳолда ҳараж бақшикчили тенглама нисбий сув сарфи модуллари учун қуйидагича қўчириб ёзилади

\[\left(\frac{K'}{K_0} \right)^2 = \left(\frac{h}{h_0} \right)^x, \] \hspace{1cm} (7.149)

ёки бошқача кўринишда

\[\kappa'^2 = \zeta^x \] \hspace{1cm} (7.150)

бу ерда \(\kappa' \) — нисбий сув сарфи модули; \(\zeta \) — нисбий чукурлик;

\[\kappa' = \frac{K'}{K_0}; \quad \zeta = \frac{h}{h_0}. \] \hspace{1cm} (7.151)

(7.117) тенгламадан фойдаланиб (IV)празматик; \(i < 0 \) бўлган ҳол учун нотекис илгариланма ҳаракат тенгламасини оламиз:

\[\frac{\bar{j}_{kr}l}{h_0} = -(\xi_2 - \xi_1) + (1 + \bar{j}) - [\Phi(\xi_2) - \Phi(\xi_1)]_{i=0}. \] \hspace{1cm} (7.152)
(7.143), (7.148) va (7.152) tenglamalar B. A. Baxmetov tomonidan 1911-1914 yilda kashf etilgan.

7.11-§. SUYOLIK OKIMINING BARQAROR NOTEKIS
ILGARIYANMA KHAQATNING DIFFERENTSIAL
TENGGLAMASINI V. I. CHARNOMSKII USULIDA
INTEGRALLASH

V. I. Charnomskii usuli ihtiyorli shakldagi (prizmatik
cuqim poprizmatik)\(^1\) yuzanlar uchun ullaqiniladi. Bu usul yuzin-
ging shu hosassi bilan bo'shka usslardan farq qiladi.
Ummumiy hohl uchun barqaror notekis ilgarilamanha xarakat-
ing differentsial tenglamasi [(7.31) tenglamaga kaarang] nisbatan muvakka.
Shunga karamasdan V. I. Charnomskii
okimning ESSCCH ni qurisht uchun D. Berunli tenglamasini ullaqilab. Buning uchun uzan-
ing uzunligi buyicha uni bir necha (juuda kichik) aloqida
bulaqlariga builib oлади. Buqaklarning uzunligi qandiga kich-
kich bulaq qisob-kitob shunchaliq tujiri va aniq bulaadi,
chunki shunday kiliyangan uznanning tubi va suv sathchi shakl-
lari (ularning nislabi va tubinining g'adir-bu'urliqlari) ta-
biy qolgan yaxinroq bulaadi.

Furaz qilaylik, bizga berilgan: kanaalning uzani, suv
sarфи Q va suvning chuquirligi \(h_n\), u kanaalning o'qiradi-
gi \(n-n\) kessim uchun olingan (7.36-rasm). AB ESSCCH ni qurisht
uchun uzunligi \(l\) bulaq kanaali aloeqida (nisbatan kichik)
bulaqlariga builib ciqamiz. Bunida xar bir bulaqning uzun-
ligi \(l\) bulaq, ajratilgan bulaqlarini aloeqida xarab ci-
qamiz (suquklik okimining yuqinliqiga xarshi). Awwalo I
bulaqini xarab ciqamiz, keyin II bulaqini, keyin III
bulaqini va hozazo. Masalan, \(M\) bulaqini xisoblashta \(m-m\)
kessimdagi suvning chuquirligi \(h_m\) ini aniqlaymiz (bunda
\(m + 1\) kessimdagi suvning chuquirligi \(h_{m+1}\) va \(m\) kessim bilan
\(m + 1\) kessim oraliqini \(l_m\) kiyimatlari berilgan). Xuddi shu
yod bilan, kemakot chiqaraviy kessimlar [(\(n-1\), (\(n-2\),
..., (2-2), (1-1)]da suvning chuquirliklarni aniqlash mumkin.
Keyin suv kessimlarda aniqlanan chuquirliklarni
yuriga kuyib ciqib, suv balandliklardagi nuktalarini

\(^1\) Uzan uzunligi buyicha kengayishi qani toraiishi mumkin.
7.36-рasm.

чизиқ билан бирлаштириб чиқсак, бизга керакли бўлган АВ ЭЭССЧ ни оламиз.

Мисол учун M бўлганни қараб чиқамиз (7.36-рasm), бу M бўлғи m ва $m+1$ кўндаланг кесимлар билан чегараланган. $m+1$ кесимда ўзан тубининг энг пастки нуктасидан O—O таққослаш текислигини ўтказамиз ва Д. Бернулли тенгламаси ёрдамида m ва $m+1$ кўндаланг кесимларини бирбери билан боғлаб чиқамиз

$$il_m + h_m + \frac{\alpha v_m^2}{2g} = h_{m+1} + \frac{\alpha v_{m+1}^2}{2g} + \Delta h_i,$$ (7.153)

бу ерда il_m — канал ўзанининг тубини m кесимдан $m+1$ кесимигача оралиқда пасайиш, v_m ва v_{m+1} — окимнинг m ва $m+1$ кўндаланг кесимлар юзасининг майдони бўйича тегишил ўртача тезликлари; Δh_i — окимнинг m кесимдан то $m+1$ кесимгача бўлган l_m масофада йўқотилган напор. Ўқорида (7.2-§ га қараш) ишқаланиш нишаби i_f деган тушунча киритилган эди [(7.14) тенглама], у қўйидагича:

$$i_f = \frac{v^2}{C^2 R}.$$ (7.154)

Бу (7.154) тенгламадан фойдаланиб, йўқотилган напор Δh_i ни қўйидагича ёзиш мумкин.
\[\Delta h_f = \bar{i}_f l_m, \]
(7.155)

Bu erda \(\bar{i}_f \) — uzanninng \(l_m \) uzunliyi buyicha urchacha iskachaninng niishabdi. (7.155) tenglamani kullab, (7.153) D. Bernuulli tenglamasini kuchirib ezmiz

\[il_m + \left(h_m + \frac{\alpha v_i^2}{2g} \right) = \left(h_{m+1} + \frac{\alpha v_{i+1}^2}{2g} \right) + i_f l_m; \]
(7.156)

\[l_m (i - \bar{i}_f) + \left(h_m + \frac{\alpha v_i^2}{2g} \right) - \left(h_{m+1} + \frac{\alpha v_{i+1}^2}{2g} \right) = 0. \]
(7.157)

(7.157) tenglamani \(l_m \) ga nisbatan echsak

\[l_m = \frac{\Theta_{m+1} - \Theta_m}{i - \bar{i}_f}, \]
(7.158)

Bu erda \(\Theta_m \) va \(\Theta_{m+1} \) — okimning \(m \) va \(m + 1 \) kesimlariining soliishirmo energiyasi:

\[\Theta_m = h_m + \frac{\alpha v_m^2}{2g}; \quad \Theta_{m+1} = h_{m+1} + \frac{\alpha v_{m+1}^2}{2g}; \]

\(\bar{i}_f \) ning mikdori quyidagi ikki formulaning biridan aniqlanadi.

a) \[\bar{i}_f = \frac{1}{2} (i_{f_m} + i_{f_{m+1}}), \]
(7.159)

Bu erda \(i_{f_m} \) va \(i_{f_{m+1}} \) — okimning \(h_m \) va \(h_{m+1} \) chukurliklariga elga bulgan \(m \) va \(m+1 \) kesimlar uchun aniqlangan iskala-nish niishabdi.

b) \[i_f = \frac{\bar{v}^2}{\bar{C}^2 \bar{R}}, \]
(7.160)

Bu erda \(\bar{v}, \bar{C}, \bar{R} \) — okimning \(m \) va \(m + 1 \) kesimlari uchun urtacha gidravlik elementlar, masalan, urtacha chukurlik uchun

\[\bar{h} = \frac{1}{2} (h_m + h_{m+1}). \]
(7.161)

357
(7.158) тенглама барқарор нотекис илгариланма ҳаракатининг асосий тенгламаси. Бу тенглама В. И. Чарномский тенгламаси деб аталади. Нопризматик ўзанларда окимнинг ЭЭССЧ ни куриш учун (7.158) тенглама итерация усулида ҳечилади. Бунда белгиланган \(m \) кесими учун бир неча чукурликлар \(h_m, h_{m+1}, \ldots, h_m, \ldots \) қабул қилиб, уларнинг ҳар бири учун \(\Theta_m \) ва \(i_f \) қийматлари, ўзоблаимиз. Натижада шундай чукурлик \(h_m \) ни топа-мизки, бунда (7.158) тенглиги бажарилсин. Приматик ўзанларда окимнинг ЭЭССЧ ни ўсилбашлай булиб, у юкорида қўрса-тилгандек, приматик ва нопризматик ўзанлардаги нотекис илгариланма ҳаракатларини ўсилбашлашда жуда қулои ва услуви аҳамиятга эга. Бундан ташқари В. И. Чарномский усули универсал усул бўлиб, у юкорида қўрса-тилгандек, приматик ва нопризматик ўзанларнинг ўтувчи бўлакларини ўсилбашлашда қўлланилади. Қуйида суюқлик окимнинг нотекис ҳаракатининг ЭЭССЧ ни В. И. Чарномский усули билан ўсилбаш ЭҲМ ёрдами билан бажарилади. Бунинг учун (7.158) тенгламани қуйидаги энергетик шаклда кўчирibi ёзамиз

\[
\frac{d\Theta}{ds} = i - i_f, \quad (7.162)
\]

бундан

\[
ds = \frac{d\Theta}{i - i_f}, \quad (7.163)
\]

ёки \(n \) ва \(n + 1 \) кесимларнинг \(h_n \) ва \(h_{n+1} \) чукурликлари орасидаги узунлик \(s \) ни аниқловчи тенглама

\[
s_{n+(n+1)} = \frac{\Theta_{n+1} - \Theta_n}{i - i_f}, \quad (7.164)
\]

бу ёрда

\[
\Theta_n = h_n + \frac{\alpha}{2g} \frac{Q^2}{K_n^2}; \quad \Theta_{n+1} = h_{n+1} + \frac{\alpha}{2g} \frac{Q^2}{K_{n+1}^2}, \quad (7.165)
\]

\(i \) — ўзан тубининг нишаби;
\(i_f \) — бўлаклардаги ўртача ишқаланиш нишаби:

358
\[i_f = \frac{1}{2} (i_f + i_{f+1}); \quad (7.166) \]

\[i_f = \left(\frac{Q}{\omega W} \right)^2 = \frac{Q^2}{K^2}, \quad (7.167) \]

\[i_{f_n} = \frac{Q^2}{K^2}; \quad i_{f_{n+1}} = \frac{Q^2}{K_{n+1}^2}. \quad (7.168) \]

Юқоридаги тенгламалар икки кесим оралифидаги ўртача чуқурилик ёрдамида ечилади

\[\bar{h} = \frac{1}{2} (h_n + h_{n+1}). \quad (7.169) \]

Потекис ҳаракатни ҳисоблашда ишончли натижа олиш учун қирилаётган ўзвиннинг uzzerлиги бўйича иложи борича кесимлар соинни кўпроқ тайинлаш зарур. У ҳолда ЭЭССЧ uzzerлиги шу қабул қилинган кесимлар ораликлари uzzer-

-Пиннинг йифиндисига тенг

\[L_{	ext{ЭЭССЧ}} = S_{1-2} + S_{2-3} + \ldots + S_{(n-1)+n} + \ldots. \quad (7.170) \]

В. И. Чарномский усулида ЭЭССЧ куриш ҳисоб-китобиннинг хатосини камайтиради, чунки ҳақиқий ўзвиннинг ишқала-"нишни йўринга унинг икки кесим оралифидаги ўртча миқдори қабул қилинган.

\(a. \) Суюқлик окмининг барқарор нотекис илгариланма ҳарака-
канининг нормал чуқурилиши кўл усулида ҳисоблаш на-
мунаси

7.1-масала. Дарёда гидроузел иншооти лойихаланган. Бунга бетондан ва ғрунтан ишланган тўғон киради. Дар-
ёга курилган ушбу тўғон таъсирида юқори бьефда сув кўта-
рилади. Сувнинг кўтарилиши натиҳасида қирғоклар сувга кўмилади. Шу қирғоклар дарёнинг ҳар ҳил жойларида қандай даражада кўмилганни билис учун \(AB \) ЭЭССЧ ни ту-
-шлиц керак. Ундан ташқари \(AB \) ЭЭССЧ нинг дарёдаги (юқори бьефдаги) узурлиги бўйича окмининг чуқурилкларини билис керак. Дарёнинг ўзани майданд қумлардан ташқил топган ва у тахминан трапецеидал шаклда бўлиб, туби-
нинг нишаби \(i = 0,00020 \); ўзан тубининг кенглители \(b = B - 2mh \);
-ўзандаги сув сатхининг кенглители \(B = 200 \) м. \(AB \) ЭЭССЧ охи-
ридинг чукурлиги $h_{\text{окир}} = 95$ м (тўғоннинг олдидағи сувнинг чукурлиги $h_{\text{бетги}} = h_{\text{окир}}$). Дарёдаги сувнинг сарфи $Q = 2000$ м3/с.

Бўлиш. 1. Масалани ечис учун маълумотномадан фойдаланиб: а) ўзаннинг ғадир-будурлигини ифодаловчи коэффициентини аниқлаймиз, у майда кум учун $n = 0,0275$; б) ўзан ён деворининг нишаб коэффициенти $m = 3,0$ (грунт — майда кум учун)ларни оламиз.

2. Керакли сув сарфи модули $K_{\text{керак}}$ ни аниқлаймиз

$$K_{\text{керак}} = \frac{Q}{\sqrt{j_1}} = \frac{2000}{\sqrt{0.0002}} = 141421,40 \text{ м}^3/\text{с}.$$

3. Сувнинг бир неча чукурликлари h ни қабул қиламиз ва шу асосда нормал чукурлик h_o ни аниқлаймиз. Масала итерация усулида ечилади.

4. Ҳар бир қабул қилинган h чукурликлар учун окимнинг тегишили гидравлик элементларини b, ω, C, χ, R ва бошқаларни ҳисоблаймиз. Охирида сув сарфи модули K ни қуйидаги формула ёрдамида ҳисоблаймиз

$$K = \omega C \sqrt{R},$$

ва уни $K_{\text{керак}}$ билан такқослаймиз. Агар $K = K_{\text{керак}}$ бўлса масаланинг ечими олинган бўлади. У ҳолда $h = h_o$ бўлади. Ҳисоб-китобни жаҳвал шаклида олиб бора́миз (7.2-жадвалга қараб).

<table>
<thead>
<tr>
<th>Тартиб сони</th>
<th>h, м</th>
<th>b, м</th>
<th>ω, м2</th>
<th>χ, м</th>
<th>R, м</th>
<th>C, м3/с</th>
<th>$K = \omega C \sqrt{R}$, м3/с</th>
<th>$K_{\text{керак}} = \frac{Q}{\sqrt{j_1}}$, м3/с</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,0</td>
<td>162,5</td>
<td>165,5</td>
<td>162,82</td>
<td>0,98</td>
<td>36,200</td>
<td>5933,13</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2,0</td>
<td>162,5</td>
<td>337,0</td>
<td>175,15</td>
<td>1,924</td>
<td>41,870</td>
<td>19574,06</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3,0</td>
<td>162,5</td>
<td>514,5</td>
<td>181,47</td>
<td>2,835</td>
<td>45,520</td>
<td>39437,03</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4,0</td>
<td>162,5</td>
<td>698,0</td>
<td>187,79</td>
<td>3,717</td>
<td>48,259</td>
<td>64941,30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5,0</td>
<td>162,5</td>
<td>887,5</td>
<td>194,12</td>
<td>4,572</td>
<td>50,462</td>
<td>95760,10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6,0</td>
<td>162,5</td>
<td>1083,0</td>
<td>200,45</td>
<td>5,404</td>
<td>52,313</td>
<td>131689,23</td>
<td>141421,40</td>
</tr>
<tr>
<td>7</td>
<td>6,5</td>
<td>162,5</td>
<td>1183,0</td>
<td>203,60</td>
<td>5,810</td>
<td>53,138</td>
<td>151526,66</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7,0</td>
<td>162,5</td>
<td>1284,5</td>
<td>206,77</td>
<td>6,212</td>
<td>53,210</td>
<td>172595,90</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>8,0</td>
<td>162,5</td>
<td>1492,0</td>
<td>213,09</td>
<td>7,001</td>
<td>53,319</td>
<td>218393,43</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10,0</td>
<td>162,5</td>
<td>1925,0</td>
<td>225,74</td>
<td>8,527</td>
<td>57,720</td>
<td>324465,65</td>
<td></td>
</tr>
</tbody>
</table>

360

www.ziyouz.com kutubxonasi
Маълумки, ҳисоб-китоб асосида ҳар доим $K = K_{керак}$ келиб чиқавермайди, бунинг учун 7.2-жадвалга асосан $K = f(h)$ графигини тузамиз (7.37-расм). Бу графика $K_{керак} = 141421,40$ қийматини қўйиб, $K = f(h)$ эгри чизиги билан учрашган жойидан ординатага горизонтал ўтказиб, керакли h_0 ни аниклашмиз, $h_0 = 6,26$ м.

5. Шу окимнинг нормал чукурлигини аниклайдан кеийин $h_0 = 6,26$ м унга тегишил гидравлик элементларни ҳисоблаймиз

$$\omega_0 = (b + mh_0)h_0 = (162,5 + 3 \cdot 6,26)6,26 = 1132,7 \text{ м}^2;$$

$$\chi_0 = b + 2h_0\sqrt{1 + m^2} = 162,5 + 2 \cdot 6,25\sqrt{1 + 3^2} = 202,0 \text{ м},$$

$$R_0 = \frac{\omega_0}{\chi_0} = \frac{1132,7}{202,0} = 5,606 \text{ м};$$

$$C_0 = \frac{1}{n} R_0^{1,3}\sqrt{5,606^{1,3}\sqrt{0,00275}} = 52,73 \text{ м}^{0,5}/\text{с};$$

$$v_0 = C_0\sqrt{iR_0} = 52,73 \cdot \sqrt{0,0002 \cdot 5,606} = 1,766 \text{ м}/\text{с};$$

$$Q = \omega_0v_0 = 1132,7 \cdot 1,766 = 2000,0 \text{ м}^3/\text{с}. $$

Энди шу юкоридаги масалани ЭХМ ёрдамида ечамиз ва кўл усули билан такқослаймиз.
7.12- §. ОЧИК ЎЗАНЛARDA ОКИМНИНГ НОТЕКИС ИЛГАРИЛАНМА ХАРАКТАРИНИ В. И. ЧАРНОМСКИЙ УСУЛИДА ЭҲМ ЁРДАМИДА ХИСОБЛАШ

1. Окимнинг нормал чукурлиги h_o ни ЭҲМ ёрдамида хисоблаш.

7.2-масала. Бунинг учун юқорида қул усулида ишланган 7.1-бандидаги масалада берилган гидравлик характеристикаларидан фойдаланамиз.

Ечид. Барқарор текис илгариланма ҳаракатнинг нормал чукурлигини ЭҲМ ёрдамида ҳисоблаш учун ҳисоблаш алгоритми, блок-схемаси ва ҳисоблаш дастурини тузиш керак. Улар қуйида келтирилган (7.38- расм).

A. Масалани ЭҲМ да ҳисоблаш алгоритми

1. Керакли сув сарфи модули аниқланади

$$K_{kerak} = \frac{Q}{J_l}.$$

2. Кетма-кет бир неча сувлар чукурликлари h ни қабул қиламиз, токи ҳисобланган ва керакли (қабул қилинган) сувлар модуллари бир-бирига тенг бўлмаганча, яъни

$$K = K_{kerak}.$$

3. Џар бир қабул қилинган сувлар чукурликлари учун b, ω, χ, R, v, K, Q ва бошқа гидравлик элементлар ҳисобланади.

4. Агар $|K_{kerak} - K| \leq \varepsilon$ (бу ерда ε — илгаритдан тайинланган аниқлик сони) тенгсизлик шартни маъкулланса, у ҳолда масаланинг ечими олинади. Борди-ю, су тенгсизлик шарири бажарилмаса, ундай ҳолда h нинг бошқа яњи қийматини қабул қилиб, су ҳисоблаш алгоритмининг 2-бандидан бошлаб такоран ҳисоблаймиз. Бундай ҳисобни то шу $|K_{kerak} - K| \leq \varepsilon$ тенгсизлик шартни бажарилмаганча ЭҲМ да қайтараверамиз. Шундай қилиб окимнинг барқарор текис илгариланма ҳаракатнинг нормал чукурлигини аниқлаймиз.

5. Окимнинг барқарор текис илгариланма ҳаракатнинг нормал чукурлигини аниқлагандан кейин шу асосда барқарор текис илгариланма ҳаракатга тегишили бошқа гидравлик элементларини, масалан ω, χ, R, C, v, Q ларни ҳисоблаймиз.

Б. Масалани ЭҲМ да ҳисоблаш блок-схемаси (7.38- расм)

362
7.38 - рисунок.
В. Масалани ЭХМда ҳисоблаш дастури*

Дастур асосида талаб қилинган гидравлик элементларнинг қийматлари машинаға қириллади ва машина «ҳисоб» юборилади. Машина дастур бўйича талаб қилинган элементларнинг қийматларини чиқариб беради.

Масалан, юқорида қўйилган масала учун қўйилганларни оламиз:

\[
K_{к} = 141421, 35 \text{ м}^3/\text{с}; \ h_0 = 6,249077 \text{ м}; \ v = 1,7657505 \text{ м/с}; \\
K = 141421, 32 \text{ м}^3/\text{с}; \ \omega_o = 1133,12 \text{ м}^2; \ Q = 2000 \text{ м}^3/\text{с}.
\]

2. Очик ўзанларда оқимнинг баркарор нотекис илгариланма ҳаракатнинг ЭЭССЧ ни В. И. Чарномский усулида ЭХМ ёрдамида ҳисоблаш.

7.3-масала. Масалани В. И. Чарномский усулида ечар эканмиз, унинг ҳисоблаш формуласи тўғрисида озгина ту-шунча бериб ўтиш зарур. В. И. Чарномский усули юқорида айтилганидек, универсал усул бўлиб у нопризматик ўзанлардаги нотекис илгариланма ҳаракатнинг дифференциал тенгламасини энергетик шаклда ечилб, иккита ихтиёрий кесим оради учун тенгламани олган. Масалан 1—1 ва 2—2 кесимлар ва уларга тегишилар \(h_1 \) ва \(h_2 \) чуқурликлари учун

\[S_{1-2} = \frac{\mathcal{E}_2 - \mathcal{E}_1}{\nu_1}, \]

бу ерда \(\mathcal{E}_1 \) ва \(\mathcal{E}_2 \) — оқимнинг 1—1 ва 2—2 кўндаланг кесимларидаги сувнинг тегишилар \(h_1 \) ва \(h_2 \) чуқурликлари учун со-лиштирма энергиялари:

\[\mathcal{E}_1 = h_1 + \frac{\alpha}{2g} \frac{Q^2}{\omega_i^2}; \quad \mathcal{E}_2 = h_2 + \frac{\alpha}{2g} \frac{Q^2}{\omega_2^2}; \]

\(\bar{v}_f \) — ўзаннинг 1—1 ва 2—2 кесимлари орасидаги ўртача иш-қаланиш нишаби

\[\bar{v}_f = \left(\frac{Q}{\Theta \bar{W}} \right)^2; \quad ёки \quad \bar{v}_f = \frac{Q^2}{\bar{R}^2}; \]

* Китобнинг ҳажми чекланганни сабабли бу ерда дастур ва ҳисоблаш формуласини келтириш имконияти бўлмади.
k — сув сарфи модули; W — тезлик модули; Q — сув сарфи.

1. Ўзгармас сон $\frac{Q^2}{2g}$ ни ҳисоблаймиз

$$\frac{Q^2}{2g} = \frac{1.1 \cdot 2000^2}{19.62} = 220000.$$

2. Охирги кўндаланг кесим учун (тўғон олдидаги) асосий гидравлик элементлар ва уларнинг қийматлари ($h_{охир} = h_{бели} = 95,0$ м) қуйидагича ҳисобланади:

оким кўндаланг кесимининг майдони

$$\omega_{охир} = (b_{охир} + m_{охир})h_{охир} = (162,5 + 3 \cdot 95)95 = 42512,5$$ м2;

уқун тубининг кенгллиги

$$b_{охир} = B - 2mh_{а} = 200 - 2 \cdot 3 \cdot 6,249 = 162,5$$ м;

чўлланган периметрининг узунлиги

$$\chi_{охир} = b_{охир} + 2h_{охир}\sqrt{1 + m^2} = 162,5 + 2 \cdot 6,249\sqrt{1 + 3^2} = 763,33$$ м;

гидравлик радиус

$$R_{охир} = \frac{\omega_{охир}}{\chi_{охир}} = \frac{42512,5}{763,39} = 55,69$$ м.

3. Охирги кўндаланг кесим учун (тўғон олдидаги) со- лиштирима энергияни аниклаймиз

$$\omega_{охир} = h_{охир} + \frac{Q^2}{2g} \cdot \frac{1}{\omega_{охир}} = 95,0 + 220000 \cdot \frac{1,0}{42512,5^2} = 95,00032$$ м.

4. ЭЭССЧ ни аниклаш ва уни қуриш учун кейинги ихтиёрий кўндаланг кесимларда ихтиёрий чукурликларни қабул қиламиз ва В. И. Чарнокский усулида шу охирги (тўғон олдидаги) кўндаланг кесимдан то қабул қилинган
кўндаланг кесимгача оралиқ узунлигини аниклаймиз. Бу ёрда $h_{\text{охир}}$ ни h_1 деб қабул қилиб, бошқа кўндаланг кесимларда оқим чукурликларини, масалан h_2, h_3, ... ва ҳоказоларнинг қийматларини бериб бориб, тегишили ораликларнинг узунликиларини В. И. Чарнокский формуласи ёрдамида ҳисоблаймиз. ЭЭССЧнинг бошланиши кўндаланг кесимдаги сувнинг чукурлиги h_0 га яқин бўлиши керак, масалан $h_{\text{башл.}} = h_0 + 0.01$ м; $h_{\text{охир}} = h_{\text{вксп}} = 95$ м. Бундан бўён $h_{\text{башл.}}$ ва $h_{\text{охир}}$ (кесимлар) оралиғидаги чукурликларни бериб бориб, уларга тегишили ораликларнинг узунликларини аниклаймиз. Масалан,

$$
\begin{align*}
 h_2 &= 75 \text{ м;} & h_6 &= 10 \text{ м;} \\
 h_3 &= 55 \text{ м;} & h_7 &= 8 \text{ м;} \\
 h_4 &= 35 \text{ м;} & h_5 &= 6.3 \text{ м;} \\
 h_5 &= 15 \text{ м;} & h_9 &= h_0 + 0.01 \text{ м ва ҳоказо.}
\end{align*}
$$

5. Юқоридағи қурсатилган сувнинг чукурликлари учун асосий гидравлик элементларни ҳисоблаб чиқамиз. Ҳисобкитоб натижаларини 7.3-жадвалга туштирамиз.

6. Охирги ва 2—2 кўндаланг кесимлар оралиги (уларга қараб $h_{\text{охир}}$ ва h_2 чукурликлар) учун ўртака ишқаланиш нишаби қуйидаги формуласдан аникланади

$$
\bar{t}_f = \frac{1}{2}(i_{\text{охир}} + i_f);
$$

бу ёрда

$$
\begin{align*}
 i_{\text{охир}} &= \frac{Q^2}{K^2} = \frac{Q^2}{(b_{\text{охир}} + mh_{\text{охир}} - h_{\text{охир}} - \frac{1}{2}R_{\text{охир}})^2}; \\
 i_f &= \frac{Q^2}{K_f^2} = \frac{Q^2}{(b_2 + mh_2 - h_2 - \frac{1}{2}R)^2};
\end{align*}
$$

7. Охирги ва ундан кейинги кесимлар оралигининг узунлиги қуйидагича аникланади

$$
S_{\text{охир}+2} = \frac{S_2 - S_{\text{охир}}}{i - \bar{t}_f}.
$$

366
<table>
<thead>
<tr>
<th>Тар-тибр сони</th>
<th>h, м</th>
<th>ω, м²</th>
<th>b, м</th>
<th>χ, м</th>
<th>R, м</th>
<th>ᾱ, м</th>
<th>C, м³/с</th>
<th>W, м/с</th>
<th>К, м³/с</th>
<th>i</th>
<th>(\frac{ω_1^2}{2g}), м</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(h_{доп}=h_1=95,0)</td>
<td>42513,50</td>
<td>162,5</td>
<td>763,30</td>
<td>55,69</td>
<td>93,00013</td>
<td>86,500</td>
<td>645,550</td>
<td>27449384,0</td>
<td>0,0002</td>
<td>0,000124</td>
</tr>
<tr>
<td>2</td>
<td>(h_2=75,0)</td>
<td>29062,91</td>
<td>162,5</td>
<td>636,84</td>
<td>45,63</td>
<td>75,00026</td>
<td>82,860</td>
<td>559,860</td>
<td>16269426,0</td>
<td>0,0002</td>
<td>0,000265</td>
</tr>
<tr>
<td>3</td>
<td>(h_3=55,0)</td>
<td>18012,80</td>
<td>162,5</td>
<td>510,35</td>
<td>35,20</td>
<td>55,00069</td>
<td>78,401</td>
<td>465,776</td>
<td>8399933,7</td>
<td>0,0002</td>
<td>0,000691</td>
</tr>
<tr>
<td>4</td>
<td>(h_4=35,0)</td>
<td>9362,69</td>
<td>162,5</td>
<td>383,86</td>
<td>24,39</td>
<td>35,00025</td>
<td>72,397</td>
<td>357,549</td>
<td>3347630,5</td>
<td>0,0002</td>
<td>0,002560</td>
</tr>
<tr>
<td>5</td>
<td>(h_5=15,0)</td>
<td>3112,58</td>
<td>162,5</td>
<td>257,37</td>
<td>12,09</td>
<td>15,02310</td>
<td>62,236</td>
<td>216,433</td>
<td>673666,1</td>
<td>0,0002</td>
<td>0,002310</td>
</tr>
<tr>
<td>6</td>
<td>(h_6=8,0)</td>
<td>1492,04</td>
<td>162,5</td>
<td>213,10</td>
<td>7,00</td>
<td>8,40073</td>
<td>55,319</td>
<td>146,376</td>
<td>218400,5</td>
<td>0,0002</td>
<td>0,100000</td>
</tr>
<tr>
<td>7</td>
<td>(h_{ном}=h_7=6,3)</td>
<td>1132,66</td>
<td>162,5</td>
<td>202,01</td>
<td>5,61</td>
<td>6,42300</td>
<td>52,731</td>
<td>124,857</td>
<td>141421,3</td>
<td>0,0002</td>
<td>0,174000</td>
</tr>
</tbody>
</table>
8. Худди шунингдек, 6- ва 7- бандларида кўрсатилган дек, кейинги кесимларaro бўлаклар учун ўртача ишқа нишаблари i_f ва уларнинг оралиқларининг узунлик лари S_{2-3}, S_{3-4}, ..., $S_{n-бошл}$ ни ҳисобламиз. Ҳисоб-китоб натижаларини 7.4-жалвалга туширамиз.

6. Окимнинг баркарор нотекис илгариланмаҳа ҳаракатини В. И. Чарномский усулида ЭХМ ёрдамида ҳисоблаш намунаси.

7.4-масала. Бу ерда масалани эчишда бериланларни 7.1- масаладан оламиз.

Ўзаннинг узунлиги бўйича сувнинг чуқурлигини ўзганриш қадами

$$\Delta h = (h_{охир} - h_{бошл}) \frac{1}{k_{казам}},$$

бу ерда $k_{казам} = 1, 2, 3, ... h$ — ўзаннинг узунлиги бўйича унинг бўлинган бўлакларининг сони; $h_{бошл} — ЭЭССЧ бошланишидаги сувнинг чуқурлиги. Уни қуйидагича қабул қилиш мумкин*

$$h_{бошл} = h_0 + 0,01 \text{ м},$$

чунки $h_{бошл}$ ҳеч қачон h_0 га тенг бўлмайди, аммо унга ($N-N$ чизигида) яқинлашиб чексизга кетаверади, шунинг учун $N-N$ чизиги ЭЭССЧнинг асимптотаси дейилади.

Юқоридаги масалани ЭХМ ёрдамида эчиш учун ҳисоблаш алгоритми, блок-схема ва ҳисоблаш дастурини тузами (7.39- рasm).

A. Масалани ЭХМда ҳисоблаш алгоритми

1. Интеграллаш қадами ҳисобланади

$$\Delta h = (h_{охир} - h_{бошл}) \frac{1}{k_{казам}}.$$

* Баркарор нотекис илгариланма ҳаракатнинг ЭЭССЧ қайси зонада (a, b ёки c зонада) жойлашшига қараб $h_{бошл}$ ва $h_{охир}$ сув чуқурликлари тайинланади. Масалан, 7.4 масалада a_1 шакл учун $h_{бошл}$ тўғон олида (у, $h_{бошл}$ бўлди), $h_{бошл}$ эса $N-N$ чизигида (h_0 чуқурлиқка) яқинлашган жойда олинади, яъни $h_{бошл} = h_0 + 0,01 \text{ м}.$
<table>
<thead>
<tr>
<th>Хисобланш формулаалари</th>
<th>$h_{max}(h_1) \text{ ва } h_2$</th>
<th>$h_2 \text{ ва } h_3$</th>
<th>$h_1 \text{ ва } h_4$</th>
<th>$h_3 \text{ ва } h_3$</th>
<th>$h_4 \text{ ва } h_3$</th>
<th>$h_5 \text{ ва } h_6$</th>
<th>$h_6 \text{ ва } h_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i_f = \frac{1}{2}(i_{f_n} - i_{f_{n-1}})$</td>
<td>$0,001777 \cdot 10^{-5}$</td>
<td>$0,006 \cdot 10^{-5}$</td>
<td>$0,03 \cdot 10^{-5}$</td>
<td>$0,281 \cdot 10^{-5}$</td>
<td>$4,021 \cdot 10^{-5}$</td>
<td>$19,46 \cdot 10^{-5}$</td>
<td></td>
</tr>
<tr>
<td>$i - i_f$</td>
<td>$19,888 \cdot 10^{-5}$</td>
<td>$19,999 \cdot 10^{-5}$</td>
<td>$19,96 \cdot 10^{-5}$</td>
<td>$19,719 \cdot 10^{-5}$</td>
<td>$15,598 \cdot 10^{-5}$</td>
<td>$5,4 \cdot 10^{-5}$</td>
<td></td>
</tr>
<tr>
<td>$\theta_n - \theta_{n-1}, \text{ м}$</td>
<td>$19,99984$</td>
<td>$19,99957$</td>
<td>$19,992$</td>
<td>$19,9994$</td>
<td>$6,62237$</td>
<td>$1,97693$</td>
<td></td>
</tr>
<tr>
<td>$S_{n\kappa(n-1)}, \text{ М}$</td>
<td>$10,0008 \cdot 10^4$</td>
<td>$10,003 \cdot 10^4$</td>
<td>$10,01813 \cdot 10^4$</td>
<td>$10,13189 \cdot 10^4$</td>
<td>$4,14655 \cdot 10^4$</td>
<td>$4,733 \cdot 10^4$</td>
<td></td>
</tr>
<tr>
<td>$L_{n\kappa(n-1)} = S_{n\kappa(n-1)}, \text{ М}$</td>
<td>$10,0008 \cdot 10^4$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td></td>
</tr>
<tr>
<td>$L = L_{n\kappa(n-1)} + S_{(n-1)-(n-2)}, \text{ М}$</td>
<td>$-$</td>
<td>$20,0039 \cdot 10^4$</td>
<td>$30,02193 \cdot 10^4$</td>
<td>$40,1538 \cdot 10^4$</td>
<td>$44,30037 \cdot 10^4$</td>
<td>$49,03337 \cdot 10^4$</td>
<td></td>
</tr>
</tbody>
</table>
2. Охиридан «кейинги»"""" кесимлардаги чукурликлар қуийдагича ҳисобланади

\[h_j = h_{окир} + \Delta h, \]

бунда \(j = 1, 2, 3, \ldots n \) — ўзан узунлиги бўйича кесимлар нинг сони.

3. Икки иктиёрий кесимлар орасидаги бўлакларда су нинг ўртача чукурлиги, масалан, \(h_{окир} \) ва \(h_j \), \(h_{j-1} \), \(h_{j-2} \) ва ҳоказо

\[h = \frac{1}{2} (h_{окир} - h_j) \]

ёки

\[\bar{h} = h_j - \frac{1}{2} \Delta h. \]

4. Кесимлардаги солиштирма энергияни аниқлаш

\[\mathcal{E}_{окир} \] ва \(\mathcal{E}_j \); \(\mathcal{E}_{j-1} \); \(\mathcal{E}_{j-2} \); \(\mathcal{E}_{j-3} \); ... ва ҳоказо

\[\mathcal{E}_{окир} = h_{окир} + \frac{\alpha Q^2}{2g} \frac{1}{\omega_{окир}^2} = h_{окир} + \frac{\alpha Q^2}{2g(b_{окир} h_{окир} + m h_{окир}^2)^2}; \]

\[\mathcal{E}_j = h_j + \frac{\alpha Q^2}{2g} \frac{1}{\omega_j^2} = h_j + \frac{\alpha Q^2}{2g(b_j h_j + m h_j^2)^2}. \]

5. Кесимлараро бўлаклардаги ўртача ишқаланиш нишабини ҳисоблаш

\[\bar{t}_{окир+j} = \left[\frac{Q}{\sqrt{\omega_{окир+j} + \frac{1}{n} \sqrt{R_{окир+j}}} \sqrt{\omega_{окир+j}} \}^2 \right] = \left[\frac{Q}{\sqrt{\omega_{окир+j} + \frac{1}{n} \sqrt{\frac{b h + m h^2}{b + 2 h \sqrt{1 + m^2}}} \sqrt{\omega_{окир+j}} \}^2 \right] = \]

\[\left[Q \left[\frac{n}{b h + m h^2} \right]_{окир+j} \right]^2 \cdot \left[\frac{b + 2 h \sqrt{1 + m^2}}{b h + m h^2} \right]_{окир+j} \]

"""" Тўғрироғи оидинги кесим, чунки бу ерда биз ЭЭССЧ ни ҳисоблашда ва қуришда оқиға қарши олиб борамиз.
бу сарда y — Н. Н. Павловский формуласидаи дараха кўрсат-кичи, уни қуйидаги формула ёрдамида аниклаш мумкин

$$y = 2,5\sqrt{n} - 0,13 - 0,75\sqrt{R}(\sqrt{n} - 0,10)$$

ёки ўзандаги сувнинг чукурлигига қараб қисқартирилган формуладан фойдаланиш мумкин

$$R < 0,10$$ бўлганда $y \leq 1,7\sqrt{n}$ бўлади;
$$0,10 < R < 1,0$$ бўлганда $y \leq 1,5\sqrt{n}$ бўлади;
$$1,0 < R$$ бўлганда $y \leq 1,3\sqrt{n}$ бўлади.

Бундан ташқарди Г. В. Железняков формуласидаи ҳам фой-даланиш мумкин:

$$y = \frac{1}{\log R} \left\{ \frac{1}{2} - \frac{n\sqrt{g}}{0,26} (1,0 - \log R) \right\} +
\left\{ \frac{1}{4} \left[\frac{1}{n} - \frac{\sqrt{g}}{0,13} (1,0 - \log R) \right]^2 + \frac{\sqrt{g}}{0,13} \left(\frac{1}{n} - \sqrt{g \log R} \right) \right\}.$$

6. Кесимлар ӯртасида ораликларнинг узунликлари В. И. Чарномский формуласи ёрдамида аникланади

$$S_{охр+} = \frac{E_j-E_{охр}}{i-i_fохр}.$$

7. Оқимнинг нотекс илгариланма ҳаракатийнинг ЭЭССЧ умумий узунлиги қуйидагича аникланади

$$L_{ЭЭСЧ} = S_{охр+} + S_{j+1} + S_{j+2} + ... + S_{j+n} + ... S_k.$$

8. «Кейинги» чукурликлар қуйидагича ҳисобланади

$$h_{j-1} = h_j + \Delta h;$$
$$h_{j-2} = h_{j-1} + \Delta h;$$
$$\ldots \ldots \ldots \ldots \ldots$$

9. h_j чукурликни $h_{баш}$ чукурлиги билан таҳқослаймиз. Агар $h_{баш} < h_j$ бўлса, у ҳолда 3-банддан бошлаб ҳисобни яна да-
вом этирирамиз. Агар $h_\text{босн} \approx h_j$ бўлса, масала ечилган ҳисобланади. Натижада ЭЭССЧ ни чизиб, уни қайси зонада ва қандай шакл эканлигини анфаклаймиз. Ҳисоб-китоб натижаларини 7.5 жадвалга туширамиз.

Б. Масалани ЭХМ да ҳисоблаш блок-схемаси (7.39-рам)

В. Масалани ЭХМ да ҳисоблаш дастури. Масалани ЭХМ да ҳисоблаш дастури ЭХМга киритилади, унда машина берилиларнинг микдорларини талаб қилади. Машина (дисплейда) талаб қилган микдорлар қийматларини кетма-кет бериб борилади; машина барча берилиган қийматларни олгандан кейин, у ҳисобга юборилади. Натижада ЭХМ дастур бўйича талаб қилинган ҳисоб-китобларни бажаради ва уларнинг натижаларини чиқариб беради; улардан: h_j — ўзан узунлиги бўйича ҳар бир кесилмал учун сув нинг чукурликлари; s — кесилмал оралиғидаги бўлакларнинг узунликлари; L — ЭЭССЧнинг (тўғондан бошлаб) умумий узунлиги.
<table>
<thead>
<tr>
<th>Хисоблаш fungi</th>
<th>формулалари ва параметрлари</th>
<th>h_{m}, М</th>
<th>S, 10^{-4}, М</th>
<th>L, 10^{-1}, М</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{1}</td>
<td>h_{2}</td>
<td>h_{3}</td>
<td>h_{4}</td>
<td>h_{5}</td>
</tr>
<tr>
<td>92.81477</td>
<td>90.563211</td>
<td>86.125913</td>
<td>86.125913</td>
<td>81.699122</td>
</tr>
<tr>
<td>2.218552</td>
<td>2.218551</td>
<td>2.218551</td>
<td>2.218551</td>
<td>2.218551</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Кеснимдар оралари ва унинг сув чуқурлари, М</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{1}</td>
</tr>
<tr>
<td>92.81477</td>
</tr>
<tr>
<td>2.218552</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7.5-жодор (довом)</th>
</tr>
</thead>
<tbody>
<tr>
<td>h_{1}</td>
</tr>
<tr>
<td>77.251821</td>
</tr>
<tr>
<td>2.218603</td>
</tr>
</tbody>
</table>

h_{1}	h_{2}	h_{3}	h_{4}	h_{5}	h_{6}	h_{7}
77.251821	72.8147741	68.377721	63.940676	59.503632	55.092155	49.59173
2.218603	2.218603	2.218603	2.218603	2.218603	2.218603	2.218603

<p>| h_{1} | h_{2} | h_{3} | h_{4} | h_{5} | h_{6} | h_{7} |
| 77.251821 | 72.8147741 | 68.377721 | 63.940676 | 59.503632 | 55.092155 | 49.59173 |
| 2.218603 | 2.218603 | 2.218603 | 2.218603 | 2.218603 | 2.218603 | 2.218603 |</p>
<table>
<thead>
<tr>
<th>49.02233487</th>
<th>45.497063</th>
<th>42.3631465</th>
<th>20.0269998</th>
<th>15.331712</th>
<th>19.570218</th>
<th>37.749997</th>
<th>21.787441</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
</tr>
<tr>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
<td>0.299067</td>
</tr>
</tbody>
</table>

Kechirgap o'rinini va yahali va yiyapnichapti.

<table>
<thead>
<tr>
<th>35.514388</th>
<th>33.288558</th>
<th>31.065927</th>
<th>39.849707</th>
<th>7.10-1, m</th>
<th>5.10-1, m</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.226273</td>
<td>2.226273</td>
<td>2.226273</td>
<td>2.226273</td>
<td>2.226273</td>
<td>2.226273</td>
</tr>
</tbody>
</table>

Kechirgap o'rinini va yahali va yiyapnichapti.

|---------|----------|----------|----------|----------|----------|----------|----------|

Kechirgap o'rinini va yahali va yiyapnichapti.
\[h_{\text{допл.}} = h_0 + 1 \text{ см} \]

\[h_{j+n} \quad h_0 \quad h_{j+3} \quad h_{j+2} \quad h_j \quad \bar{h} \quad h_{h_0h_1} \]

\[L_{1234} \]

7.40-рasm.
ЭХМдан олинган натижаларга асосан оқимнинг барқа-рор нотекис илгариланма ҳаракатининг ЭЭССЧни кура-миз (7.40-расм) ва унинг шаклини аниклаймиз, кўриниб турибдики \(h_{ном} = 6,259077 \) м, бу \(h_0 = 6,249077 \) м га жуда яқин. ЭЭССЧ умумий узунлиги \(L \cdot 10^4 = 49,033390 \) \(10^4 \) м. Бу ерда ЭЭССЧ \(a_i \) шаклидаги эгри кўтарилма.

Гидравликадан амалий машиғулот ўтказиши учун матери-аллар. Очк иўзанларда суюклик оқимнинг барқа-рор нотекис илгариланма ҳаракатининг эркин эгри сув сатҳи чизиги ЭЭССЧ ни ЭҲМ ёрдамида ҳисоблаш.

7.5-масала. Трапецеидий шаклдаги канал учун оқим кўндаланг кесимининг солиштирила энергиясининг гра-фигини қуриш керак. Бу қуйида берилиганларга асосан бажарилади: сув сарфи \(Q = 35,0 \) м\(^3\)/с; канал тубининг кенглиги \(b = 8,2 \) м; унинг ён деворининг нишаб коэф-фициенти \(m = 1,5 \). Оқимнинг критик чуулрлиги \(h_{кр} \) ни аникланг. Масалани итерация усулида ечамиз.

Ечил. 1. Сувнинг қатор чуурлкликларини қабул қиламиз. Масалан, \(h_1 = 1,0 \) м ва \(h_1 \) га тегишли оқимнинг барча гид-равлик элементларини ҳисоблашмиз:

\[
\omega_1 = (b + mh_1)h_1 = (8,2 + 1,5 \cdot 1,0)1,0 = 9,7 \text{ м}^2;
\]

\[
v_1 = \frac{Q}{\omega_1} = \frac{35,0}{9,7} = 3,61 \text{ м/с};
\]

\[
\frac{\omega_1^2}{g} = \frac{1,1 \cdot 3,61^2}{19,62} = 0,73 \text{ м};
\]

Натижа

\[
\mathcal{E} = h_1 + \frac{\omega_1^2}{2g} = 1,0 + 0,73 = 1,73 \text{ м}.
\]

Шундай қилиб, бошқа бир неча \(h \) ларни қабул қилиб, \(\mathcal{E} \) ни ҳисоблашмиз. Ҳисоб-китоб натижаларини 7.6-жадвал-га туширамиз.

377
7.6- жадвалдаги берилганларга асосан $\mathcal{E} = f(h)$ графигини курамиз (7.41-рasm).

7.41- расмдан кўриниб турибдик, оким кўндаланг кесими солиштирма энергиянинг ёнг кичик қиймати $\mathcal{E}_{\text{min}} = 1.68$ га тенг экан. $\mathcal{E} = f(h)$ графикда \mathcal{E}_{min} га тўғри келадиган чукурлик критик чукурлик бўлади, у $h_{\text{kp}} = 1.15$ м. Шуни айтиб ўтиш керак, бу усулда 7.41- расмдаги графикдан \mathcal{E}_{min} нуктасини ва унга тегишил критик чукурлик h_{kp} ни аник олиш қийиқ. Критик чукурликни аник олиш учун бошқача график $\frac{a u^2}{2g}$ = $f(h)$ ни тузиш керак (7.5-

<table>
<thead>
<tr>
<th>Тартиб сони</th>
<th>h, м</th>
<th>ω, м2</th>
<th>v, м/с</th>
<th>$\frac{a u^2}{2g}$, м</th>
<th>$\mathcal{E} = h + \frac{a u^2}{2g}$, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.50</td>
<td>4.47</td>
<td>7.830</td>
<td>3.434</td>
<td>3.934</td>
</tr>
<tr>
<td>2</td>
<td>0.75</td>
<td>7.00</td>
<td>5.000</td>
<td>1.400</td>
<td>2.150</td>
</tr>
<tr>
<td>3</td>
<td>1.00</td>
<td>9.70</td>
<td>3.610</td>
<td>0.730</td>
<td>1.730</td>
</tr>
<tr>
<td>4</td>
<td>1.25</td>
<td>12.60</td>
<td>2.780</td>
<td>0.432</td>
<td>1.682</td>
</tr>
<tr>
<td>5</td>
<td>1.50</td>
<td>15.68</td>
<td>2.233</td>
<td>0.279</td>
<td>1.779</td>
</tr>
<tr>
<td>6</td>
<td>2.00</td>
<td>22.40</td>
<td>1.562</td>
<td>0.187</td>
<td>2.137</td>
</tr>
<tr>
<td>7</td>
<td>2.50</td>
<td>29.90</td>
<td>1.170</td>
<td>0.077</td>
<td>2.517</td>
</tr>
<tr>
<td>8</td>
<td>3.00</td>
<td>38.10</td>
<td>0.920</td>
<td>0.047</td>
<td>3.047</td>
</tr>
<tr>
<td>9</td>
<td>4.00</td>
<td>56.80</td>
<td>0.616</td>
<td>0.021</td>
<td>4.021</td>
</tr>
</tbody>
</table>

7.41- расм.

378

www.ziyouz.com kutubxonasi
§ лаги 7.15-рasmга қараб). Бу график \(\frac{\omega^3}{B} = f(h) \) нигузи тузиш учун ҳисоб-китоб жадвал усулида олиб борилади (7.7-жадвал).

7.7-жадвал

<table>
<thead>
<tr>
<th>Гартиб сони</th>
<th>(h, \text{м})</th>
<th>(b, \text{м})</th>
<th>(B, \text{м})</th>
<th>(\omega, \text{м}^2)</th>
<th>(\frac{\omega^3}{B}, \text{м}^2)</th>
<th>(\frac{\alpha Q^2}{g}, \text{м}^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>8.20</td>
<td>11.20</td>
<td>9.70</td>
<td>82.00</td>
<td>137.20</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>8.20</td>
<td>11.95</td>
<td>12.60</td>
<td>167.00</td>
<td>137.20</td>
</tr>
<tr>
<td>3</td>
<td>1.18</td>
<td>8.20</td>
<td>11.74</td>
<td>11.77</td>
<td>139.00</td>
<td>137.20</td>
</tr>
<tr>
<td>4</td>
<td>1.175</td>
<td>8.20</td>
<td>11.73</td>
<td>11.71</td>
<td>137.20</td>
<td>137.20</td>
</tr>
</tbody>
</table>

7.7-жадвалга биноан \(\frac{\omega^3}{B} = f(h) \) графигини кўрамиз (7.42-расм) ва бу график ёрдамида критик чукурлик \(h_\text{кр} \) ни аник-
лаш учун \(\frac{\alpha Q^2}{g} \) нинг қийматини ҳисоблаб, уни графикка қўйиб, ундан критик чукурликни топамиз. Бу жараён қуйидагича бажарилади. Бу нинг учун 7.42-расмдаги \(\frac{a^2 q}{b} = f(h) \) графигининг горизонтал ўқи бўйича \(\frac{\alpha Q^2}{g} = 137.2 \) қийматини қўйиб, графигдаги эгри чизик орқали ордината ўқидан критик чукурлик \(h_{kr} = 1.175 \) м қийматини андайдилмиз. Майлумки, ўзанда сувнинг чукурлиги фақат \(h = h_1 \) бўлганда

\[\left(\frac{\omega^2}{b} \right)_{kr} = \left(\frac{\alpha Q^2}{g} \right)_{kr} \]

tенглик бажарилади.

7.6-масала. Ўзанда қуйида берилиганларга асосан барқарор нотекис илгарланма ҳаракатнинг ЭЭССЧ ни куринг. \(Q = 40.0 \) м\(^3\)/с; канал трапециял шаклда; унинг гидравлик элементлари: \(b = 10.0 \) м; \(m = 1.5 \); \(i = 0.0003 \); \(n = 0.025 \). Каналга қурилган тўғон иншоот таъсирида унинг юқори бефдида сувнинг чукурлиги \(h = 4.0 \) м га кўтарилади. Каналнинг узунлиги бўйича эгри кўтарилмани ҳисоблаш ва қуриш талаб қилинади.

Ечиш. 1. Керакли сув сарфи модулини андайдилмиз

\[K_{kerak} = \frac{Q}{\sqrt{i}} = \frac{40.0}{\sqrt{0.003}} = 2320 \text{ м}^3/\text{с}. \]

Бу ёрда масала итeração усулида ечилади. Бу нинг учун сув чукурликларини қатор қийматларини қабул қилиб борамиз, масалан \(h = 1, 2, 3, 4 \) м ва ҳоказо. Щу чукурликлар учун барча гидравлик элементларни ҳисоблайдилмиз. Сув сарфи модули қийматини \(K = \omega C \sqrt{R} \), формула ёрдамида андайдилмиз ва уни \(K_{kerak} \) билан таққосладилмиз, агар \(K \approx K_{kerak} \) бўlsa, у ҳолда щу \(K \) га тегишил оқимнинг нормал чукурлиги \(h_0 \) бўлади, яъни масала ечими топилган ҳисобланади.

Ҳисоб-қитобни жадвал усулида олиб борамиз (7.8-жадвалга қаранг).
7.8-жадвалдан кўриниб туриндики $K_{\text{керах}} = 2320$ га энг яқини 2340, аммо тенг эмас. Унинг учун h_0 нинг аникроқ кийматини топиш мақсадида 7.8-жадвалга асосан $K = f(h)$ графигини курамиз (7.43-расм) ва ундан фойдаланиб

<table>
<thead>
<tr>
<th>Тар-тиб сони</th>
<th>h, м</th>
<th>ω, м2</th>
<th>χ, м</th>
<th>R, м</th>
<th>$C\sqrt{R}$, м3/с</th>
<th>$K = \omega C\sqrt{R}$, м3/с</th>
<th>$K_{\text{керах}} = \frac{Q}{\sqrt{i}}$, м3/с</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1,00</td>
<td>11,50</td>
<td>13,60</td>
<td>0,845</td>
<td>3,430</td>
<td>408,4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2,00</td>
<td>26,00</td>
<td>17,20</td>
<td>1,510</td>
<td>53,64</td>
<td>1395,0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3,00</td>
<td>43,50</td>
<td>20,80</td>
<td>2,090</td>
<td>67,02</td>
<td>2908,0</td>
<td>2320,0</td>
</tr>
<tr>
<td>4</td>
<td>3,50</td>
<td>53,40</td>
<td>22,70</td>
<td>2,360</td>
<td>72,77</td>
<td>3890,0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4,00</td>
<td>64,00</td>
<td>24,40</td>
<td>2,620</td>
<td>77,90</td>
<td>4980,0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2,66</td>
<td>37,20</td>
<td>19,60</td>
<td>1,900</td>
<td>63,00</td>
<td>2360,0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2,65</td>
<td>37,00</td>
<td>19,55</td>
<td>1,390</td>
<td>62,76</td>
<td>2340,0</td>
<td>2320,0</td>
</tr>
<tr>
<td>8</td>
<td>3,325</td>
<td>49,80</td>
<td>21,97</td>
<td>2,260</td>
<td>70,76</td>
<td>3520,0</td>
<td></td>
</tr>
</tbody>
</table>

7.43-расм.
окимнинг нормал чукурлигининг аниқ қийматини топамиз. Графикка $K_{керак} LIMIT_3$ қийматини кўйиб, ундан қизиқ орқали h_0 нн ордината ўқида оламиз: $h_0 = 2,65$ м, $h_бежим = 4,0$ м. Энди, шу h_0 нормал чукурлик орқали каналнинг бошқа гидравлик параметларини аниқлаймиз.

Каналдаги окимнинг ўртача чукурлиги

$$h = \frac{1}{2} (h_0 + h_бежим) = \frac{1}{2} (2,65 + 4,0) = 3,325 \text{ м};$$

нисбий кенглик

$$\beta = \frac{b}{h} = \frac{10,0}{3,325} = 3,0 ,$$

ўзаннинг гидравлик кўрсаткичи $x = 3,75$. Энди h га тегишили бошқа гидравлик элементларни ҳисоблаб чиқамиз:

$$\bar{R} = 2,26 \text{ м}; \bar{o} = 49,8 \text{ м}^2;$$

$$\bar{\chi} = 21,97 \text{ м}; \bar{C}\sqrt{\bar{R}} = 70,76 \text{ м/с};$$

$$\bar{C} = \frac{70,76}{\sqrt{2,26}} = 47,12 \text{ м}^{0,5}/\text{с};$$

$$\bar{B} = (b + 2mh) = 10 + 2 \cdot 1,5 \cdot 3,325 = 19,97 \text{ м};$$

у ҳолда

$$\bar{f} = \frac{\alpha t\bar{C}^2}{g} \frac{\bar{B}}{\bar{\chi}} = \frac{1,1 \cdot 0.0003 \cdot 47,12}{9,81} \frac{19,97}{21,97} = 0,067.$$

Б. А. Бахметевнинг (7.143) тенгламасидан, $h_1 = 3,5$ м, $h_2 = 3,0$ м ва $h_3 = 2,66$ м учун, бу кесимлар оралиги l ни ҳисоблаймиз:

$$l = \frac{h_0}{\bar{f}} \{\eta_2 - \eta_1 - (1 - \bar{f}) [\phi(\eta_2) - \phi(\eta_1)]\}.$$

Ҳисоб-китобни жадвал усулида олиб борамиз (7.9-жадвал).
7. 9-жаёдвал

<table>
<thead>
<tr>
<th>Эртиб сони</th>
<th>(h_2) м</th>
<th>(h_1) м</th>
<th>(\eta_2)</th>
<th>(\eta_1)</th>
<th>(\phi(\eta_2))</th>
<th>(\phi(\eta_1))</th>
<th>(l) м</th>
<th>(l_{(лп)}) м</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.0</td>
<td>3.5</td>
<td>1,509</td>
<td>1,320</td>
<td>0.130</td>
<td>0.202</td>
<td>2260</td>
<td>2304</td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
<td>3.0</td>
<td>1,509</td>
<td>1,132</td>
<td>0.130</td>
<td>0.381</td>
<td>5405</td>
<td>5550</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>2.66</td>
<td>1,509</td>
<td>1,005</td>
<td>0.130</td>
<td>0.218</td>
<td>13400</td>
<td>14070</td>
</tr>
</tbody>
</table>

7.9-жаёдвалда берилиганларга асосан эгри кўтарилмани курамиз (7.44-расм) ва ЭЭССЧ шаклини аниклаймиз. 7.44-расмдан кўринадики, ЭЭССЧнинг шакли \(a_1 \) шаклли эгри кўтарилма.

Такrorлаш учун савollar

7.1. Баркарор нотекс илгарилиманда ҳаракат. Дифференциал тенгламасининг биринчи кўриниши қандай?
7.2. Дифференциал тенгламасининг иккинчи кўриниши қандай?
7.3. Қўндаланг кесимнинг солиштирма энергияси. Критик чукурлик ва критик нишаб тушунчалари ва ҳисоблаш усуллари қандай?
7.4. Б. А. Бахметьев тенгламаси қандай ёзилади?
7.5. В. И. Чарномский тенгламаси қандай ёзилади?
7.6. Окимнинг баркарор текис ва нотекс илгарилиманда ҳаракатини ЭХМ ёрдамида ҳисоблаш усуллари қандай?
САҚҚИЗИНЧИ БОБ

ЮПҚА ДЕВОРДАГИ КИЧИК ТЕШИКЛАРДАН
ВА УНГА ЎРНАТИЛГАН ҚИСҚА ҚУВУР
(НАСАДКА)ЛАРДАН ОҚИБ ЧИҚАЁТГАН
СУЮҚЛИКНИНГ ҲАРАКАТИ

8.1- §. УМУМИЙ ТУШУНЧАЛАР

Юпқа девордаги кичик тешиклардан ва унга ўрнатилган турли шаклдағи қисқа кувур (насадка)лардан оқиб чиқаётган суюқлик жараёнлари ва ходисалари билан кўпинча гидротехника ва бошқа соҳаларда, масалан, ҳавзалардан тешик орқали суви чиқариш, дююрлар ёрдамида суви ўтказиш ва ҳоказоларда учраб туради. Шу ва шунга ўхшаш шароитларда кичик тешиклардан ва унга ўрнатилган ҳар хил шаклдағи қисқа кувурлардан суюқликнинг оқиб чиқиши назариясини билиш талаб қилинади. Буну ўрганишдан асосий мақсад — кичик тешикдан ва шу тешикка ўрнатилган қисқа кувурдан оқиб чиқаётган суюқликнинг тезлигини ва сув сарфини аниқлашдан иборат. Ўтказилган тажрибалар шунинг кўрсатадики, кичик тешик ва қисқа кувурдан оқиб чиқаётган суюқликнинг тезлиги ва сув сарфи микдорига шу тешикларнинг ва қисқа кувурларнинг шакллари катта таъсир кўрсатади. Бундай муаммолнарни ҳал этишда қатор савольлар келиб чиқади, уларга аник тушунча бериб ўтиш керак, масалан, кичик тешикнинг ўзи нима; қисқа кувур нима; юпқа девор нима; ката тешик нима; қалин девор нима; бу тешиклар қачон кичик ва қачон ката бўлади; деворлар қачон юпқа, қачон қалин бўлади? Ҳар қандай суюқлик ўтказилган тешикни кичик тешик деб аташмиз мумкин, агар у тешик бири ва қтнинг ўзидада икки шартни ёконтирса:

1. Биринчи шарт. Тешикка яқинлашиб келаётган ҳавзадаги суюқлик тезлиги \(v_0 \) назарга илмайдиган даражада кичик, яъни

\[
\frac{\rho}{\omega_0} \gg 4,0, \tag{8.1}
\]
бу ерда Ω — ҳавзанинг кўндаланг кесими юзасининг маъдони; ω_0 — кичик тешикнинг кўндаланг кесими юзасининг маъдони.

2. Иккинчи шарт. Тешикдан оқиб чиқаётган суюқлиқнинг сиқилган $C-C$ кесимидаги тезликларнинг шу тешик диаметри бўйича тақсимланиш энорасининг юкори A ва пастки B нукталаридаги тезликлари u_A ва u_B тахминан бир-бирига тенг бўлиши мумкин:

$$u_A \approx u_B,$$ (8.2)

яъни, бошқача қилиб айтганда

$$d_0 \leq 0,10H'$$ (8.3)

tенгсизлик бахарлиши лозим (8.1, 8.2-расм).

u_A ва u_B тезликлар қуйидагича анискланади

$$u_A = \phi_A\sqrt{2gH_A};$$ (8.4)

$$u_B = \phi_B\sqrt{2gH_B}.$$ (8.5)

Агар шу иккала шарт бир пайтда бажарилмаса, у ҳолда бу тешик катта тешик ҳисобланади.

Юпқа девор деб шундай деворга айтилади, унинг қалин-лиги сувнинг тешикдан оқиб чиқишига таъсири бўлмасин, яъни

25—К-24 385
8.2-рasm.

tešikdan o'kib chiqa'etgan sуюқлиқ деворнинг ташқи юзасига уринмagan ҳолда ҳаракатланиши керак. Деворнинг қалинлиги унинг оқим билан учрашган жойий (0,002÷0,003) м дан кўп бўлмаслиги керак. Кичик тешикдан (ёки насад-кадан) оқиб чиқаётган сувнинг бирдан-бир ҳаракетли мухимлиги шундаки, тешикдан оқиб чиқаётган оқимнинг сиқилган кўндаланг кесими юзасининг майдони ω_c-девордаги тешикнинг кўндаланг кесими юзасининг майдони ω_c га тенг эмас, яъни

$$\omega_c < \omega_0.$$ (8.6)

8.2- §. НАПОР ЎЗГАРМАС БЎЛГАН ҲОЛДА ЮПҚА ДЕВОРДАГИ КИЧИК ТЕШИКДАН ВА УНГА ЎРНАТИЛГАН ИХТИЁРИЙ ШАҚЛИ ҚИСКА КУБУР (НАСАДКА)ЛАРДАН ОҚИБ ЧИҚАЁТГАН СУЮҚЛИКНИНГ ҲАРАКАТИ

Кўмилмagan доировий кичик тешик. Ўтказилган тажри-баларга асосан, суюқликнинг бирон бир идишдан унинг тик юпқа девордаги кичик тешикдан оқиб чиқиши 8.1-расмда кўрсатилгандек кўринишда бўлади. Расмда қўрсатилган белгиларни тушунтириб ўтамиз. p_0 — идишдан суюқликнинг эркин сув сатҳига таъсир этаётган босими. Бу босим, бошқача қилиб айтганда, ташқи босим дейилади, атмосфера босимидан фарқ қилади $p_a \geq p_0$. Сув тўлатилган идиш фақат очик бўлганда ташқи босим атмосфера босимига $p_0 \approx p_a$ тенг бўлади. Бу ерда ω_0 — идиш девордаги
доирравий кичик тешик юзасининг майдони; \(d_0\) — идиш деворидаги доирравий кичик тешикнинг диаметри; \(\omega_c\) — идиш деворидаги тешикдан оқиб чиқаётган суюқлик \(\text{окимнинг сиқилган} \ C—C \ \text{кўндаланг кесимидаги} \ (\text{окимнинг ёнг сиқилган кесими}) \ \text{юзасининг майдони. Бу ёрда шунинг айтти ўқи тераққи, шу кичик тешикдан оқиб чиқаётган суюқлик заррачалари бир-бирига нисбатан параллел бўлмаган траектория чизиги билан ҳаракат қилади, бундай ҳол тешикнинг шакли ва деворнинг таъсири натиқасида рўй беради. Суюқлик оким юққа девордаги доирравий тешикдан бир оз узоқлашган жойидан бошлаб, унинг заррачаларининг ҳаракат траекториялари туғрилашган бошлади (яъни траекторияларнинг эгрилиги камайиб боради), бирон бир алоқида кўндаланг кесимида (у юққа девордан \(I_0\) узунликда) окимнинг сиқилган \(C—C\) кўндаланг кесимида оким заррачаларининг траекториялари туғри, бир-бир угол билан параллел чизикларга айланади. Бунда окимнинг сиқилган кесими ҳосил бўлади (яъни окимнинг ёнг кичик кўндаланг кесими, у кесим 8.1-расмда \(C—C\) деб ифодаланган). Юққа девордаги кичик тешикка ёнг яқин жойилашган окимнинг кўндаланг кесимида суюқлик заррачаларининг ҳаракат траектория чизиклари бир-бирига параллел бўлган ҳолда кўндаланг кесими окимнинг сиқилган кесими дейилади. Бу кесимга \(C—C\) кесими номи берилган, \(C—C\) «сиқилган» деган сўзни англатади (8.1- расмнинг \(A\) тутунига қаранг) (8.2-расм). Окимнинг \(C—C\) кўндаланг кесими юзасининг майдони бўйича нуқталардаги ўрталаштирилган тезликларнинг тасқимланиш эпиораси туғри тўртборчак шаклига жуда ҳам яқин бўлади.

Агар юққа девордаги кичик тешик доирравий бўлса, у ҳолда деворнинг ички сатҳидан то ёнг сиқилган \(C—C\) кесимигача бўлган масофи (8.2-расм)

\[
l_0 \approx 0.5 \ d_0. \quad (8.7)
\]

Окимнинг ёнг сиқилган кўндаланг кесими майдони \(\omega_c\) нинг юққа девордаги кичик тешикнинг кўндаланг майдони \(\omega_0\) га нисbatи окимнинг сиқилиш коэффициенти дейилади ва ё шартли белги билан ифодаланади
\[\varepsilon = \frac{\omega_c}{\omega_0}, \]
\[(8.8) \]

\(H \) — юпқа девордаги кичик тешик майдони \(\omega_0 \) нинг оғирлик марказидан ўтказилган текислик билан идишдаги эркин сум сатхи ўртасидаги оралиқ. Энг сиқилган кўндаланг кесим майдонининг оғирлик марказида, юпқа девордан \(I_0 \) оралиқда оқим траекторияси пасаймайди деб қабул қиламиз, чунки юқорида айтилган дек \(I_0 \) оралиқ жуда кичик масофани ташкил этади. Шунинг учун \(H \) худди кичик тешикка нисбатан олингандек, оқимнинг энг сиқилган кўндаланг кесими майдонининг оғирлик марказиға нисбатан ҳам ўшандайд олинади, яъни

\[H_0 \simeq H = H. \]
\[(8.9) \]

Юпқа девордаги кичик тешикдақи оқиб чиқаётган суюқлик ҳаракати \(C-C \) кўндаланг кесимгача кесим \(C \) ўзгарув-чан ҳаракатда бўлади; \(C-C \) кўндаланг кесимдан кейин текис ўзгарувчан ҳаракатда бўлади; \(C-C \) кўндаланг кесимида эса, оқимнинг энг сиқилган кесимида, параллел стурали оқим бўлади. Юпқа девордаги иҳтиёрий шаклдаги тешиклардан ёки уларга ўрнатилган қисқа кувурлардан оқиб чиқаётган суюқликларни гидравлик ҳисоблашда оқимнинг энг сиқилган кўндаланг кесими катта аҳамиятга эга, чунки \(C-C \) кесимда оқим ҳаракати параллел чизикли ҳаракатда бўлади. Шунинг учун Д. Бернулли тенгламасини қўллаётганда кесимлардан бирини фақат шу \(C-C \) кесимдан олиш керак.

Юпқа девордаги иҳтиёрий шаклдаги кичик тешикдан ёки унга ўрнатилган қисқа кувур (насадка)дан чиқаётган суюқлик оқимини, унинг энг сиқилган кўндаланг кесими бўйича ўртача тезлиги \(v_c \) ни ва сув сарфи \(Q_c \) ни аниқлаш керак. Бунинг учун Д. Бернулли тенгламасидан фойдаланиб, 1-1 ва 2-2 кесимларни бирлаштирамиз (8.1-расм). У кесимлардан бири — идишдаги суюқликнинг эркин сув сатҳи чизигида, иккинчи эса оқимнинг энг сиқилган \(C-C \) кесимида белгиланади. 0-0 такқослаш текисланини эса оқимнинг энг сиқилган кўндаланг кесими майдонининг оғирлик марказидан ўтказилади. Юқоридаги айтилганларга асосан Д. Бернулли тенгламасини ёзамиз:

388

www.ziyouz.com kutubxonası
\[
\frac{a_1 v_1^2}{2g} + \frac{p_1}{\gamma} + z_1 = \frac{a_2 v_2^2}{2g} + \frac{p_2}{\gamma} + z_2 + h_f. \tag{8.10}
\]

(8.10) тенгламанинг барча ҳадларининг маълоларини 8.1-расмдаги чизмаларга қараб аниқлади. 8.1- расмдаги чизмага кўра:

\[
\begin{align*}
z_1 &= H; \quad \frac{p_1}{\gamma} = \frac{p_2}{\gamma}; \quad \frac{a_1 v_1^2}{2g} \approx 0; \\
\text{чунки 1-шартга биноан } v_1 = v_0 = 0; \\
\end{align*}
\]
\[
\begin{align*}
\frac{p_2}{\gamma} = \frac{p_a}{\gamma}; \quad \frac{a_2 v_2^2}{2g} = \frac{a_0 v_0^2}{2g}. \\
\end{align*}
\tag{8.11}
\]

1–1 кесимдан 2–2 кесимгача бўлган оралиқда тўлиц йўқотилган напор қўйидағи қўринишда бўлади

\[
h_f = \xi_f \frac{a_c v_c^2}{2g}, \tag{8.12}
\]

бунда \(\xi_f\) — тўлич ишқаланиш коэффициенти, у 1–1 кесимдан 2–2 кесимгача бўлган масофада тўлиц йўқотилган напорни ифодаловчи коэффициент. Шунинг учун қандай чиқариш қўрайтиш қараб, 8.1-расмга кўра, напор асосан, юпқа девордаги кичик тешик атрофида йўқолади, чунки бу қалқон тезлиги ниҳоятда катта. Шундай экан, бу ёрда тўлиц ишқаланиш коэффициенти \(\xi_f = \xi_i = \xi_j\), қаралатган ҳол учун эса фақат маъаллый қаршислик коэффициентига тенг, чунки \(\xi_i \approx 0\), у ҳолда

\[
h_f = h_i = \xi_{ic} \frac{a_c v_c^2}{2g}. \tag{8.13}
\]

(8.11) ва (8.13) ларни (8.10) тенгламага қўйиб чиқсак

\[
H = \frac{a_c v_c^2}{2g} + \xi_{ic} \frac{a_c v_c^2}{2g}; \tag{8.14}
\]

ёки

\[
H = \left(1,0 + \xi_{jc}\right) \frac{a_c v_c^2}{2g}. \tag{8.15}
\]

389
(8.15) тенгламани тезлик v_c га нисбатан ечсак, у ҳолда

$$v_c = \sqrt[1.0 + \xi_{kc}]{1.0} \sqrt{2gH}, \quad (8.16)$$

бунда $\sqrt[1.0 + \xi_{kc}]{1.0} = \phi$ — тезлик коэффициенти.

(8.16) тенгламани қўйидағича кўчирilib ёзамиз

$$v_c = \phi \sqrt{2gH} \quad (8.17)$$

Идеал суюқлик учун $h_f = \xi_f \frac{\alpha_c \nu_c^2}{2g} = 0$, у ҳолда $\xi_f = 0$ ва $\phi = 1,0$ бўлади. Бундан келиб чиқадики, идеал суюқлик учун

$$v_c = \sqrt{2gH}. \quad (8.18)$$

(8.18) формулаТоричелли (1643 2й.) формуласи дейилади. Юпқа девордаги доиравий тешикдан оқиб чикаётган суюқлик окимининг энт сиқилган қўндаланг кеси-мидаги ўртача тезлик v_c ни аниклагандан кейин, ундаги сув сарфини ҳисоблаймиз ($p_o = p_a$ тегн бўлгандан, яъни сув тўлдирилган идиш очик бўлганда).

Сув сарфини аниклаш учун узлуксизлик тенгламасидан фойдаланамиз. Бу ерда сиқилган қўндаланг кесим C—C қаралаётгани учун узлуксизлик тенгламасини қўйидағича ёзамиз:

$$Q = \omega_c v_c = \omega_c \phi \sqrt{2gH} = \omega_0 \frac{\omega_c}{\omega_0} \phi \sqrt{2gH}, \quad (8.19)$$

бу ерда (8.8) дан

$$\frac{\omega_c}{\omega_0} = \varepsilon. \quad (8.20)$$

Сув сарфини аниклаимиз

$$Q = \varepsilon \phi \omega_0 \sqrt{2gH}, \quad (8.21)$$

390
ёки

\[Q = \mu_0 \omega_0 \sqrt{2gH}, \]

(8.22)

бу ерда

\[\mu_0 = \varepsilon \phi, \]

(8.23)

μ_0 — юпқа девордаги кичик тешикдан оқиб чиқаётган сў-юқлик сарфий коэффициенти. Бу коэффициент кичик тешикдан оқиб чиқаётган суюқлик окимининг си-килиш дарахасини ва йўқотилган наорни ифодаловчи коэффициент.

Шундай қилиб, юпқа девордаги кичик тешикдан оқиб чиқаётган суюқлик окимини ўрганишда туъртта ёнги коэффициент мавжуд, улар: сиқилиш коэффициенти ε; ишқаланиш коэффициенти ξ_p; тезлик коэффициенти ϕ; кичик тешикнинг сув сарфий коэффициенти μ_0.

8.3- §. ОКИМНИНГ СИҚИЛИШ ТУРЛАРИ. ЮПҚА ДЕВОРДАГИ КИЧИК ТЕШИКЛАРДАН ОҚИБ ЧИҚАЁТГАН СУЮҚЛИК ХАРАКАТИНИ ЎРГАНИШЛАРИ ε, ξ_p, ϕ, μ_0 КОЭФФИЦИЕНТЛАРНИНГ ҚИЙМАТЛАРИ

Окимнинг сиқилиш дарахасига идишнинг ён девордари ва унинг туби таъсир этади. Кичик тешик шу ён девордан ва идишнинг тубидан қанча узокликда жойлашганга қараб, окимнинг сиқилиш турлари қуйидагича бўлади.

1. Тўлиқ сиқилиш. Тўлиқ сиқилиши ҳосил қилиш учун сув тулирилиган идишнинг ён деворлари ва унинг туби деворлари кичик тешикдан шундай узокликда бўлиши ке-ракки, улар тешиклардан сувнинг оқиб чиқишига таъсир этмаслиги керак (8.3-рамо), яъни қуйидаги шарт бахари-лиши керак:

\[
\begin{align*}
m & > 3a; \\
n & > 3a,
\end{align*}
\]

(8.24)

бу ерда a — квадрат шакладаги тешикнинг томонлари; m — кичик тешикдан ён деворгача бўлган оралиқ; n — кичик тешикдан идишнинг тубигача бўлган масофа. Тажрибалардан маълумки, агар (8.24) шарт бахарилса, амалиётда окимнинг

391

8.3-рамо.

www.ziyouz.com kutubxonasi
сизиши коэффициенти ε, m ва n ларнинг микдорлари: боғлик эмас экан.

Тўлик сизиши (доиравий ва қвадрат шаклдаги кичи тешиклар) учун иккинчи даражали қаршилик соҳасида юқорида келтирилан коэффициентлар қуйидаги қийматларга тенг бўлади:

$$\varepsilon = 0,63 + 0,64; \ \eta = 0,97; \ \xi = 0,06; \ \mu_0 = 0,62.$$

2. Тўлик бўлмаган сизиши. (8.24) шарт бахарилмаган ҳолда тўлик бўлмаган сизиши ҳодисаси рўй беради.

Сизиши тўлик бўлмаган ҳол учун сув сарфи коэффициенти

$$\mu_0 \approx (\mu_0)_{TC} \left(1,0 + \frac{\tau}{100}\right) = 0,62 \left(1,0 + \frac{\tau}{100}\right),$$ (8.25)

бу қарор $(\mu_0)_{TC}$ — тўлик сизиши бўлган ҳолдаги коэффициент, $(\mu_0)_{TC} = 0,62$ (8.3-§ нинг 1-бандига қаранган); τ — майдонлар нисбати боғлик $\frac{\omega_0}{\Omega}$ коэффициент:

$$\tau = f \left(\frac{\omega_0}{\Omega}\right),$$ (8.26)

бунда Ω — тешик олдидағи суюқлик қўндаланг кесими юзасининг майдони (мазкур ҳолда идидаги суюқликнинг эркин сув сатҳи майдони):

ω_0: $\Omega =0,10$ бўlsa, унда $\tau \approx 1,5$ бўлади;

ω_0: $\Omega =0,20$ бўlsa, унда $\tau \approx 3,5$ бўлади.

8.4-расм.
3. Ярим сиқилиш. Бу сиқилиш \(m \) ёки \(n \) нолга тенг бўлса,
съи \(m \) ва \(n \) иккаласи нолга тенг бўлган ҳолда юзага келади
(8.4-расм).

8.4-§. ОҚИМНИНГ ТРАЕКТОРИЯСИ

Тик юпқа девордаги кичик доиравий тешикдан оқиб
чиқаётган суюқлик оқимнинг ҳаракатини ўртганаий.
Кичик тешикдан бўшликча оқиб чиқаётган ва ўзининг
офирлиги натижасида бемалол ҳаракатланаётган оқим-
нинг босиб ўтган йўлидақи ўч чизиги оқимнинг траек-
торияси дейилади. Юқорида айтилган тажрибаларга асо-
сан суюқликниgunta кичик тешикдан оқиб чиқиши 8.5-
расмда келтирилгандек кўринишда бўлади. 8.5-расмда
оқимнинг энг сиқилиган қўндаланг кесимини \(C-C \) бил-
лан, унинг жойлашган жойини \(l_0 \) орқали белгилаб, шу
\(C-C \) кесимнинг оғирлик марказида \(O \) нуқтада коорди-
натаси \(x, y \) нинг бошланишини жойлаштирамиз. \(O \)
нуқтага \(M \) массага эга бўлган бирон суюқлик зарражаси-
ни жойлаштирамиз ва бу массага эга бўлган зарражача
\(v_c \) тезликда ҳаракат қила бошлади. Шу \(M \) массага эга
бўлган зарражача назарий механикадан маълум бўлган
ҳаракат тенгламасини қўллаб

\[
x = v_c t; \quad y = \frac{gt^2}{2}, \quad (8.27)
\]

шу массага эга бўлган зарражача траекториясийи-
нинг тенгламасини ола-
миз:

\[
y = \frac{gx^2}{2v_c^2}, \quad (8.28)
\]

бу ерда \(t \) — вақт; \(v_c \) — массаси \(M \) га тенг бўлган
суюқлик зарражачасининг бошлангич тезлиги

\[
v_c = \sqrt{2gH}. \quad (8.29)
\]

8.5-расм.
(8.28) tenglamada o‘qinm Sig‘ning tenglamasi, u parabola kuri-
niyshda buladi. (8.28) ga berilgan \(u_0 \) mikdorini kuyzak, \(x_0 \)
mikdorini olish mumkin.

8.5-§. YOPKA DEVORDAGI KICHIK TESHIKDAN OKIB
CHIQAETGAN SUYOLIK OKIMINING TASHKARIIDAN
SUJOLIK BILLAN KUMILGAN XOLATIDAGI XARAKATI

8.2-§ da kursatilgandek, 1-1 va 2-2 kessimlari yuzun
D. Bernuuli tenglamasini kullab, suv sarffi formulasi-
ni olamiz

\[
Q = \mu_0 \omega_0 \sqrt{2g} z,
\]
(8.30)
bunda belgilarni 8.6- rasmlari chizmadan olimiz. Bu erda
\(\mu_0 \) ni \((\mu_0)_{TC} \) ga teng deob olasaki ham bulaveradi (\(\mu_0 = 0,62 \)). U
xolda ijko tilgan napor

\[
h_f = Z = (\xi_{1-c} + \xi_{c-2}) \frac{\nu^2}{2g},
\]
(8.31)
bunda \(\xi_{c-2} = 1,0 \).

8.6- §. NAPOR UZGARMAS BULGAN XOLDA YOPKA DEVORDAGI
TESHIKKA URNATILGAN KSIGA KUVUR (NASADKA)DAN OKIB
CHIQAETGAN SUYOLIK OKIMINING XARAKATI

Devordagi teshikka urnatilogan kisqa kuvur (nasadka)
turlari. Yuqori kisqa va yuzun kuvur haqida tushuncha ber-
gan edik. Agar kuvur yuzun bulsa, unda ijko tilgan naporni
xisoblashda faqat uzannimg uzunligi byuiqcha ijko tilgan
napor \(h_f \) xisobga olinadi; kuvur kisqa bulganda esa, ham
uzunligi byuiqcha \(h_f \), ham makh-
liliy ijko tilgan napor \(h_f \)
xisobga olinadi. Agar kuvur
juuda ham kisqa bulsa, u xolda
faqat makhaliy ijko tilgan
napor \(h_f \) xisobga olinadi,
yni \(h_f \approx 0 \).
Қисқа қувур турлари. 1. Вентури қисқа қувур. 2. Борда қисқа қувур. 3. Тораювчи қисқа қувур. 4. Кенгаювчи қисқа қувур. 5. Оқим шаклидаги қисқа қувур ва бошқалар (8.7-расм).

Доиравий ташиқ қисқа қувур (Вентури қисқа қувур). Девордаги тешикка ўрнатилган қисқа қувур орқали су-юқлик оқиб чиқаётганда оқим қандайдир бир узунликда сиқилиб \(\omega_0 \), кейин яна кенгаяди ва қувур тулиб оқаади (8.8-расм). Бунда сиқилган кесим атрофида қувурнинг периметри бўйича ғирдоб \(A \) ҳосил бўлади. Бундай қисқа қувурда

\[
\omega_{b-b} = \omega_0, \tag{8.32}
\]

бу ерда \(\omega_0 \) — қисқа қувур ўрнатилган девордаги тешик-нинг кўндаланг кесими майдони; \(\omega_{b-b} \) — қисқа қувур охиридаги кўндаланг кесими майдони. Бундай қисқа қувур-ларда суви нинг ҳаракати пайтида вакуум пайдо бўлади ва унинг энг катта микдори оқимнинг энг сиқилган кўндаланг кесимида бўлади. Қисқа қувурнинг узунлиги бўйича босим худди расмда кўрсатилгандек ўзгаради (8.8-расм).

8.7-§. ДЕВОРДАГИ ТЕШИҚКА ЄРНАТИЛГАН ҚИСҚА (ДОИРАВИЙ) ҚУВУРДАН ОҚИБ ЧИҚАЁТГАН СУЮҚЛИК ОҚИМИНИНГ ТЕЗЛИГИ VA СУВ САРФИНИ АНИҚЛОВЧИ ФОРМУЛАЛАР

Бу ерда ҳам 8.2-§ дагиға ўхшаш 1—1 ва \(B-B \) кесимлари учун Д. Бернулли тенгламасини қўллаб, оқимнинг тезлиги \(v_{b-b} \) ва сув сарфлари \(Q \) ни аниклаймиз.

а) девордаги тешикка ўрнатилган қисқа қувур ташиқ томондан сув билан кўмилмagan ҳолат (8.8-расм).

1. Қисқа қувурдан оқиб чиқаётган сююқлик оқимнинг тезлиги \(B-B \) кесимида

\[
v_{b-b} = \phi \sqrt{2gH}, \tag{8.33}
\]

бунда \(v_{b-b} \) қисқа қувур охиридаги кўндаланг кесими \(B-B \) ўзасининг майдонидаги ўртача тезлик; \(H \) — қисқа қувур
8.8- рasm.

ўқидан то идишдаги сувнинг эркин сатҳи чизигигача бўлган масофа. Қисқа кувурда маҳаллий йўқотилган напор

$$h_{ij-B} = \xi_{BB} + \frac{\alpha_{a-B} v_B^2}{2g}, \quad (8.34)$$

бу ерда ξ_{BB} — қисқа кувур учун $a-B$ кесимдаги, яъни кувурга кириш жойида маҳаллий қаршилик коэффициенти.

2. Қисқа кувурдан оқиб чиқаётган суюқлиқнинг сув сарфи

$$Q = \mu_{kk} \sqrt{2gH}, \quad (8.35)$$

бунда μ_{kk} — қисқа кувур учун сув сарфи коэффициенти;

$$\mu_{kk} = \epsilon_{BB} \varphi = 1,0 \cdot \varphi = \varphi, \quad (8.36)$$

бу ерда ϵ_{BB} — қисқа кувурнинг охирги қўндаланг кесими $B-B$ даги майдонида сиқилиш коэффициенти (бу ерда бошим атмосфера босимига тенг бўлган ҳолда)

$$\epsilon_{BB} = \frac{\omega_{BB}}{\omega_0} = 1,0. \quad (8.37)$$
б) девордаги тешик-
ка ўрнатилган қисқа
кувур ташқаридан сув
билан қўмилган ҳолат.

1. Қисқа қувурдан оқиб чи-
қаётган суюқлик оқимининг
тезлиги

\[v_{b-b} = \varphi \sqrt{2gZ}, \] \hspace{1cm} (8.38)

8.9-рам.
бу ерда \(Z \) — иккала идишдаги эркин сув сатҳи чизикларининг фарқи \(\sqrt{1} - \sqrt{2} = Z \) (8.9-рам).

\[\varphi = \sqrt{\frac{1.0}{\xi_{kk_{a-a}} + \xi_{ччк}}} ; \xi_{ччк} \approx 1,0. \] \hspace{1cm} (8.39)

2. Қисқа қувурдан оқиб чиқаётган суюқликнинг сарфи

\[Q = \mu_{kk} \sqrt{2gZ}, \] \hspace{1cm} (8.40)

бу ерда \(\mu_{kk} \) — сув сарфи коэффициенти, бу коэффициент (8.42) формуладан анликланади. Олинган \(\varepsilon, \xi, \varphi, \mu_{kk} \) коэффициентларнинг қийматлари куйидагича:

1. \(\varepsilon_{b-b} = 1; \varepsilon_{c-c} = 0,63 + 0,64. \)

2. \(\xi_{kk_{a-a}} = \xi_{кирш} = 0,5 \) (кувур ташқаридан сув билан қўмилмаган).

3. \(\xi_{kk_{a-a}} = \xi_{кир} + \xi_{ччк} = 0,5 + 1,0 = 1,5 \) (кувур ташқаридан сув билан қўмилган)

4. \(\varphi = \mu_{kk} = \frac{1.0}{\sqrt{1,0 + \xi_{kk_{a-a}}}} = \sqrt{\frac{1,0}{1,0 + 0,5}} = 0,82. \)

Юпқа девордаги кичик тешик ва унга ўрнатилган қисқа
кувур (насадка)лардан оқиб чиқаётган суюқлик оқимининг
тезлигини ва сув сарфини анликлаш бўйича амалий машғулот.

8.1-масала. Икки бўлакка аҳратилган ҳавзанинг чап то-
монидаги идиса эркин сув сатҳи ўзгармас. Унда доира-
вий тешик бор, у тешикдан иккичи, сув тўлдирилган
идишга суюқлик оқиб ўтади. Бу тешник ташқари дан кўмилган, унинг диаметри \(d_1 = 0,10 \) м. У сув сатҳидан \(H = 3,07 \) м чукурликда жойлашган. Иккинчи идишда ҳам кичик доиравий тешик мавжуд бўлиб, у сув сатҳидан \(H_2 \) чукурликда жойлашган, унинг диаметр \(d_2 = 0,12 \) м. Сув сарфи ва чукурлик \(H_2 \) ни аниклаш керак (8.10-расм).

Ечиш. Иккала идишда ҳаркин сув сатҳлари ўзгармас бўлади, чунки иккала тешикдан оқаётган сув сарфи бириги тенг бўлса, шу тенгликка асосан \(H_2 \) ни аниклаймиз. \(Q_1 = Q_2 \) ни назарда тутган ҳолда, бирикичик чукур беришни (биринчиси биринчи идишда) кўмилган; иккинчиси иккинчи идишда, кичик чукур ташқари дан кўмилган. Шу юқоридан айтилган иккала ҳол учун сув сарфи формулатарини ёзамиз ва уларни юқоридаги шартга асосан бир-бирига тенглаштиримиз:

\[
\begin{align*}
Q_1 &= \mu \omega_0 \sqrt{2g(H_1 - H_2)}; \\
Q_2 &= \mu \omega_0 \sqrt{2gH_2}
\end{align*}
\] (8.41)

уларни бири-бирига тенглаштириб олсак,

\[
\frac{\mu \pi d^2}{4} \sqrt{2g(H_1 - H_2)} = \mu \frac{\pi d^2}{4} \sqrt{2gH_2},
\] (8.42)

ёки қийматларини ўрнига кўйиб чиқсак,

\[
0,10^2 \sqrt{3,07 - H_2} = 0,12^2 \sqrt{H_2},
\] (8.43)

бундан \(H_2 = 1,0 \) м.
Энди сув сарфини аниклаймиз:

\[
Q_1 = Q_2 = \mu \omega_0 \sqrt{2g(H_1 - H_2)} =
= 0,62 \frac{3,14 \cdot 0,10^2}{4} \sqrt{19,62 \cdot 2,07} = 0,031 \text{ м}^3/\text{с}.
\]

8.2-масала. Берилган бири-бiri билан кўшилган учта туташ идиш суюқлик билан тўлдирилган (8.11-расм).
I-идишдан II-идишга суюқлик диаметри D_1 бўлган кичик тешикдан; II идишдан III-идишга диаметри D_2 бўлган кичик тешикдан ва III идишдан ташкарига диаметри D_3 бўлган шу тешикка ўрнатилган узунлиги l бўлган қисқа кувур (насадка)дан қиъб чиқади. Сув сарфи Q ва Z_1, Z_2 ларни аниқлаш керак.

Берилган: $H = 1,0$ м; $D_1 = 30$ мм; $D_2 = 15$ мм; $D_3 = 20$ мм; $l = 0,09$ м.

Жа в о б $Q = 0,001140$ м3/с
$Z_1 = 0,345$ м;
$Z_2 = 0,552$ м.

Такорлаш учун савollar

8.1. Қисқа кувур (насадка) тушунчаси қандай?
8.2. Юпқа девордаги кичик тешикдан қиъб чиқаётган сувнинг тезлиги ва сув сарфи формуласини ёзинг
8.3. Сиқилиш, тезлик, ишқаланиш ва сув сарфи коэффициенти қандай?
8.4. Тўлиқ ва тўлиқ бўлмagan сиқилиш нима?
ТУҚҚИЗИНЧИ БОБ

ГИДРАВЛИК ЖАРАЕНЛАРНИ (ҲОДИСАЛЛARI) ФИЗИКАВИЙ МОДЕЛЛАШ НАЗАРИЯСИ АСОСЛАРИ. ГИДРАВЛИК ЭЛЕМЕНТЛАРНИ ҲИСОБЛАШДА ЭҲМ НИ ҚЎЛЛАШ

Асосий тушунчалар. Бирон бир гидротехник ва бошқа иншоотларни қуришни бошlashдан илгари уни лойиҳалаш даврида мухаққислар барча гидравлик жараёнлар ва ҳодисалларни яхши ўрганиб чиқишлари керак, чунки иншоот-ни қуриш ва ишлатишда шу гидравлик жараёнларга дуч келишлари мумкнин. Шунинг учун ҳам бу жараёнларни ҳам сифат, ҳам сон жиҳатида мукаммал баҳолаш керак. Масалан, гидроузелни лойиҳалаётганда қўйилмиларни баҳолаб чиқиш керак: қўмнинг гидравлик элементлари қандай ўзгаради, чунончи, сувнинг чуқурлиги, тезликларни ва бошимларнинг қўмнинг кўндаланг кесими майдони бўйича таксимланишни, ўзанинг кентлиги ва ҳоказо; гидроузелнинг қўқори бўфидан ЭИССЧ, масалан, згри қўтарилма қандай шаклда бўлади; ўзан тубининг умумий ва маҳалли юволиши қандай бўлади; ёқори бўфда қанча жой- ни сув босади; иншоот тагида ўтаётган ер ости сув ҳракати қандай бўлади ва ҳоказо. Амалиётда шундай бўладиқи, бавзи бир гидравлик жараёнларни (ҳодисалларни) дифференциал тенгламалар билан ёзиб чиқиш жуда муракқаб ёки мутлақо мумкнин эмас. Масалан, умумий ҳолда суъоқлиқнинг турбулент ҳракатини, ўзандаги қуйқумларнинг (қум-тошларнинг) ҳракати, уларнинг иншоотларга таъсири ва ҳоказо. Шунинг учун гидравлик жараёнларни (ҳодисаллар-ни) математик моделлаш, айниқса, суъоқлиқнинг турбулент ҳракатини ҳамда улардаги қум-тошлар ҳракатини назарда тутсак, бу лар гидровехикали фанида илмий изланишларнинг негизи ҳисобланади.

Афсуски, қўпчиллик математик моделлашда қўпича кўйилган масаланинг ечимини олиш (эниг куқратли ЭҲМ ёрдамида ҳам), ҳисоблаш жараёнда анча қўйинчилик-ларгача дуч келаётгани учун, мумкнин бўлмаятти. Бундай ҳол-

26—К-24

www.ziyouz.com kutubxonasi
ларда гидравлик ҳодисаларни тажриба усулида физикавий моделлаш ёрдамида лабораторияда ҳал қилинади.

9.1-§. ГИДРАВЛИК ЖАРАЁНЛАРИНИ (ҲОДИСАЛАРНИ)
МОДЕЛЛАШ УСУЛЛАРИ

Амалиётда ҳар ҳил моделлаш усуллари мавjud. Шулярандан фақат гидравликага онид бўлганларини қараб чиққамиз.

Физикавий моделлаш турлари. Физикавий моделлашда асосан геометрик, кинематик ва динамик параметрлар ўрганилади. Бундай жароёнлар қаторига суъоқлик окими (ёки унинг бирон бўлам) қаттиқ девор билан боғланган ҳолдаги (кувур, очик ўзанинг юволадиган туби ва ҳоказо) ва ундан қуйжумларнинг ҳаракати ва бошқаларни ёкида. Агар моделда аслига ўқшаш физикавий бир ҳил жисм (суъоқлик ва қум-тошлар) ишлатилса, у ҳолда бунинг физикавий моделлаш деб аталади. Масалан, аслида сув ҳаракатини назарда тутсак, моделда ҳам шу сув ишлатилиши лозим. Агар моделлашда, моделда аслига қарасанда бошқа жисм (материаллар) ишлатилса, бундай моделлашни аналог усулида моделлаш дейилади. Масалан, аслида ер остидағи сувнинг ҳаракати (иншоот тагидан ўтаётган сувнинг ҳаракати — фильтрация)ни моделда электр окими билан алмаштирилади (Электр окимининг ҳаракати Лаплас тенгламаси ёрдамида бажарилади.) Ғрунталар эса электр окимини ўтказгич материаллар билан алмаштирилади. Щунинг учун аслида ер ости сувнинг ҳаракатини ўрганиши моделда электр токини ўтказувчан материаллардан фойдаланиб, унда электр окимининг шундай миқдорларини, масалан, тезлик потенциали, оким функцияси ва бошқаларни осонгина ўлчаш мумкин, уларни аслида ўлчаши иложи йўқ. Агар моделлаш назарияси яхши ишончли ишлаб чиқилган бўлса, у ҳолда, математикавий модел ёрдамида ва тегишли тенгламаларнинг бошлангич ва чегаравий шартларини назарда тутган ҳолда ҳеч қандай қийинчиликсиз кўп маблаф ва вақт сарф этмасдан масалани ўрганиш ва ечимини оlish мумкин. Бундай масалалар ЭҲМ ёрдамида ечилади. Охирги пайтларда гидравликага онд кўплаб масалаларни ҳал қилишда, масалан, суъоқлик окимининг текис илгарилама ҳаракати ва нотекис илгарилиман ҳаракатларини, сув ўтказгич гидротехник ишо-отларини гидравлик ҳисоблашда, ечимларини қулақ ҳал
9.2-§. ГИДРАВЛИКАДА ЎХШАШЛИК НАЗАРИЯСИНИНГ АСОСИЙ ТУШУНЧАЛАРИ

Гидравлик жараёнларни (ҳодисаларни) моделлаш асосан икки хил: математикавий ва физикавий моделлашлар. Математикавий моделлаш усулда юқорида кисқача тушунча берил ўтилди. Гидравликада асосан физикавий моделлаш кўпроқ қўлланилган ўчун қуйида биз шу усулу устида кенгроқ тўхталиб ўтамиз.

Физикавий моделлаш усулн

Бундай моделлашда ўрганилаётган гидравлик жараёнлар аслида ўзининг масштаби билан фарқ қиладиган моделда механиканинг умумий ўхшашлик назариясига асосан бажарилади. Гидравлик жараёнлар (ҳодисалар) уларда барча геометрик элементларнинг ўлчамлари (узунликлари), зичликлари ва суюқликнинг динамикаси (суюқлик заррачаларига таъсир этиётган кучлар) бир ҳил нисбатда, бир ҳил нуктада, бир ҳил йўналишда таъсир этиётган ҳолда бўлганда механикавий ўхшаш бўлади. Бу ҳолатда бундай модел гидротехник ва бошқа иншоотларни, уларда ҳаракат қилаётган суюқликлар билан бирга кичраштурувчи модел деб аталади. Окимнинг тўлиқ гидрдинамик ўхшашларини вужудга келтириш учун уларда геометрик, кинематик ва динамиқ ўхшашлар бажарилади бўлиши шарт.

Геометрик ўхшашлик. Йкки суюқлик окими геометрик ўхшаш бўлиши учун уларнинг ўзаро узулиқ ўлчам миқдорлари орасида қуйидаги ўзгармас нисбат мавжуд бўлиши шарт

\[\frac{l_o}{l_m} = \alpha_i = \text{const}, \]

бу қарорда \(\alpha_i \) — узунлик масштаби, бу моделнинг узунлик ўлчами \(l_m \) нинг асилдаги узунлик ўлчами \(l_o \) га нисбат
тан неча марта кичиклаштирилганини кўрсатади. Бу геометрик ўхшашлик моделида ўзаннинг барча узунлик ўлчамлари (h — сувнинг чукурлиги; b — ўзан тубининг кенглиги; l — унинг узунлиги ва бошқалар), $\frac{h}{h_i} = \alpha_h = \alpha_i$;

$\frac{b}{b_i} = \alpha_b = \alpha_i$ ву шу ёқаторда ўзан туби ғадир-будурлигининг геометрик баландликлари ($\bar{\Delta}$ — ғадир-будурликларнинг баландликлари, уларнинг ўртача ўлчамлари, $\frac{\bar{\Delta}_a}{\bar{\Delta}_m} = \alpha_{\bar{\Delta}} = \alpha_i$, ўзан тубида тош-қумларнинг ҳаракати пайтида ҳосил бўладиган қум тўлқинларнинг баландликлари ёки микро- ва макрошакларнинг баландликлари ва уларнинг узунликлари)ни ҳам аслидаги ғадир-будурликларга қараганда α_i марта кичиклаштириш керак бўлади

$$\frac{\bar{\Delta}_a}{\bar{\Delta}_m} = \alpha_{\bar{\Delta}} = \alpha_i. \quad (9.2)$$

Бундан келиб чиқадики, геометрик ўхшашлик бажарилса, ўзанлардаги суюқлик окимларида нисбий ғадир-будурликлар $\bar{\Delta}_h$ ўзгармас бўлиб қолади, яъни бу нисбат аслида қандай бўлган бўлса (геометрик ўхшашлик сакланган ҳолда), моделида ҳам худди шундай бўлиши шарт. Бундай ҳолат гидродинамикада куйидагича ифодаланади:

$$\bar{\Delta}_h = \text{idem}. \quad (9.3)$$

Оким кўндаланг кесими нисбати майдоннинг ва V сув ҳажмининг нисбати ҳам шундай ўзгармас бўлиши керак:

$$\frac{\omega_a}{\omega_m} = \alpha_{\omega} = \alpha_i^2; \quad (9.4)$$

$$\frac{V_a}{V_m} = \alpha_{V} = \alpha_i^3. \quad (9.5)$$

Кинематик ўхшашлик. Табий ҳолатдаги окимда ва моделида окимда тезлик ва тезланиш майдонлари ўхшаш ва ўша окимлардаги (асл ва модел) бир хил ўшаш (ўхшаш) нуктадарда тезликлар u ва тезланишлар a тегиш—
ли вактда бир хил нисбатда бўлсалар, у ҳолда икки суюқлик окими кинематик ўхшаш бўлади.

\[\frac{u_a}{u_m} = \frac{l_a}{l_m} = \frac{l_a}{l_m} = \frac{l_a}{l_m} = \frac{\alpha_a}{\alpha_i} = \alpha_u; \]
\[\frac{\alpha_u}{\alpha_m} = \frac{\alpha_i}{\alpha_i} = \frac{\alpha_i^2}{\alpha_i} = \alpha_a. \]
(9.6)
(9.7)

Шу билан бир қаторда улар умумий ҳажм бўйича ўзгармас бўлади:

\[\begin{align*}
\alpha_u &= \text{const (умумий суюқликнинг ҳажми бўйича)} \\
\alpha_a &= \text{const (умумий суюқликнинг ҳажми бўйича)}
\end{align*} \]
(9.8)

Кинематик ўхшашлик фақат геометрик ўхшашлик мавжуд бўлган ҳолда бажарилади (\(t_a = \alpha_i = \text{const} \) — вакт масштаби).

Динамиқ ўхшашлик. И. Ньютоннинг ўхшашлик қонунини. Моделда ва аслида суюқлик окимининг ўхшаш нуктларида суюқлик заррачаларига таъсир этувчи кучлар бир хил ва ўша қўйилган кучлар-нинг векторлари геометрик ўхшаш кўпъборчакларни таш-кил этса, бундай кучлар динамиқ ўхшаш кучлар дейилади.

9.1- расмда қўрсатилгандек, суюқлик окимининг ихтиёрий заррачасиға умuman қўйилдиғи кучлар таъсир этади.

9.1- расм.
1. Əgirlik kuchi, u suyuklikning ρ zilgili, g erkkin tushishi tizlanshava va V suyuklikning ҳajmiga tugri proporqional (ёки zarraqanining uzunlik ылчaminining uninchchi daражasi l^3 ga teng)

$$G = Mg = \rho g V = \rho g l^3.$$ \hspace{1cm} (9.9)

2. Bosim kuchi, u gidrodinamik bosim p bulyib, taqsiir etaatgan ω maydoniga (ёки zarraqalanning uzunlik ылчaminining ikkinchi daражasi l^2 ga) tugri proporqional

$$P = p \omega = pl^2.$$ \hspace{1cm} (9.10)

3. Ishkalani kuchi, u suyuklik zarraqasining dinamik kowushoklik koefitsienti μ ga, suyuklik zarraqalarini tezliklariga U (uzunlik ылчaminining birinchi daражasi l ga) tugri proporqional

$$T = \mu \frac{du}{dh} \omega - \mu u l.$$ \hspace{1cm} (9.11)

(9.9), (9.10), (9.11) tenglamalarida keltilrilgan kuchlarning teng taqsiir etuvchisi F. Niyotinnin 11 konuni aсосида, massa M nining tizlansh a ga қўпайтмасига teng

$$|\vec{F}| = |\vec{G}| + |\vec{P}| + |\vec{T}| = Ma = \rho V a \sim \rho l^3 \frac{u^2}{l} = \rho l^2 u^2.$$ \hspace{1cm} (9.12)

Bu teng taqsiir etuvchi kuch $|\vec{F}|$ қиймат нуктани назаридан караганда инерция кучига teng

$$|\vec{F}| = |\vec{T}| \sim \rho l^2 u^2.$$ \hspace{1cm} (9.13)

Ухшашлик назариясига асосан барча бир хил кўш кучларнинг нисбатлари аслидаги, ёъни табий ҳолатдаги, (9.1 а-расм) ва моделидаги (9.1 б-расм) suyuklik okimlari учун бир хил, ёъни

$$\frac{G_a}{G_m} = \frac{P_a}{P_m} = \frac{T_a}{T_m} = \frac{F_a}{F_m} = \frac{I_a}{I_m} = \alpha_F = \text{const},$$ \hspace{1cm} (9.14)

bu erda α_F - кучларнинг масштаб қўпайтмаси, ёъни бу аслидаги табий окимдаги ихтиёрий бир нуктага

www.ziyouz.com kutubxonasi

(9.15) тенгламага асосан аслида табиий ҳолатда ва моделда икки ўшаш суюқлик оқимининг заррачатларига қўйилган кучларнинг тенг тасъир этувчиси

\[F_a = \rho_a V_a a_a; \]
\[F_u = \rho_u V_u a_u. \]

(9.16)

Агар уларнинг нисбатини масштаб қўпайтмалари орқали белгиласак, у ҳолда

\[\frac{F_a}{F_u} = \frac{\rho_a V_a a_a}{\rho_u V_u a_u} = \alpha_F = \alpha_{\rho} \alpha_i^2 \alpha_u, \]

(9.17) бунда \(\alpha_{\rho} \) — сув зичлигининг масштаб қўпайтмаси. Бу ерда (9.7) тенгламадан

\[\alpha_{\sigma} = \frac{\alpha_u}{\alpha_i}. \]

(9.18)

(9.18) тенгламани (9.17) тенгламага қўйсак

\[\alpha_F = \alpha_{\rho} \alpha_i^2 \alpha_u, \]

(9.19)

ёки

\[\frac{\alpha_F}{\alpha_{\rho} \alpha_i^2 \alpha_u} = 1,0. \]

(9.20)

(9.19) ва (9.20) тенгламалар масштаб қўпайтмалари орқали ифодаланган И. Ньютоннинг ўшашлик қонуни деийилади. Масштаб қўпайтмалари ўрнига уларнинг микидорларини қўйиб чиқсак, у ҳолда
\[
\frac{F_a}{\rho_a l_a^2 u_a^2} = \frac{F_m}{\rho_m l_m^2 u_m^2}
\]
(9.21)

ёки

\[Ne_a = Ne_m,\]
(9.22)

буналан келиб чиқадики

\[Ne = idem,\]
(9.23)

бу ерда

\[Ne = \frac{F}{\rho l^2 u^2} - \text{И. Ньютон критерияси}\]
(9.24)

И. Ньютон критериясини бошқача кўринишда ҳам ёзиб мумкин, бу нинг учун (9.24) тенгламанинг суратини ва махрабини \(l\) га кўпайтірсак, у ҳолда \((M = \rho l^3\) нигазарда тутган ҳолда)

\[Ne = \frac{F l}{M u^2} = idem,\]
(9.25)

бу ҳолатда И. Ньютоннинг ўхшашлик қонуни физикавий микдорларда қуйидагича ёзилди:

\[
\frac{F_a l_a}{M_a u_a^2} = \frac{F_m l_m}{M_m u_m^2}.
\]
(9.26)

Суюқлик қўимининг гидродинамики ўхшашлиги, асосан И. Ньютон критериясини, моделда ва аслида тенглигини таъминлаш орқали бажарилади, яъни

\[Ne_a = Ne_m.\]
(9.27)

9.3-§. ДИНАМИК ЎХШАШЛИҚ КРИТЕРИЯСИ

Гидравлик жараён ва ҳодисаларни моделлашда гидродинамики ўхшашлик шартли, бу аслида ва моделда барча кучлар нисбатларининг тенглиги дир. И. Ньютоннинг асосий критерияси (9.25) дан табиатнинг ҳар ҳил физик кучлари учун ҳусусий ўхшашлик критерияларини олиш мумкин. Қуйида амалиётда тез-тез учраб турадиган масалаларда асосий таъсир этувчи кучлар учун ўхшашлик критериясини келтирилмиз.
1. В. Фруднинг ўхшашлик критерияси. Бу критерия қаралаётган суюқлик ҳаракати пайтида ундаги гидравлик жараёнларда огирилик куч бошқа кучларга нисбатан устун бўлган ҳолда қўлланилади. Унинг учун (9.14) тенгламадан келиб чиқадиган шартга асосан

\[\frac{G_a}{G_m} = \frac{I_a}{I_m}, \]

ёки

\[\frac{I_a}{G_a} = \frac{I_m}{G_m}. \] \hspace{1cm} (9.28)

(9.9) ва (9.10) тенгламаларни назарда тутган ҳолда

\[\frac{u_a^2}{g l_a} = \frac{u_m^2}{g l_m} = Fr, \] \hspace{1cm} (9.29)

бу ерда \(Fr \) — В. Фруд сони (kritерияси), \(Fr \) сонини масштаб кўпайтмаси орқали ифодаласак

\[\frac{\alpha_u^2}{\alpha_g a_l} = 1,0. \] \hspace{1cm} (9.30)

Бундан келиб чиқадики, В. Фруд сони (kritерияси) иккala оқимнинг, моделда ва аслида, ўхшаш кўндаланг кесимларида бир-бирига тенг бўlsa, суюқлик оқимини геометрик ва гидродинамик ўхшаш деб ҳисоблаш мумкин, яъни

\[Fr_a = Fr_m; \] \hspace{1cm} (9.31)

ёки

\[Fr = idem. \] \hspace{1cm} (9.32)

Бу ҳолда сув оқимнинг тезликлари ва сув сарфлари нисбатли куйидагича

\[\frac{u_a}{u_m} = \alpha_u = \alpha_l^{0.5}; \] \hspace{1cm} (9.33)

\[\frac{Q_a}{Q_m} = \alpha_Q = \alpha_l^{2.5}. \] \hspace{1cm} (9.34)

Вакт учун масштaab кўпайтмаси куйидагича

409
$$\alpha_t = \alpha_t^{0.5}. \quad (9.35)$$

Гидравлич жараёнларни В. Фрунд критерияси орқали моделлашда, уларнинг гидравлик нишабларини тенг деб олиш максадга муваффик

$$J_a = J_u;$$

ёки

$$\frac{J_a}{J_u} = 1,0. \quad (9.36)$$

чунки бу жараён окёмининг турбулент ҳаракатининг иккинчи даражали қаршилик областига тегишили.

2. О. Рейнольддининг ўхшашлик критерияси. Бу критерияда суюқлик ҳаракати пайтида ундаги иш-қаланиш кучи бошқа кучларга нисбатан устунллик қилган ҳолда қўлланилади. Бу ҳарда ҳам (9.14) тенгламадан келиб чиқадиган шартга асосан олинач, у ҳолда (9.11)ни назарда тутиб, қуйидагини оламиз

$$\frac{\nu_a}{\nu_u} = 1,0. \quad (9.37)$$

Шундай қилиб, суюқлик окими гидродинамики ўхшаш бўлади, қачонки иккala окёмин нисбадан кўндаланг кесими учун

$$Re_a = Re_u; \quad (9.38)$$

ёки

$$Re = idem. \quad (9.39)$$

Агар

$$\frac{\nu_a}{\nu_u} = 1,0. \quad (9.40)$$

булган ҳолда, қуйидаги нисбатлар ҳақиқий деб ҳисобланади:

тезлик

$$\frac{u_a}{u_u} = \alpha_u = \alpha_t^{-1,0}; \quad (9.41)$$

cув сарфи

$$\frac{Q_a}{Q_u} = \alpha_Q = \alpha_t; \quad (9.42)$$
\[
\frac{f_a}{f_m} = \alpha_j = \alpha_j^{-3}.
\] (9.44)

3. Л. Эйлернинг ўхшашлик критерияси. Бу критерия суюқлик заррачаларита таъсир этаётган бошқа қучларга нисбатан бошим кучи устунлик қилган ҳолда, (9.14) тенгламадан олинади, (9.10) тенгламани назарда ғунган ҳолда

\[
\frac{p_a}{\rho_a u_a^2} = \frac{p_m}{\rho_m u_m^2} = E\ddot{u}.
\] (9.45)

Бу әрда $E\ddot{u}$ — Л. Эйлер критерияси, у модель ва аслидаги ғабий ҳол учун тенг:

\[
E\ddot{u}_o = E\ddot{u}_m
\] (9.46)

ёки

\[
E\ddot{u} = \text{idem}.
\] (9.47)

Агар Re критерияси шарти бажарилса, у ҳолда Л. Эйлер критерияси шарти ўз-ўзидан бажарилади, бунда

\[
E\ddot{u} = \lambda \frac{f}{2d}.
\] (9.48)

4. М. Вебернинг ўхшашлик критерияси. Бу критерия сатҳга тортлиш кучи $F = \sigma l$ устунлик қилган ҳолда олинади. Бу әрда σ — сатҳга тортлиш коэффициенти,

\[
\frac{\rho_a u_a^2 p_a}{\sigma_a} = \frac{\rho_m u_m^2 l_m}{\sigma_m} = We,
\] (9.49)

We — М. Вебер критерияси, у, аслида ва моделда бир-бирова тенг бўлиши қерак:

\[
We_o = We_m;
\]

ёки

411
5. Струхалнинг ўхшашлик критерияси, критерияда суюқлик оқимининг бекарор ҳаракатида ишлай кучининг таъсирини устун бўлса, қўйиладиги шарт берилиши керак

\[
\frac{u_t}{l_a} = \frac{u_t}{l_u} = st, \quad (9.5)
\]

Бунда \(St\) — Струхал критерияси, \(u\), аслида (табийий хол) ва моделда бир хил бўлиши керак

\[
St_a = St_u; \quad (9.5)
\]

ёки

\[
St = idem, \quad (9.5)
\]

бу ерда вакт учун

\[
\frac{t_a}{t_u} = \alpha_j^{0.5}. \quad (9.54)
\]

6. Махнинг ўхшашлик критерияси. Бу критерияда суюқликнинг сиқилиши назарда туштилади:

\[
\frac{u_0}{C_0} = \frac{u_0}{C_u} = M, \quad (9.55)
\]

бу ерда \(C\) — товушнинг тарқалиш тезлиги; \(Ma\) — Мах критерияси, аслида (табийий хол) ва модел учун бир хил

\[
Ma_a = Ma_u; \quad (9.56)
\]

ёки

\[
Ma = idem.
\]

7. Архимеднинг ўхшашлик критерияси. Бу критерияда икки хил зичликка эга бўлган суюқликлар зич-лигининг фарқи натижасида \(\rho_1 - \rho\) пайдо бўладиган Архимед кучи

\[
\frac{s_a}{u_a} \left(\frac{\rho_1 - \rho}{\rho_1} \right) = \frac{s_u}{u_u} \left(\frac{\rho_1 - \rho}{\rho_1} \right)_u = Ar \quad (9.57)
\]

бу ерда \(Ar\) — Архимед критерияси, у аслида ва моделда бир хил бўлиши керак

412
Ar₉ = Ar₉ₜ; \hspace{1cm} (9.58)

Ar = idem. \hspace{1cm} (9.59)

9. Кошнинг ўхшашлиқ критерийсиси. Бу критерий ќарбага қарши куч таъсири устунлик қилганда (мақлув кукуилди қидрвлик ќарб) қўлланилади

\[
\frac{\nu^2 \rho_{\alpha}}{E_{a}} = \frac{\nu^2 \rho_{\alpha}}{E_{m}} = C_0, \hspace{1cm} (9.60)
\]

Bu sida \(E\) — материалнинг зарбани қийтариш хусусияти (модуль упругости); \(C_0\) — Кошни критерийсиси

\[
C_{0_{\alpha}} = C_{0_{m}}; \hspace{1cm} (9.61)
\]

\(C_0 = idem.\)

9. Ж. Лагранжнинг ўхшашлиқ критерийсиси. Бу критерий секин ҳаракатланувчи, қовушоклани кагтт ўлган суюқликларнинг ўхшашлигини ўрганувчи критерий. Бу критерий Л. Эйлер ва О. Рейнольдс критерияларининг кўпайтмасида тенг

\[
La = E/E \hspace{1cm} (9.62)
\]

Биз гидравлик жараёнларни моделлашда асосан, амалиётда тез учр́аб тур маршган ва ќулланилаётган гидродинамик ўхшашлиқ критерийларини келтирилм. Булардан ташқари яна бир неча критерийлар мавжуд, масалан, П. Прандтль сони, Х. Эйнштейн сони, Ричардсон сони, И.И. Леви критерийси, С.Т. Алтунин, Г.В. Железняков, И.В. Егиазаров, А. Ю. Умаровнинг критериялари ва бошқалар. Гидравликада тез учр́аб тур маршган гидродинамик ўхшашлиқ критерийясининг масштаб кўпайтмалари 9.1-жадвалда келтирилган.
<table>
<thead>
<tr>
<th>Модел-лар шартли</th>
<th>Масштаб кўпайтмаси, α</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>узунлик</td>
</tr>
<tr>
<td>Fr</td>
<td>α₁</td>
</tr>
<tr>
<td>Re</td>
<td>α₁</td>
</tr>
<tr>
<td>Ar</td>
<td>α₁</td>
</tr>
<tr>
<td>We</td>
<td>α₁</td>
</tr>
<tr>
<td>Co</td>
<td>α₁</td>
</tr>
</tbody>
</table>

9.4- §. ГИДРАВЛИК ЖАРАЁНЛАРНИ (ҲОДИСАЛАРНИ) ФИЗИКАВИЙ МОДЕЛЛАШДА АСОСИЙ КЎРСАТМАЛАР

Гидродинамики ўқшашлик критериясига асосан, бўлажак моделнинг масштабини аниқлама уумий ўқшашлик қонунида келиб чиқадigan қуйидаги қатор шартларни бажариш керак.

1. Агар суюқлик оқими аслида турбулент бўlsa, моделда ҳам шундай турбулент ҳаракат бўлиши шарт: Reₙ > (Reₚ)₂, бу ҳолда моделнинг энг кичик рухсат этилган масштаб кўпайтмаси қуйидагича бўлиши керак:

\[\alpha_i = (30 - 50) \sqrt[3]{(v_a h_a)^2}, \] \hspace{1cm} (9.63)

бу ердаθₜ, hₜ — аслидаги кувнинг тезлиги ва унинг чукурлиги.

2. Агар суюқлик ҳаракати аслида табиатда сокин ҳолатда Fr ≪ 1,0 ёки жўшихин ҳолатда Fr > 1,0 бўlsa, моделда ҳам худди шундай шароит ташкил этилган бўлиши шарт.
4. Гидравлик жараён (ҳолиса)ларни моделлаш учун гадир-будурлигининг геометрик ўхшашлигининг нимиятига ҳаракат қилиш керак, аммо бунинг амалли бўларини ниҳоятда мураккаб бўлган учун бу қилди гидр- будурликини ифодаловчи гидравлик ўққилишини коэффициентини \(\lambda = \text{idem} \) шарти орқали моделлаш мумкин.

5. Агар моделда қум-тошлар (нанослар)нинг ҳаракатини ўрналаш керак бўлса, у ҳолда қум-тошлар моделда шундай ҳаракатланиши керакки, аслида табиятда қандай ҳаракат қилган бўлса, моделда ҳам ҳудди ўша жараён барпо ҳилиш керак. Агар аслида қум-тошлар ўзан тубида ҳаракат қилган бўлса ва улар қум тўлқинлари шаклида, микро- ва макро шаклида ҳаракатланса, моделда ҳам ўзан тўпнинг шакли ва ундаги қум-тошларнинг ҳаракати шундай шаклида бўлиши керак. Албатта, бу жараённи моделлаш нияятда мураккаб, шунга қарамасдан қум-тошлар ҳаракатини кенг ўрганиши устида олимларимиз анча ишлар қилишган. Китобнинг ҳажми чегараланганили сабабли бу серда қум-тош ҳаракатларини моделлаш усулларини келтириш имкониятини бўлмади.

Гидравлик жараёнларни физикавий моделлашга оид амалий машғулот

9.1-масала. Қувурининг гадир-будурлиги ва ундағи оқимнинг ҳаракатини моделлаш. Аслида бетондан ясалган қувур берилиган, унинг диаметри \(D_0 = 4,0 \) м; деворнинг ички гадир-будурлигининг баландлиги \(\Delta = 0,01 \) м ва \(\lambda = 0,01 \); қувур \(Q = 25 \) м³/с сувни ўтказади. Шу гидравлик ҳоҳисани моделлаш керак. Моделдаги қувур девори материалларига гадир-будурлиги \(\Delta_M = 0,00008 \) м; сувнинг ҳарорати \(T°C = 20°C \). Сув сарфиини аниқланг.

Бичиш. 1. Геометрик ўхшашлигин назарийси бўйича деворнинг гадир-будурлигини моделлаш учун моделнинг геометрик гадир-будурлик масштаб қўпайтмасини анисиятмиз:

\[
\alpha = \alpha_\Delta = \frac{\Delta}{\Delta_M} = \frac{0,001}{0,00008} = 12,5.
\]

415
Худди шундай, моделдаги қувур диаметрини ва гидравлик радиуси қийматини аниклаймиз

\[d_m = \frac{D_a}{\alpha_t} = \frac{4,0}{12,5} = 0,32 \text{ м}; \]

\[R_n = \frac{d_m}{4,0} = \frac{0,32}{4,0} = 0,08 \text{ м}. \]

2. \(\lambda_a = \lambda_n \) шартини назарда тутган ҳолда, моделдаги икинчи дарахти каршилиқ соҳаси чегарасини И.И. Леви, ёки И. Никурадзе формулаларидан аниклаймиз, масалан:

\[\text{Re}_{чегара} = \frac{14,0}{\Delta_m} \frac{R_n}{\sqrt{\lambda_m}} = \frac{14,0 \cdot 0,08}{0,00008 \sqrt{0,01}} = 140000; \]

ва окимниинг тезлиги

\[\theta_o = \frac{Q_o}{\omega_o} = \frac{Q}{\pi D^2} = \frac{25,0}{3,14 \cdot 4^2} = 1,99 \text{ м/с} \]

булған ҳолда, аслидаги О. Рейноълдс сонини аниклаймиз

\[\text{Re}_a = \frac{v_a R_a}{\nu_a} = \frac{1,99 \cdot 1,0}{0,01 \cdot 10^{-4}} = 199000; \]

бу ерда \(R_a \) — аслидаги гидравлик радиус,

\[R_a = \frac{\omega_a}{\lambda_a} = \frac{\pi D^2}{2 \pi P} = \frac{D}{4} = 1,0 \text{ м}. \]

3. Масштаб кўпайтималарини аниклаймиз

\[\alpha_v = \alpha_t^* \frac{\text{Re}_a}{\text{Re}_n} = \frac{1,0}{12,5} \frac{199000}{140000} = 1,14 \]

ва

\[\alpha_q = \alpha_o \alpha_v^2 = 1,14 \cdot 12,5^2 = 178,0. \]

4. Моделдаги кувурда сувнинг тезлиги

\[v_m = \frac{v_a}{\alpha_v} = \frac{1,99}{1,14} = 1,75 \text{ м/с}; \]

416
Қув сарфи эса

\[q_m = \frac{Q_a}{\alpha_q} = \frac{25.0}{178} = 0.14 \text{ м}^3/\text{с}. \]

9.2-масала. Очик үзанларда суюқлик окимининг барқарор текис илгариланма ҳаракатини моделлаш.

Тахрибавий усулда ихтиёрлар физикавий қийматни аниклаш критериял тенгламасининг умумий қўримиш қуйидагича:

\[\alpha_i = f \left(Fr, Re, \frac{A}{h}, ... \right). \]

(9.64)

Иккинчи дарахтли қаршилик област учун \(\lambda_c = \lambda_m \) ни назарда тутган ҳолда, гидравлик жараёнларни қуйидаги шартларга биноан моделлаш мумкин:

\[
\begin{align*}
Fr = \text{idem}; \\
Re = \text{idem}; \\
A \frac{A}{h} = \text{idem}.
\end{align*}
\]

(9.65)

Иккинчи дарахтли қаршилик област билан ўтиш области чегарасини \(Re_m > (Re_m) \text{чегара} \) И. Никирадзе формуласидан:

\[(Re_m) \text{чегара} = \frac{84 R_m}{\Delta_m \sqrt{\lambda_m}}; \]

(9.66)

ёки И.И. Леви формуласидан аниклаймиз:

\[(Re_m) \text{чегара} = \frac{14 R_m}{\Delta_m \sqrt{\lambda_m}}, \]

(9.67)

\(Fr = \text{idem} \) бўлган ҳолда (9.1-жавдвал) масштаб қўпайтмасини бир-бiri билан таққослаш натижаси қуйидаги қўринишга олиб келади

\[\frac{Re_q}{Re_m} = \alpha_i \frac{1/2}{\alpha_m^{-1/8}}. \]

(9.68)

ёки \(\alpha_0 = 1,0 \) бўлганда

\[\frac{Re_q}{Re_m} = \alpha_i^{3/2}. \]

(9.69)
Reₐ = (Reₐ)чека, бўлган ҳолда λₐ = λₐ, шартини бажарсак, моделнинг энг кичик масштабини олиш мумкин, яъни

\[\alpha_{t\text{min}} = \left(\frac{v \Delta_{\mu} \sqrt{\lambda}}{14\nu} \right)^2 \]

(9.70)

Масалада канал берилган \(t = 80 \) с, унда сув сарфи \(Q = 42 \) м³/с бўлади, оким тезлиги \(v_a = 1,3 \) м/с, чукурлиги \(h_a = 3,2 \) м. Шукор каналнинг гадир-будурулгини ва сув ҳаракатини моделлац керак (албатта, бу ерда текис илгарианма ҳаракат назард тутилади). Моделдаги канал бетонланган, унинг гадир-будурулгиги баландлиги \(\Delta_c = 0,001 \) м ва \(\lambda_a = 0,01 \). Моделнинг мумкин бўлган энг кичик масштабини аникланг ва моделдаги тажриба ўтказиш йўли билан қуйидаги (моделдан олинган) гидравлик элементларни ҳисобланг.

Ечци. 1. Мумкин бўлган энг кичик моделнинг рухсат этилган масштаби қуйидагида аникланади:

\[\alpha_{t\text{min}} = \left[\frac{v \Delta_{\mu} \sqrt{\lambda}}{14\nu} \right]^2 = \left[\frac{1,3 \times 0,001 \sqrt{0,01}}{14 \times 0,01 \times 10^{-4}} \right] = 86,5 \]

\[\alpha_{t\text{min}} = 80 \] деб қабул қиламиз.

2. В. Фруднинг ўخشашки критерияси орқали (9.1-жадвал) гидравлик жараёнларни моделлаб, қуйидаги гидравлик элементларнинг қийматларини аниклаймиз:

\[h_u = \frac{h_a}{\alpha_t} = \frac{3,20}{80} = 0,04 \text{ м}; \ f_u = \frac{f_a}{\alpha_f} = \frac{80}{\alpha_t^{0,5}} = \frac{80}{\sqrt{80}} = 8,95 \text{ с}; \]

\[v_u = \frac{v_a}{\alpha_u} = \frac{v_a}{\sqrt{\alpha_t}} = \frac{1,30}{\sqrt{80}} = 0,145 \text{ м/с}. \]

\[q_u = \frac{Q_a}{\alpha_t^{2,5}} = \frac{Q_a}{\alpha_t \sqrt{\alpha_t}} = \frac{42}{80 \sqrt{80}} = 0,000734 \text{ м}^3/\text{с}. \]

ёки моделда сув сарфи 0,734 л/с.

3. Ҳаракат тартibiнинг аниклаш учун О. Рейнольдс сонини ҳисоблашимиз керак

\[\text{Re}_a = \frac{v_a h_a}{\nu_a} = \frac{1,3 \times 3,2}{0,01 \times 10^{-4}} = 4160000; \]

418

www.ziyouz.com kutubxonasi
\[
Re = \frac{v \mu}{\nu} = \frac{0.145 \times 0.04}{0.01 \times 10^{-4}} = 5800;
\]

\[
(Re)_{чета} = \frac{14R}{\Delta \sqrt{\lambda}} = \frac{14 \times 0.04}{0.001 \sqrt{0.01}} = 5600,
\]

моделдага

\[
Re > (Re)_{чета},
\]

булдан кўринадики, масала шарти учун қабул қилинган иққинчи даражали қаршилик области исботланди.

4. Энди қабул қилинган моделнинг масштабини өкшшиб қўрамиз.

\[
\alpha_i = \left(\frac{Re}{Re_m}\right)^{2/3} = \left(\frac{4160000}{5800}\right)^{2/3} \approx 80.
\]

Бундан кўринадики, қабул қилинган моделнинг масштаби исботланди, демак, очик ўзанда окимнинг текис илга-риланма ҳаракати тўғри моделлаштирилган.

Такоролаш учун савollar

9.1. Гидравлик жараёнларни физик ва математик усулларда моделлашни тушунтириб беринг.

9.2. Геометрик, кинематик ва динамик ўхшашликлар. Масштаб кўпайтмалари қандай анандалади?

9.3. Ньютоннинг ўхшашлик қонунин (масштаб кўпайтмалари кўрнингди) қандай ифодаланади?

9.4. Гидродинамик ўхшашлик критерияси (Фруд, Рейнольдс, Эйлер, Вебер, Струхаль, Мах, Коши, Архимед ва Ричардсон критериялари ва уларни қўллаб шартлари) ни айтинг.
ЎНИНИЧИ БОБ

ЕР ОСТИ СУВЛАРИНИНГ ХАРАКАТИ (ФИЛЬТРАЦИЯ)

10.1-§. АСОСИЙ ТУШУНЧАЛАР

Сув ўтказгич грунт алоҳида заррачалардан иборат бўлиб, уларнинг орасида бўшликлар мавjud. Амалиётда шу бўшликлар ҳажмлари ни йингиндиси умуман барча грунт ҳажмидан (35−40) % ни ташкил этади (бў ира грунт деганда сув ўтказувчан грунтилар, масалан, сулес, кум ва шагаллар назарда тутилган). Шу грунт бўшликларида сувнинг ҳаракатланиш ҳодисалари филтракция дейилади. Бу бўшликларда сувнинг пайдо бўлиш сабаблари ҳар хил, масалан, ер сатҳига ёкқан ёмғирдан пайдо бўлган сувлар ер остига шимилади. Бунинг натижасида сув бирон бир чукурликда, сув ўтказмас грунт қатлам (бу тог жинслари ва шунга ўхшаш қаттқига зич жисмлар)да ушланиб қолиб, шу зич қатлам сиртининг нишаби бўйича ҳаракат қилади. Сув ўтказмас зич қатлам ер ости сув окими учун ўзан ва зифасин бўйича даярланади. Бу ўзанда ер ости сув ҳаракат қилади, бу ерда эркин сув сатҳли ер ости суўқлик (филтракция) окими бўлди. Унданги ЭССЧга атмосфера босими таъсир этади. Бундай ер ости сув окими напорсиз оким дейилади.

10.1-расм.

420
Грунт кумлардан ташкил топган бўлса, ундаги ер ости сувларининг ҳаракати, асосан ламинар ҳаракатда бўлади. Агар грунт йирик кум-тошлардан ташкил топган бўлса, (масалан, шагал, тош, шагал-тошлардан қурилган туғон баландида сийхиф ўта-ётган сув) ундаги сувларининг ҳаракати эса турбулент ҳаракатда бўлади. Бу бобда ер ости сувларининг: а) напорсиз барқарор текис илгариланма ҳаракат (10.1-расм) ва б) нотекис илгариланма ҳаракатларини (10.2-расм) ҳараб чиқамиз. Ер ости сувлари нотекис илгариланма ҳаракатда бўлса, унинг эркин эгри сув сатҳлари ЭЭСС депрессия сатҳи дейилади; эркин эгри сув сатҳи чизиги ЭЭССЧ эса депрессия эгри чизиги деб аталади.

Маълумки, очик ўзанлар (масалан, канал ва дарёлар) даги суюқлик ҳаракатини гидравлик ҳисоблашда қуйидагича иш юритган эдик:

а) йўқотилган напорни А. Шези формуласидан аниклаган эдик

\[v = C \sqrt{RJ}, \]

(10.1)
унда \(v \) ни \(J^{0.5} \) га тўғри пропорционал деб олган эдик;

б) тезлик напори \(\frac{v^2}{2g} \) нинг қийматини ҳисобга олган эдик, чунки очик ўзанлардаги оким тезлиги \(v \) нинг қиймати нисбатан катта эди. Шуни атайлаб айтаб ўтиш қеракки, ламинар ҳаракатдаги ер ости сувларини гидравлик ҳисоблашда:

а) А. Шези формуласи ўрнига X. Дарси формуласидан фойдаланилади, у қуйидагича

\[u = kJ, \]

(10.2)
бу ерда тезлик \(u \) нишаб \(J \) нинг биринчи дарахасига тўғри пропорционал;

421
б) ер ости сувлари ҳаракатининг тезликлари жуда қичик бўлгани учун тезлик навори \(\frac{v^2}{2g} \) ҳисобга олинмайди, яъни \(\frac{v^2}{2g} \approx 0 \) деб қабул қилиниади. Бундан кўринадики, ер ости сувлари ўрзунаётганда \(E-E \) наворчиизи ва \(P-P \) пьезометр чизилиги бир-бирининг устига тушади (бир чизикда ётади). Бу ҳолда гидравлик ва пьезометрик нишаблар бир-бирига тенг бўлади.

\[J_c = J. \quad (10.3) \]

Агар ер ости сув ҳаракатлари учун кесимнинг солиштирма энергияси графикини қараб чиқсак, у 10.3- расмдаги кўринишда бўлади, чунки ер ости суви ҳаракати учун $\frac{v^2}{2g} = 0$ ва улардан сув сарфи ниҳоят кичик бўлгани сабабли графикалиги \(E=f(h) \) ёғри чизик расмда ер ости сув ҳаракати учун \(OM \) тўғри чизишга айланиб қолади. Бундан ниҳоятда мухим хулоқа қелиб чиқади, ер ости сувлари ҳаракати учун амалиётда критик чукурлик бўлмайди, яъни

\[h_{kr} = 0. \quad (10.4) \]

Шунинг учун бизга маълум бўлган \(K-K \) чизили (сувининг критик чукурлиги \(h_{kr} \) ни белгиловчи тўғри чизик) ер ости сув ҳаракати учун амалиётда ўзан тубининг чизили (суви ўтказмас қатлам чизили) билан бир чизикда ётади. Бу ҳолда критик нишаб бўлиши мумкин эмас. Шунинг учун напорсиз ер ости сув ҳаракатлари фақат сокин ҳаракатда бўлади.

10.2- §. ЕР ОСТИ СУВ ОКИМИНИНГ ТЕЗЛИГИ.
Х. ДАРСИ ФОРМУЛАСИ

Ер ости сувлари окимининг (филтрация) тезлигини ўрганиш учун 10.4- расмда кўрсатилган, диаметри \(D \) бўлган, ичи қум билан тўлатилган, темирдан ясалган
Қувурни оламиз. Қувур ичидаги қумлар орасидаги бўшликларни тўлиқриган сув қувурнинг боши ва охирдаги қесимлардаги босимлар фарқи таъсирида шу бўшликларда ламинар равишда ҳаракат қилмоқда. Қувурнинг А—А қўндаланг қесимни олсак, бунда қесим юзасининг майдони уч хил:

а) қесимдаги грунт бўшликларининг майдони \(\omega_{бушил} \); бу майдонни ҳақиқий оким қўндаланг қесимининг майдоний леб қараш мумкин;

б) қесимдаги грунт заррачаларининг майдони \(\omega_{заррача} \); ҳақиқатан бу майдон орқали сув ўтмаслиги керак;

в) қувурнинг қўндаланг қесими юзасининг майдони \(\omega_{геом. куйидагича} \) бўлади

\[
\omega_{геом. куйидагича} = \frac{\pi D^2}{4};
\]

ёки

\[
\omega_{геом. куйидагича} = \frac{\omega_{бушил} + \omega_{заррача}}{2}.
\] (10.5)

Агар қандайдир заррачалар орасидаги бирон бир бўшлиқдаги сувнинг ҳаракатини қараб чиқсак, ундаги \(a—b \) элементлар қўндаланг қесимнинг тезлик эърираси 10.5-расмда келтирилган. Шу тартибда тўлик қўндаланг қесим учун фақат бўшликларнинг йўғиндисини олсак, у ҳолда «ҳақиқий» ер ости сувлари окимининг тезлиги куйидагича бўлади:

\[
\omega'_{бушил} = \frac{\omega'}{\omega_{бушил}}.
\] (10.6)

Шу билан бир қаторда қувурдаги тезликни \(\omega_{геом} \) орқали ифодалаб, ер ости сувлари окимининг (фильтрация) тезлиги и тушунчаси киритилади:
$$u = \frac{O}{\omega_{т_ом.}} = \frac{O}{\omega_{бушилик} + \omega_{заррача}}.$$
(10.7)

(10.7) тенгламадан қўринадики, ер ости сувлари қоқимининг (филтрация) тезлиги и идеал тезлик бўлиб, унда сув ғакрат бўшуликда ҳаракатланмасдан, балки «ґрунт заррачасининг ичидан» ҳам ўтади деган назария қабул қилинган, аммо шунда қарамай бу қўрдаги сув сарфи кувурдан ҳақиқий ўтаётган сув сарфиға тенг. Юқорида қелтирилган ҳақиқий тезлик ва филтрация тезлиги тушунчаларидан кейин, улар ўртасидаги боғланишларни ўрнатамиз. Унинг учун янги белгилар қабул қиламиз:

а) ґрунт заррачалари орасидаги бўшуликларнинг ҳақмий коэффициентини \(n \) деб ифодаласак, у қуйидагича аникланади:

$$n = \frac{\text{ґрунт бўшуликларининг ҳақми}}{\text{ґрунт бўшуликларининг ҳақми} + \text{ґрунт заррачаларининг ҳақми}} < 1;$$
(10.8)

б) ґрунтининг қатҳ бўшуликлари коэффициентини \(n_0 \) деб ифодаласак:

$$n_0 = \frac{\omega_{бушилик}}{\omega_{т_ом.}} < 1, 0.$$
(10.9)

Бундай шундай хусусий келиб чиқаклиги, ґрунт заррачалари тенг ўлчамли бир хил таркибли қумлардан ташкил топган бўлса,

$$n = n_0.$$
(10.10)

Агар (10.7) тенгламанинг (10.6) тенгламага нисбатини олсак, тенг ўлчамли ґрунт заррачалари (қумлар) учун

$$\frac{u}{u'} = \frac{\omega_{бушилик}}{\omega_{т_ом.}} = n_0 = n,$$
(10.11)

бундан

$$u = nu'.$$
(10.12)

Бу ерда шуни айтиш керакки, \(n < 1,0 \) бўлган учун ер ости сувлари қоқимининг (филтрация) тезлиги и ўзининг мийдори бўйича ҳар доим «ҳақиқий» ер ости суви ҳаракатининг тезлиги и'дан кичик бўлади.

424
Қумларда сувнинг шимилишини ўрганиб, ер ости сувлари окимининг (фильтрация) тезлигини ҳисоблаш формуласи ишлаб чиқилган. Бу формула ламинар ҳаракатдаги фильтрациянинг асосий қонунини билдиради. У X. Дарси формуласи дейилади ва қуйидагича ёзилади:

\[u = kJ, \] (10.13)

бу әрда \(u \) — ер ости сув окими ҳаракатининг берилинг маълум бир нуктадаги фильтрация тезлиги; \(J \) — уша нуктадаги пьезометрик нишаб; \(k \) — пропорционаллик коэффициенти, у фильтрация коэффициенти деб аталади.

(10.13) дан кўринадики, фильтрация коэффициенти \(k \) тезлик ўлчам бирлигинг эга бўлиб (чуники \(J \) ўлчам бирлигинг эга эмас), у пьезометрик нишаб \(J=1,0 \) бўлгандағи фильтрация тезлигини билдиради.

Фильтрация коэффициенти \(k \) грунтнинг таркибиға боғлик. Ер ости сувлари окимининг сув сарфи (асосан ламинар ҳаракатдаги фильтрация учун)

\[Q = \omega kJ. \] (10.14)

(10.14) тенглама X. Дарси формуласи дейилади.

Бу ламинар ҳаракатга тегишили (10.13) ва (10.14) формулалар маълум қулланиш чегарасига эга. Агар

\[ud < (0,01\pm 0,07)\cdot 10^{-2} \text{ м}^2/\text{с}, \] (10.15)

булса, ер ости сувлари окими (фильтрация) ламинар ҳаракатдаги бўлади, у ҳолда (10.13) ва (10.14) формулаларни қуллаш мумкин. Агар (10.15) шарти бахарилмаса, у ҳолда ер ости сувлари окими (фильтрация) турбулент ҳаракатда бўлади, у ҳолда X. Дарси формуласи (10.13), (10.14) тенгламани қуллаш мумкин эмас. Ер ости сувлари окими (фильтрация) турбулент ҳаракатда бўлса, унинг тезлиги қуйидаги формуладан аникланади:

\[u = kJ^m, \] (10.16)

ёки

\[J = \frac{1}{k^m} u^m, \] (10.17)

425

www.ziyouz.com kutubxonasi
бу ерда \(m \) — даража кўрсаткичи, тажрибадан олинади (4.2-§ га қаранг) \(1,0 \leq m < 2,0 \).

\(m \) — иккинчи даражали қаршилик соҳаси учун (4.5-§ га қаранг) \(m=2,0 \).

10.3-§. ЕР ОСТИ СУВЛАРИ ҲАРАКАТИНИНГ (ФИЛЬТРАЦИЯ) КОЭФФИЦИЕНТИНИ АНИКЛАШ УСУЛЛАРИ

Ер ости сувлари ҳаркатининг (фильтрация) коэффициентини аниқлашнинг уч усул и мавжуд:

1. Лаборатория усули: \(k \) — фильтрация коэффициентини лабораторияда маҳсус асбоб (X. Дарси асбоби) ёрдамида аниқланади. X. Дарси асбоби металлдан ясалган \(A \) цилиндр шаклида бўлиб (10.6-расм), тубига яқин жойда сим тўр (сетка) билан жиҳозланган. Сим тўрнинг устига тажриба ўтказиладиган қрунт — кум ётқизилган. Тегишли напор тъясрида сув шу қум ичидан цилиндр \(A \) бўйлаб пастдан юқориға ҳаракатланади. Шу қум тўлигилиган \(A \) цилиндр идшнинг (асбобнинг) баландлиги бўйича 1—1 ва 2—2 кесим оламиз. Уларнинг оралигини \(l \) билан белгилаймиз. 1—1 ва 2—2 кесимларда тегишлича \(\Pi_1 \) ва \(\Pi_2 \) пьезометрлар ўрнатилади, улар ёрдамида шу кесимларда

![10.6-расм.]

426
H_1 ва H_2 напорлар ўлчанади. Шу грунт (қум) ётқизилган A идишдан ўтган сув Б идишга қуйилади, бу ерда ҳажмиий усулу да сув сарфи аниқланади. Бу сув сарфини фильтрация сув сарфи дейилади:

$$Q = \frac{W}{t},$$ (10.18)

бунда W — сувнинг t вақт ичидага 1—1 ва 2—2 кесимлардан ўтган сув ҳажми.

Дарси формуласи (10.14) ни k га нисбатан ечсак

$$k = \frac{Q}{aw},$$ (10.19)

(10.19) формула ёрдамида берилган грунт учун k нинг қийматини аниқлаш мумкин. Бунда ω — A цилиндр идишнинг кўндаланг кесими юзасининг майдони

$$\omega = \frac{\pi D^2}{4},$$

бу ерда D — цилиндр A идишнинг ички диаметри. Нишаб J куйидагича аниқланади

$$J = \frac{h_{i-2}}{l},$$

бу ерда h_{i-2} — икки кесим оралиги l (узунлиги) бўйича йўқотилган напор

$$h_{i-2} = H_1 - H_2$$ (10.20)

2) Ҳисоблаш усули: k — фильтрация коэффициенти эмпирик формулалардан фойдаланиб ҳисобланади. Масалан А. Хазен формуласини келтирамиз (бу формула грунт заррачалари тенг ўлчамсиз бўлган ҳар хил таркибдаги кумлар учун). А. Хазен формуласи

$$k = Ac\tau d_{108}^2,$$ (10.21)

бу ерда A — коэффициент, c — м/кун бирликда ифодаланса, у хотда $A = 1.0$ бўлади; τ — кумнинг ифосланниш коэффициенти, кумнинг «ифосланниш» даражаси ор-
тиши билан с нинг қиймати камайиб боради, с нинг қиймати

\[c = \frac{500}{1000}, \]

\(\tau \) — ёр ости сувинач ҳароратига бозлик коэффициент

\[\tau = 0,70 + 0,03 \ T^\circ C, \]

Т°С — сувинач ҳарорати;

\[d_{10\%} \] — грунтнинг эзри гранулометрик таркиби графиги (10.7-расм) бўйича 10% ли миқдорга тегишили диаметри.

График (10.7-расм) дан олинган \(d_{60\%} \) ва \(d_{10\%} \) ларнинг нисбати грунтнинг тенг ўлчасиз ҳар хил таркибини іфодаловч коэффициент (коэффициент разнозернистости) дейилади, у куйидагича ёзилади:

\[\varepsilon = \frac{d_{60\%}}{d_{10\%}}. \]

Агар \(\varepsilon > (7 \div 10) \) бўlsa, у ҳолда В. С. Қнороз назариясига асосан бундай грунт тенг ўлчамсиз ҳар хил таркибдағи грунт ҳисобланади. Агар \(\varepsilon < 5 \) бўlsa, у ҳолда бундай грунт тенг ўлчамли бир хил таркибдағи грунт ҳисобланади. А. Хазен формуласида эса, бу коэффициент \(\varepsilon < 5 \) шундай эчк. А. Хазен формуласи, асосан тенг ўлчамли бир хил таркибдағи қумлар учун қўлланади. Охирги пайтларда амалиётда \(k \) ни аниклаш ҳамнириқ формулалардан деярли фойдаланилмайди. Уларнинг ўрнига юқорида келтирилган, Х. Дарси асбоби ёрдамида \(k \) ни аниклаш усули кенг қўлланади, чунки Х. Дарси асбоби ёрдамида ўлчаб олинган микдорлар қўпроқ ҳакигатга якинроқ (эмпириқ формулалардан олинган микдорларга нисбатан).

3) Дала усули. Бу усуляда дала да лада ёр юзасида кичик доиравий майдон тайёрлаб, унга аник бир вақт ичида сув қўйиб турилади. Натижада (шу грунтнинг турига қараб) қандай вақт ичида қанча сув грунта шимилган ўлчанса, кейин махсус формулалар ёрдамида \(k \) нинг миқдорини ҳисоблаш мумкин. 10.1-жадвалда асосан амалда тез-тез учрайдиган,
ҳар хил турдаги ғрунталар учун k нинг қийматлари келтирилган.

10.1-жадвал

<table>
<thead>
<tr>
<th>Грунт</th>
<th>Фильтрация коэффициенти, k</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>см/с</td>
</tr>
<tr>
<td>Шагал</td>
<td>10–0,1</td>
</tr>
<tr>
<td>Йирик кум</td>
<td>0,1–0,01</td>
</tr>
<tr>
<td>Майда кум</td>
<td>0,01–0,001</td>
</tr>
<tr>
<td>Супесь (зич)</td>
<td>0,001–0,0001</td>
</tr>
<tr>
<td>Суглинок (соз тупрок)</td>
<td>0,0001–0,0001</td>
</tr>
<tr>
<td>Глина (лой)</td>
<td>0,00001–0,00001</td>
</tr>
</tbody>
</table>

10.4-§. ЕР ОСТИ СУВЛАРИНИНГ НАПОРСИЗ ТЕКИС VA НОТЕКИС ИЛГАРИЛАНМА ҲАРАКАТИ

Ер ости сувларининг ҳаракати, асосан, ғрунталар таркибига ва уларнинг турларига ҳараб икки кўринишда бўлади: а) текис илгариланма ҳаракат ва б) нотекис илгариланма ҳаракат.

Напорсиз текис илгариланма ҳаракат

Ер ости сувларининг ҳаракатини ўрганаётганда юқорида айтилганда, тезлик напорини $\frac{v^2}{2g} \approx 0$ деб олган эдик, шунинг учун $E\sim E$ напор чизиғи $P\sim P$ пьеzemетрик чизиғи устига тушади. $P \sim P$ пьеzemетрик чизиғи эса ўз навбатида эркин сув сатҳи чизиғи билан бир чизика ётади. Эркин сув сатҳи чизиғи, оким текис илгариланма ҳаракатда бўлганда, ўзан туби чизиғи $T \sim T$ га параллел бўлади (10.8-расм).

Шундай қилиб, ер ости сувларининг окими текис
илгариланма ҳаракатда бўлганда \(E--E \) чизиги, \(P--P \) чизиги ва эркин сув сатҳ чизиги бир чизикда ётади эсси ҳамда улар ўзан туби чизиги \(T--T \) га параллел бўлади:

\[
J_\epsilon = j = J_{асн} = i. \tag{10.22}
\]

Ер ости сув оқими напорсиз текис илгариланма ҳаракатда бўlsa, X. Дарси формуласи (10.13) ни қуйидагича кўчириб ёзиш мумкен:

\[
u = k i, \tag{10.23}
\]

у ҳолда сув сарфи

\[
Q = \omega k i. \tag{10.24}
\]

Бундан оқимнинг бирлік қенглиги учун \(b=1,0 \) м, (10.24) тенгламанинг ўрнига солиштира сув сарфим (текис илгариланма ҳаракат учун) оламиз

\[
q = \frac{Q}{B} = h_0 k_i. \tag{10.25}
\]

(10.25) тенгламадан ер ости сув оқимнинг текис илгариланма ҳаракатининг нормал чукурлиги

\[
h_0 = \frac{q}{k_i}. \tag{10.26}
\]

Бу (10.26) тенглама напорсиз оқимнинг бирлік қенглиги учун текис илгариланма ҳаракат тенгламаси бўлади.

Напорсиз нотекис илгариланма ҳаракат

Ер ости сувларининг напорсиз нотекис илгариланма ҳаракатини ўрганишда Ж. Дюпюи формуласи асос қи-либ олинади. Бунинг учун 10.9-расмда «ҳақиқий» фильтрацияни бар-ча гидравлик элементларин билан келтирамиз. 10.9- расмда \(T--T \) чизиги — ўзан тубининг чизиги; \(AB \) чизиги — эркин эгри сув

10.9-расм.
ситган чизиги. Ер ости сувларининг ҳаракати қаралганда \(AB\) чизиги ҳақиқий депрессия чизиги дейилади. Њу ерда окимнинг кўндаланг кесими чизиги \(a-b\) (10.9-расм) \(AB\), \(T-T\) ва оким чизиклариға ортогонал (тик) қўналишда бўлиши керак. 10.9-расмдан напор қўйидагича ёчилади

\[
H = z + \frac{p}{y}
\]
(10.27)

Шунингдан ўтиш қеракки, окимнинг кўндаланг кесими \(a-b\) бўйича иктиёрий нуктада ўринатиличи пьезометрларлар ёки сувнинг сатҳлари бир хил горизонтал текислиқда (расмлар \(P-P\) текислиғига қаран) жойлашади. \(P-P\) текислиғи таққослаш текислиги \(O-O\) дан напор \(H\) баландлигида жойлашган (окимнинг \(a-b\) кўндаланг кесимига жавоб берувчи напор), у ҳолда

\[
H = z + \frac{p}{y} = \text{const} \quad \text{(окимнинг берилиган)}
\]
(10.28)
кўндаланг кесими учун).

Қаралаётган ҳол учун окимнинг берилиган кўндаланг кесимлари унинг тенг напорли чизиклари ҳисобланади, яъни \(H=\text{const}\).

Ер ости сувлари техис ўзгарувчан нотекис илгарилан-ма ҳаракатда окимнинг кўндаланг кесими \((a-b\) чизиги) тенг напорли чизик бўлиб, оким чизикига ортогонал (тик) ёйналган бўлади.

Юкорида кўрсатилган (10.9-расм) пьезометрик напор чизиги \((P-P\) текислиги) мажбурий равишда \(a\) нуктадан ўтиши керак, яъни шу окимнинг кўндаланг кесими билан депрессия ҳақиқий чизикнинг учрашган нуктасидан ўтиши керак (чунки биз бу ерда атмосфера босимини ътнаборга олмаймиз).

Напорсиз ер ости сувнинг нотекис илгариланма ҳаракатини ўрганишда қўйидаги соддалаштиришларни қабул қиламиз:

1) окимнинг кўндаланг кесимини техис деб қабул қиламиз, чунки унинг эртилиги деярли катта эмас;

2) окимнинг кўндаланг кесимини тик (вертикал) деб қабул қиламиз, чунки ўзан тубининг нишаби деярли кичик. Шу соддалаштиришларга асосан ҳақиқий ер ости
сувлар (фильтрация) оқимнинг ҳисоблаш моделини оламиз, бу ҳолда 10.9-рasmдаги ҳолат, модел тарикасида 10.10-рasmга кўчириб олинади. Бу моделда оқимнинг қўндаланг кесими текис ва тик (вертикал) бўлади, оқимнинг чизиклари қўндаланг кесим чизикларига бироз ортогонал бўлмайди. Шунга қарамасдан биз шундай ҳолатга кўнишымиз лозим. 10.10-рasmни (яъни моделни) қараб чиқиб, унда иккита қўндаланг кесим, $a-b$ ва $c-d$ кесимларини белгилашмиз. Шу қўндаланг кесимлар оралигининг барча ерида $a-b$ нинг баландлиги бўйича 1,2, ... ва ҳоказо нукталарида бир хил ва dS га тенг dS_1, dS_2, ..., dS_n ларни тайинлаймиз. Бу кесимларнинг напорлари: $a-b$ кесимда $-H_1$; $c-d$ кесимда $-H_2$; улардаги йўқотилган напор эса $a-b$ кесимдан то $c-d$ кесимгача dS оралигида қўйидагicha

$$-dH = H_1 - H_2.$$ (10.29)

Шундай экан, оқимнинг берилган қўндаланг кесимининг (масалан, $a-b$ қўндаланг кесимида) барча нукталарида пьезометрик нишаб бир хил ва эркин ғери сув сатҳиниги нишабига тенг

$$J = -\frac{dH}{ds} = \text{const} \quad \text{(окимнинг қўндаланг кесими бўйича)}.$$ (10.30)

Бундан келиб чиқадики, ер ости сувлари оқимнинг (фильтрация) тезлиги оқим қўндаланг кесимининг (масалан, $a-b$ кесими) барча нукталарида бир хил ва тенг. Уни X. Дарси назариясига асосан қўйидагicha ёзиш мумкин:

$$u = kJ = -\frac{dH}{ds} = \text{const} \quad \text{(окимнинг қўндаланг кесими бўйича)}$$ (10.31)

Хуолоса: окимнинг қўндаланг кесими бўйича ихтиёрий нукталарада фильтрация тезликларининг тақсисланиши (ма-
салан, \(m-n \) кесими учун) тўғри тўртбурчак \(m \quad m' \quad n' \quad n \) шаклида бўлади. Бу ўртача тезлик оқимининг берилган кўндаланг кесими учун иштиёрий нуктадаги тезлигига тенг (ёр ости сувлари оқимининг текис ўзгарувчил нотекис илгариланма ҳаракати учун)

\[
v = u, \tag{10.32}
\]

бунда \(u \) — қаралаётган кўндаланг кесими кесимнинг иштиёрий нуқтасидаги тезлик.

\[
v = -k \frac{dH}{ds}, \tag{10.33}
\]

бунда \(-\frac{dH}{ds} \) — депрессия эгри чизиғининг нуқтасидағи нишаби (берилган кўндаланг кесимга тегишли).

\[
(10.33) \text{ тенглама Ж. Дюпюи формуласи деб аталади.}
\]

10.5-ξ. Ёр ости сувлари оқимининг нотекис илгариланма ҳаракатининг дифференциал тенгламаси (призматик ўзан учун)

Маълумки, напорсиз очик ўзанлардаги сувларлик оқимининг нотекис илгариланма ҳаракатининг ЭЭССЧ нишаби \(J \) (10.11-расм) куйидаги икки хил тенглама билан ифодаланиши мумкин (7.23 ва 10.30 формула-ларга қаранг).

\[
J = i - \frac{dh}{ds}. \tag{10.34}
\]

\[
J = -\frac{dH}{ds}. \tag{10.35}
\]

(10.34) ва (10.35) тенгламаларини назарда тутган ҳолда (10.33) тенгламани, яъни Ж. Дюпюи формуласини куйидаги кўчнириб ёзиш мумкин

\[
v = k \left(i - \frac{dh}{ds}\right). \tag{10.36}
\]

Уртача тезликни аниқлагандан кейин сув сарфини узлук-сизлик тенгламасидан куйидаги ёзиш мумкин:

28—К-24

433
\[Q = \omega v = \omega k \left(i - \frac{dh}{ds} \right). \] (10.37)

Олинган (10.37) тенглама напорсиз ер ости сув окимининг нотекис илгариланма ҳаракатининг асосий дифференциал тенгламаси (туби нишаби \(i > 0 \) бўлан призматик ўзан учун). Ўзанинг бирлик кенглиги учун солиштирма сув сарфи:

а) ўзан туби нишаби \(i > 0 \) бўлган хол учун (10.11-расм)

\[q = hk \left(i - \frac{dh}{ds} \right); \] (10.38)

б) ўзан туби нишаби \(i = 0 \) бўлган хол учун (10.12-расм)

\[q = -hk \frac{dh}{ds}. \] (10.39)

Эркин эгри сув сатҳи чизиги ЭЭСЧ шаклининг ўрганиш

Ер ости сувларининг нотекис илгариланма ҳаракатини ўрганишда ер ости сувининг ҳаракати призматик ўзанда напорсиз бўлган ҳолда, окимининг эни 1 метр деб қабул қилинади, яъни бирлик кенглик-даги окиминнинг ҳаракати қаралади. Юқорида кўрсатилгандек, ер ости сув окими қаралаётганда ҳаракат шартлари ҳар доим қўйилагича бўлиши керак

\[i < i_\text{кр} \text{ ва } h_\text{кр} = 0. \] (10.40)

Бу ерда шуни айтиб ўтиш керакки, ер ости сув ҳаракати пайтида с зонаси бўлмайди, фақат \(a \) ва \(b \) зоналари мавжуд (бундай \(a \) ва \(b \) зонасини \(i > 0 \) бўлганда, ўндай ташқарий \(b \) зонасини \(i \leq 0 \) бўлганда ҳам учратиш мумкин). Бундан кўринадики, ер ости суви окимининг нотекис илгариланма ҳаракатини қараётганда фақат тўртта ЭЭСЧ шаклини учратишмиз мумкин (10.13 а, б, в-расмлар). 10.13- расмда кўрсатилган депрессия эгри чизигининг шаклини қанчалик ҳақиқатга яқинли-
гимни юкорила келтирилган дифференциал тенгламани таҳлил қилиш ӣўли билан тасдиқлаймиз.

10.6-§. НАПОРСИЗ ЁР ОСТИ СУВ ОҚИМИНИНГ НОТЕКИС ИЛГАРИЛМАҲА ҲАРАКАТИНИНГ ДИФФЕРЕНЦИАЛ ТЕНГЛАМАСИНИ ИНТЕГРАЛЛАШ

1. Ўзан тубининг нишаби $i > 0$ бўлган ҳол учун (тўғри нишаблар ўзан). (10.38) тенгламанинг чап томонидаги солиширима сув сарфнинг текис илгарилма ҳаракатининг ғидравлик элементларини ҳисоблаш (10.25) тенгламасидаги нормал чукурлик h_0 орқали аникласак, $q = kh_0$, у ҳолда (10.38) тенглама қуйидагича ёзилади:

$$kh_0i = kh\left(i - \frac{dh}{ds}\right).$$

(10.41) тенгламани k га қисқартиргандан кейин, уни $\frac{dh}{ds}$ га нисбатан ечқан.
\[
\frac{dh}{ds} = i \frac{h - h_0}{h}
\] (10.42)

ва куйидаги белгилиарни қабул қилган ҳолда (10.11-расм)

\[
\eta_1 = \frac{h_1}{h_0}, \quad \eta_2 = \frac{h_2}{h_0} \quad \text{ва} \quad l = S_2 - S_1.
\] (10.43)

1—1 кесимдан 2—2 кесимгача (10.42) тенгламани интегралласак, ЭЭССЧ нинг тенгламасини ёки депрессия эгри чизигининг тенгламасини оламиз (i > 0 ҳол учун):

\[
\frac{i l}{h_0} = \eta_2 - \eta_1 + 2,3 \log \frac{\eta_2 - 1}{\eta_1 - 1}.
\] (10.44)

10.44 тенглама депрессия эгри чизигининг тенгламаси дейилади.

2. Ўзан тубининг пишаби \(i = 0 \) бўлган ҳол учун (горизонтал ҳолатдаги ўзан) (10.39) тенгламани 1—1 кесимдан 2—2 кесимгача интеграллаб, Ж. Дюпюи тенгламасини оламиз:

\[
\frac{q}{k} = \frac{h_1^2 - h_2^2}{2l};
\] (10.45)

\[
l = \frac{k}{2q} (h_1^2 - h_2^2). \] (10.46)

Депрессия эгри чизиги, яъни ЭЭССЧ бизга параболани англатади (10.12-расм). \(l \) — окимнинг 1—1 кесимдан 2—2 кесимгача бўлган масофада; \(h_1 \) ва \(h_2 \) — окимнинг 1—1 ва 2—2 кесимларидаги сувнинг чуқурлиги. Бу қарор (10.45) тенглама Ж. Дюпюи тенгламаси деб юритилади. (10.45) ни куйидаги кўчириб ёзамиз:

\[
\frac{q}{k} = h_{cp} \cdot \Delta h_c, \quad (10.45')
\]
\[h_{xp} = \frac{1}{2} (h_1 + h_2), \quad J_{xp} = \frac{1}{I} (h_1 - h_2). \]

(10.45) тенгламадан фойдаланиб ёр ости сув окимиллиғи депрессия эгри чизигини осонгина куриш ҳамда фильтрация сув сарфи \(q \) ни аниклаш мумкин. Солиштирга сув сарфи* \(q \) ни аниклаш учун 10.13а- расмга мурожаат эта-миyz, у тўғри бурчакли туrburчак \(ABCD \) шаклида бўлиб, грунт (кум) дан ташкил топган. Унинг узунлиги \(L \), юқори ва настки бьефлардаги сув чукурликлари тегишлица \(h_i \) ва \(h_j \). Бу иншоотнинг баданидан ўтган сув фильтрация дейилади. Бу фильтрация сув сарфини (10.45) тенглама ёрдамида аниклаш миз. Агар бу иншоотнинг узунлигини \(l = L \) деб олсак, у ҳолда (10.45) тенглама

\[q = \frac{h_1^2 - h_2^2}{2L} k \]
(10.47)

куришнишини олади.

Бу формула ёрдамида \(q \) ни ҳисоблаб депрессия эгри чизигини куришга киришамиз. Бунинг учун (10.45) тенгламадаги ҳадларни қуйидагича белгилаймиз:

\[h_1 = h; \quad l = x. \]

Унда (10.45) формулага \(h_1 = h; \quad l = x \) ни қуйиб чиқсак (бунда \(h \) — иҳтиёрий \(W_1 \) — \(W_1 \) кесимдаги сувнинг чукурлигини; у охирги кесим \(W_2 \) — \(W_2 \) дан \(x \) оралигида жойлашган; \(x \) — охир- ги кесимдан то қаралашган иҳтиёрий кесимгача бўлган масофа), қуйидаги тенгламани оламиз

\[q = \frac{h_1^2 - h_2^2}{2x}, \]
(10.48)

бундан \(MN \) депрессия эгри чизигининг координаталарини унинг узунлиги бўйича, ҳисоблаб формуласини оламиз:

\[h = \sqrt{h_2^2 + \frac{q}{k} 2x}, \]
(10.49)

бу тенгламага (10.47) дан \(q \) қийматини қуйсак:

* 1 м кенгликдаги сув сарфи назарда тутилади.
(10.50) тенглама ёрдамида депрессия эгри чизиги MN ни курамиз. (10.50) тенгламадан қурилиб турмокли, депрессия эгри чизиги k га боғлик эмас. Демак h_1 ва h_2 чукурликлар берилган бўлса ҳар ҳил грунтылар учун ҳам депрессия эгри чизиги бир ҳил бўлади.

10.7- §. ЁР ОСТИ СУВЛАРИНИНГ СУВ ЙИФУВЧИ ГАЛЕРЕЯ ВА ДРЕНАЛАРГА ОҚИБ КЕЛИШИ

Ёр ости сувларини йифувчи галереялар ихтиёрий чукурликда жойлашган бўлиши мумкин. Масалан, икки ҳил чукурликда жойлашган галереяни қараб чиқамиз.

1. Сув ўтказмас қатлаамда жойлашган галерея (10.14-рasm).

Галереяга бир томондан (галереянинг 1 м узунлиги бўйича) оқиб келаётган солиштирма сув сарфини аниклашда Ж. Дююнинг (10.45) формуласидан фойдаланилади

$$q = \frac{k}{2l}(h_1^2 - h_2^2),$$

(10.51)

$I = L$, у ҳолда

$$q = \frac{k}{2L}(h_1^2 - h_2^2),$$

(10.52)

бу ёрда h_1 — табий ҳолатдаги ёр ости сувининг чукурлиги (галерея қурилишидан илгариги ҳол учун); h_2 — галереядағи сув чукурлиги; L — галерея табиғир этаётган узунлик, у қуйидаги формуласидан аникланади.
$$L = \frac{h_1 - h_2}{f_{yrea}} \quad (10.53)$$

бунда f_{yrea} — депрессия эгри чизигининг ўртача нишаби.
Маълумки, 1 м узунликтаги галереяга иккала томондан $2q$
солиштирма сув сарфи тушади. Галереяга тушиётган сув сарфи маълум бўлса (10.14-расмга қаранган), у ҳолда депрессия
эгри чизигини қуришимиз мумкин.

2. Осма галерея (ёки дренаж) — сув ўтказмас қатламдан юқрида жойлашган галерея. Галереялар жойлашган чукурлик сув ўтказмас қатламгача етиб бормаса, бундай
gалереялар осма галереялар ёки дреналар деб аталади. Дреналар горизонтал ва вертикал жойлашган бўлади. Умуман, бундай дреналарни қуришдан мақсад, ер ости сувлари сатҳини пасайтириш.
Улар масалан, котлованларни қуриш, пахта далаларida ер шўрини ювиш, магистрал йўлларнинг полотносиини сув босишудан сақlash учун ва бошқа қурилиладиган маҳсус ғидротехник иншоотларда қўлланилади.

Горизонтал дренаж. Бундай дренажлар деярли чукур жойлашмасдан ер ости сувларини нисбатан катта бўлмagan чукурликка пасайтириш учун ишлатилади. Горизонтал дреналар очик (траншеялар, канавалар, лотоклар) ва ёпик (кувурлар, галереялар) ҳолида бўлади. Улар битталик дрен ёки дренлар тизимини ташқи этган ҳолда қурилади. Қувурдан ясалган горизонтал дрен схемаси 10.15-расмда келтирилган. 10.15 а-расмдан: горизонтал дрен 1 лар тахминан гидроизогипслар 2 га (булар табийий ҳолатдаги ер
ости сувларининг ЭЭССЧ горизонталлар орқали кўринишли паралелл бўлади. Ер ости суви дренлардан сув йингувчи 3 лар орқали коллектор 4 ларга қўйилади, натижада куришиш нормалари бахарилади.

Вертикал дренаж. Бундай дренажлар ер ости сувлари чукур жойлашган ҳолда ва сув сатхини катта чукурликларга пасайтириш учун ишлатилади. Вертикал дренларнинг қудук ва скважина кўринишидағи турлари ер ости сувларининг сатхини пасайтиришдан ташқари, аҳолини ичимлик сув билан таъминлаш вазифасини ҳам бахаради.

Осма галереяни ҳисоблаш усули. Шуни айтиб ўтиш керакки, бундай галереяларга сувлар фақат ён томонлардан эмас, балки унинг тубидан ҳам оқиб келади (10.16-рамс).

Бундай галереяларни фрагмент усули билан гидравлик ҳисоблаши Р.Р.Чугаев таклиф этган. Бу усулнинг асоси бўлиб оқим чизиғи $M' - M$ ва $N - N'$ галерея тубининг ер билан ушартган нуктасидан ўтказилган бўлиб, унинг координата бош Ox деб қабул қилинган, амалда эса қабул қилинган оқим чизиғи Ox ўқидан пастроқда бўлиши керак. Бу оқим чизиғи $M' - M$ ва $N - N'$ галереяга оқиб келаётган сув оқими кўндаланг кесимининг майдонини икки: A ва B фрагментга ажратади. Ox ўқи шартли сув ўтказмас чизиғи деб қабул қилиниб, галереяга ён томондан оқиб келаётган суюқлик юқорида кўрса-

10.16- рамс.

440

www.ziyouz.com kutubxonasi
нилган усулда ҳисобланиб \(q_1 \) (10.47) тенгламадан аниқланади (10.16-расм):

\[
q_1 = \frac{k}{2L} (h_1^2 - h_2^2), \quad (10.54)
\]

Гар ости сувининг галереяга унинг тубидан оқиб келаётганини (яъни \(B \) фрагментидан) \(q_2 \) орқали аниқланади (10.16-расм). \(q_2 \) ни ҳисоблаш учун галереяга оқиб кираётган (галерея тубининг ярмисидан \(b/2 \)) филтрация сувининг ҳаракатини напор-ли деб қабул қилиш керак. Унинг напори

\[
Z = h_1 - h_2.
\]

У ҳолда

\[
q_2 = kZq_r, \quad (10.55)
\]

белги киритамиз

\[
\frac{q_2}{kZ} = q_r \quad \text{(белги)}; \quad (10.56)
\]

бу ерда \(Z \) — напор, у қуйидагича аниқланади

\[
Z = h_1 - h_2,
\]

\(q_r \) — қабул қилинганд суви сарфи микдори; у коэффициентлар \(\alpha \) ва \(\beta \) га қараб Р.Р.Чугаевнинг графигида (10.17-расм) олинади

\[
\alpha = \frac{L}{L+b}; \quad \beta = \frac{L}{L+b}.
\]

Тўлиқ солиштирма сув сарфи осман дренанинг (галерея) \(A \) ва \(B \) фрагментининг бир томонидан

\[
q = q_1 + q_2. \quad (10.57)
\]

Осман галереянинг \(A \) ва \(B \) фрагментининг иккала томонидан унинг узунлиги бўйича умумий сув сарфи

\[
Q = 2ql_{\text{рас}}. \quad (10.58)
\]
10.8-§. ТЕНГ ЎЛЧАМЛИ БИР ХИЛ ТАРКИБДАГИ ГРУНТДАН КУРИЛГАН ТЎГОН ОРҚАЛИ СИЗИБ ЎТАЁТГАН (ФИЛЬТРАЦИЯ) СУВНИНГ ҲАРАКАТИ

Қаралаётган тўгон тенг ўлчамли бир хил таркибдаги грунтан қурилган бўлиб, бунда фильтрация коэффициенти \(k = \text{const} \) (тўгон баданининг барча нуқтасида сизиб ўтаётган сув учун). Бу ёрда тўгоннинг асоси сув ўтказмас қатламда жойлашган (10.18-рasm). 10.18-расмдан \(ABCDE \) шакли — фильтрация облости, бу ёрда: \(BC \) чизиги — депрессия эгрини чизири (энг юқори оқим чизири); \(AE \) чизири — сув ўтказмас қатлам (энг пастки оқим чизири); \(ABCDE \) фильтрация облости ичидағи пунктир чизиклар:

а) \(BC \) депрессия эгрини чизикқа паралел чизиклар — оқим чизиклари,

б) уларга ортогонал бўлган \(a-a \) га ўхшаш чизиклар — тенг напорли чизиклар деб аталади.

\(a-a, d-d \) ва бошқа ўхшаш чизиклар фильтрация окимининг кўндаланг кесимлари ёки тенг напорли чизиклар; \(h_2 \) — тўгоннинг пастки томонидаги (пастки бьефдаги) сувнинг чукурлиги; \(h_1 \) — тўгоннинг юқори томонидаги (юқори бьефдаги) сувнинг чукурлиги; \(\int OCT \) (\(B \)) CC — юқори томон (бьеф) даги сув

10.18-расм.

442
сатҳи; \[\mathcal{PT} (B) \] \[\mathcal{CC} \] — пастки томон (бьєф) даги сув сатҳи. \[ABСDE \] фильтрация области ўз чегараси билан беш бўлакдан иборат (10.18-расм): 1) \[AB \] бўлгани. Шу бўлакнинг барча нуктасида напор бир хил ва \[H_i \] га тенг. Бундан кўринадиқ, \[AB \] чизиги тенг напорли чизик бўлади (\[H_i = \text{const} \]); 2) \[DE \] бўлгани. Бу ҳам биринчи бандида-гига ўхшаш, тенг напорли чизик бўлади (\[H_2 = \text{const} \]); 3) \[AE \] бўлгани (сув ўтказмас қатламининг сатҳи). Бу юқорида айтилгандақ, фильтрация окимининг энг пастқи оким чизиги иборади; 4) \[BC \] бўлгани. Бу депрессия эзри чизиги. Унинг ихтиёрли нуктасида

\[H = z, \] (10.59)

буна \(z \) — қаралётган нуктанинг 0—0 такқослаш текислиги нисбатан жойлашган баландалиги;
5) \[CD \] бўлгани. Буна ҳам напор \(H = z \) бўлади, аммо у тўғри чизик қоидаси бўйича ўзгаради. (\(\Omega_{CD} \) напор эпюрасига қараб, 10.18-расмда).

Тўғоннинг пастки ёнбослаган \(CE \) чизиги ундағи \(C \) нуктада \(BC \) депрессион чизингға уринма бўлади. Демак, \(C \) нуктада пьеэзометрик нишаб тўғоннинг пастки деворининг нишабига тенг \(\sin \theta \),

\[J = \sin \theta. \] (10.60)

Грунтадан курилган тўғонни гидравлик ҳисоблаш қу-йидагилардан иборат:

а) тўғон баданидан сизиб ўтаётган (фильтрация) со-лиштирма сув сарфини аниклаш;

б) тўғонни лойиҳалаш учун, унинг баданидан сизиб ўтаётган сувнинг депрессия эзри чизиги \(BC \) ни аниклаш ва куриш.

10.9- §. АСОСИ СУВ ЎТКАЗМАС ҚАТЛAMДА ЖОЙЛАШГАН ГРУНТДАН КУРИЛГАН ТЎГОН ОРҚАЛИ СИЗИБ ЎТАЁТГАН СУВ САРФИНИ ҲИСОБЛАШ

Грунтадан ясалган тўғонни гидравлик ҳисоблашда, масала, содалаштириш учун, тўғоннинг ҳаққий трапециидал шакли \(A — b — c — E \) (10.19-расм) ни шартли трапециидал шакл \(A' — b' — c — E \) (юкори девори нишаби тик бўлган шакл \(A'b' \))
10.19-расм.

(10.20-расм) билан алмаштириш таклиф этилган. Бунда εh_1 В нуктадан ўтказилган $W_1' - W_1$ кесим билан шартли тўғон шаклдаги $A'\overline{b}'$ вертикал орасидаги масофага. Бу масофага шундай қабул қилиниши керакки, унда: а) шартли шаклга $A'\overline{b}'cE$ га жавоб берувчи (фильтрация) сув сарфи ҳақиқий шакл $AbcE$ дан (фильтрация) сув сарфига тахминан тенг бўлиши керак; б) шартли шаклли тўғондаги депрессия эгри чизингининг узунлиги $C'C$ ҳақиқий шаклдаги тўғри келиши керак (10.19-расм). Юқоридаги шартларга асосан коэффициент ё фақат тўғоннинг юқори бьефидаги девор нишабига боғлиқ экан. Кўпинча грунтдан қурилган тўғонлар учун $m_o = 2÷6$. Коэффициент ё ни хисоблаш учун Р.Р. Чугаев формуласидан фойдаланамиз. Бу формула тўғоннинг асоси сув ўтказувчи қатлам учун ҳам қўлланилиши мумкин:

10.20-расм.
\[\varepsilon = \frac{10.44}{1.0 + \frac{1}{2m_n}} = 0.40. \] (10.61)

Бу шартли шаклин (10.20-рasm) Ф. Шаффернак усулида ҳисоблаган. Бунинг учун шартли тўғоннинг 10.20-рasmida кўрсатилгангандек, фильтрация соҳасини вертикал \(W_2 - W_2 \) ёрдамида икки фрагментга, яъни I ва II фрагментга амал бўламиз. Бу фрагментлар учун бўлак-бўлак солиштирма сув сарфи аникланади.

1. Шартли тўғоннинг I фрагменти учун Ж. Дюпюи (10.52) формуласидан фойдаланиб, солиштирма сув сарфини аниклаган (шартли тўғоннинг бу фрагментида суъқлик ҳаракати — текис ўзгарувчан).

\[q = \frac{h^2_h - h^2_0}{2L} k = \frac{h^2_h - h^2_0}{2(L_0 - m_nz_0)} k, \] (10.62)

бу ерда \(L \) — фрагмент I нинг узунлиги; \(z_0 \) — силикст баландлиги, \(m_n \) — тўғоннинг пастки деворининг нишоб коэффициенти; \(L_0 = A' \) вертикалдан то пастки бьефдаги сув сатхигача бўлган масофа

\[L_0 = \varepsilon h_1 + b_0 + (h_1 - h_2) m_n. \] (10.63)

2. Шартли тўғоннинг фрагменти II учун \(q_2 \) ни аниклаш миз (10.21-рasm) (шартли тўғоннинг бу фрагментида суъқлик ҳаракати — кескин ўзгарувчан). Унинг учун фрагмент II ни \(D \to D' \) горизонтал тўғри чизик билан икки зонага бўламиз: \(q_{z_0} \), — юқори зона ва \(q_{z_1} \), — пастки зонадан ўтаётган сув сарфи

![Diagram](image-url)
\[q_z = q_{m, z} + q_{p, z}. \]
(10.64)

Бу шартли тўғоннинг фрагменти І кикки зонадан иборат бўлиб, улардан сизиб ўтаётган (фільтрация) сув сарфийи алоқида ҳисоблаш: а) юқори зонаси учун сув сарфи

\[q_{m, z} = \frac{k}{m_n} z_a; \]
(10.65)

б) пастки зонаси учун сув сарфи

\[q_{p, z} = k \frac{z_a}{m_n} \ln \frac{h_b}{z_a}; \]
(10.66)

в) иккала зона учун (фрагмент І) тўлик сув сарфи. Бунинг учун (10.65) ва (10.66) тенгламани (10.64) тенгламага кўйсак, Ф. Шаффернак тенгламасини оламиз

\[q = k \frac{z_a}{m_n} \left(1 + \ln \frac{h_b}{z_a} \right). \]
(10.67)

3. Шартли шаклли тўғон учун умумий сув сарфийи ҳисоблаш тенгламалар системаси (10.20-расм).

Шундай қилиб, ғрунталик ясалган тўғоннинг шартли шакли, яъни икки алоқида фрагменти, фрагмент І ва ІІ учун икки тенгламалар системаси (10.62) тенглама ва (10.67) тенгламани олдиқ:

(I) \[\frac{q}{k} = \frac{h^2 - (h_b + z_a)^2}{2(L_0 - m_n z_a)} ; \]

(II) \[\frac{q}{z_a} = \frac{z_a}{m_n} \left[1,0 + 2,3 \ln \left(\frac{h_b + z_a}{z_a} \right) \right]. \]
(10.68)

Агар ғрунталик ѣурилган тўғоннинг кўндаланг кесими, унинг юқори ва пастки ғүёфларида сув чукурликлари \(h \), ва \(h_2 \) берилган бўлса, у ҳолда юқоридаги тенгламалар системаси (10.68) да фақат икки номаълум: \(q \) ва \(z_a \) мавжуд. Бу тенгламалар системаси (10.68) қўпинча график услулда ечилали; бунда \(z_a \) нинг ҳар ҳил қийматларини қабул қилиб, (I) ва (II) формулаардан \(\frac{q}{k} \) ҳисобланади ва \(\frac{q}{z_a} = f(z_a) \) графиги курилади. Бунинг қизикарли жойи шундаки, графикдаги

446
иккита бир хил эгри функция \(q_k = f(z_\lambda) \) тегишилича, бир (I) тенглама ёрдамида, иккинчиси эса (II) тенглама ёрдамида тузилади.

Графикда шу иккала эгри чизиклар учрашган нуқта биға \(z_\lambda \) нинг қийматини беради. Мабодо туғоннинг пастки бьефида сув бўлмаса \(h_2 = 0 \) бўлса, у ҳолда (10.68) тенгламалар системасининг ечими \(z_\lambda \) га нисбатан осон ҳал қилинади:

\[
z_\lambda = \frac{I_0}{m_n} - \sqrt{\left(\frac{I_0}{m_2}\right)^2 - h_1^2}.
\]

(10.69)

\(z_\lambda \) ни билгандан кейин, \(h_2 = 0 \) бўлган ҳол учун, система (10.68) тенгламанинг (II) тенгламасидан \(\frac{q}{k} \) нинг қийматини аниклаймиз

\[
(II') \quad \frac{q}{k} = \frac{z_\lambda}{m_n},
\]

(10.70)

(10.70) дан солиштирма сув сарфи \(q \) ни аниклаймиз

\[
q = \left(\frac{z_\lambda}{m_n}\right)k.
\]

(10.71)

Шундай қилиб, шартли туғон орқаи сизиб ўтаётган (филтрация) солиштирма сув сарфи ҳақиқий туғон учун ҳам қўлланилиши мумкин.

4. Ҳақиқий туғон шакли учун депрессия эгри чизифини қуриш. Шартли туғоннинг фрагмент I учун \(z_\lambda \) маълум бўлган ҳолда (10.20-расм) депрессия эгри чизифи \(B'C \) ни Ж. Дюпюи тенгламасидан \((h_2 = h_0 \) деб қабул қилиб) фойдаланиб қурамиз.

10.10-§. АСОСИ СУВ ЎТКАЗУВЧИ ҚАТЛАМДА ЖОЙЛАШГАН ГРУНТДАН КУРИЛГАН ТУҒОН ОРҚАЛИ СИЗИБ ЎТАЁТГАН СУВ САРФИНИ ҲИСОБЛАШ

Амалиётда ҳар хил конструкцияли туғонлар мавжуд. Буларнинг асоси сув ўтказгич ва сув ўтказмас қатламларда жойлашган бўлади. Бундай туғонлар баданида (ўрта қисмида) сувни кам ўтказадиган ғрунгдан ясалган зич қат-
лам, яъни «ядро» ўрнатилган бўлиши мумкин. Бундай «ядро-ролар» депрессия эгри чизигини пасайтириш учун хизмат қилади, шунинг билан бир қаторда ғуртдан қурилган тўғоннинг ювилиб, бузилиб кетишидан саклаб қолади.

Шундай тўғонларни ҳисоблашда қуйидаги тартибдаги иш олиб борилади (10.22-расм). 10.22-расмдаги A нуктадан бошланишадан оқим чизигини AE тўғи чизиги деб қабул қилинади. AE чизигини сув ўтказмас қатлам деб қабул қилиб, ундан юқори қисмини тўғон баданинг фрагмент I деб қабул қилиб, унинг юқорида кўрсатилган асоси сув ўтказмас қатламда ётган тўғон баданинг ҳисоблашда гидравлик, яъни фильтрация усули қўлланилади (аввалги бандига қараб). Щу асосда ҳисоблаш натижасида депрессия эгри чизиги чизила-ди ва тўғон орқали силиз жўтаётган (фильтрация) сув сарфи аникланади. Энди AE чизигининг пастки томони фраг-менти II га келсак, у ҳолда напорли фильтрацияни ҳисоблаш усулини қўллашга тўғри келади, чунки AE чизигини гидротехника иншоотларининг флютбетини текис асоси деб қабул қилган ҳолда, бу флютбет тагидали фрагмент II ин- шоотдаги Z напор татсирида ишлайти деб ҳисоблалимиз.

Амалий маъмулот ўтказиш учун ер ости сувларининг галерялардаги, шунингдек, ғуртдан қурилган тўғон орқали сизиб ўтаётган (фильтрация) сувнинг ҳаракатини ва унинг сарфини ҳисоблаш.

10.1-масала. Тенг ўлчами ўрта заррачаи, бир хил таркиби ғуртдан тузилган тўғон орқали сизиб ўтаётган солиштирима сув сарфини аникланг ва унда депрессия эгри чизигини қуринг. Тўғоннинг асоси горизонтал
суў ўтказмас қатламда жойлашган. Қуйидаги берилган қийматлар асосида масалани ечиш керак.
Фильтрация коэффициенти \(k = 6,0 \) м/кун ёки \(k = 6,94 \times 10^{-5} \) м/с; тўғоннинг баландлиги \(H_T = 4,0 \) м; \(h_i = 3,0 \) м; \(h_2 = 0,5 \) м; \(b = 11,0 \) м; \(m = 2 \) (10.23- расм).

"Бўлиш. 1. (10.68) тенгламалар системасининг (II) тенгламасига асосан \(h_1' = h_2 + z_\Delta \) ни қабул қилиб, \(\frac{q}{k} \) қийматини аниклаймиз.

2. Олинган натижалар асосида \(\frac{q}{k} = f(h_2') \) графикни тузамиз, бу 10.24-рамсдаги 1 эгри чизик.

3. (10.63) формуладан \(L_0 \) нинг 2- бандида аникланган \(h_2' \) га асосан аниклаймиз.

4. (10.47) ёки (10.49) формуладан \(h_1' \) ни ёки (10.52) дан
\[
h_1' = \sqrt{h_2^2 + \left(\frac{q}{k}\right)^2 L_0}
\]
i ni ҳисоблаймиз. Юқорида қабул қилинган \(h_2' \) га асосан \(h_2' = h_2 + z_\Delta \)

5. (10.68) системанинг (1) тенгламасидан \(h_1' \) ни ҳисоблаш учун \(\frac{q}{k} \) ни аниклаймиз.

Ҳисоб-китоб натижалари 10.2-жадвалда қелтирилган.
6. $\frac{q}{k}$ микдори ва қабул қилинган h_2' га асосан 10.24-расмда 2 чизикни тузамиз:

$$\frac{q}{k} = f(h_2').$$

Натижада икка 1 ва 2 чизикларнинг учрашган нуктаси бизга

$$h'_2 = h_2 + z_a = 0,653 \text{ м}$$

ва $\frac{q}{k} = 0,187$ қийматларни беради.

7. Фильтрация окимининг солиштирма сув сарфи

$$q = \left(\frac{q}{k}\right)k =$$

$$= 0,187 \cdot 6,94 \cdot 10^{-5} =$$

$$= 1,3 \cdot 10^{-5} \text{ м}^3/\text{с.м.}$$

(10.63) тенгламадан L_0 ни аниклаймиз:

$$L_0 = \varepsilon h_1 + b_0 + m_a(h_1 - h_2) =$$

$$= b + 2(H_T - h'_2) =$$

$$= 11 + 2(4 - 0,653) =$$

$$= 17,69 \text{ м.}$$
(10.51) дан h'_1 ни аниклаймиз

$$h'_1 = \sqrt{h'_2^2 + \left(\frac{g}{k}\right)2L_0} = \sqrt{0,653^2 + 0,183 \cdot 2 \cdot 17,69} = 2,66 \text{ м.}$$

8. Депрессия эгри чизиғини (10.53) тенгламага асосан h'_1 дан то h'_2 гача ораликда ҳисоблаймиз. Ҳисоб-китоб 10.3-жадвалга туширилган.

<table>
<thead>
<tr>
<th>x, м</th>
<th>0,0</th>
<th>5,0</th>
<th>10,0</th>
<th>15,0</th>
<th>16,0</th>
<th>17,0</th>
<th>17,69</th>
</tr>
</thead>
<tbody>
<tr>
<td>h, м</td>
<td>2,66</td>
<td>2,27</td>
<td>1,82</td>
<td>1,20</td>
<td>1,03</td>
<td>0,83</td>
<td>0,65</td>
</tr>
<tr>
<td>L_m, м</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>17,69</td>
</tr>
</tbody>
</table>

Бахарилган ҳисоб-китобларга асосан депрессия эгри чизиғини тузамиз (10.23-расм).

Такrorлаш учун савollar

10.1. Фильтрация тушунчаси. Фильтрация коэффициенти. Дарси қонунинг нима?
10.2. Ер ости суv окimumнинг кўндалган қесими қандай номланади?
10.3. Фильтрация коэффициентининг физик маъноси қандай?
10.4. Фильтрация окимнинг текис ва нотекис ҳаракатини тушунтириш?
10.5. Депрессия эгри чизиғи тушунчаси қандай?
АДАБИЁТ

5. Зегжда А. И. Гидравлические потери на трение в каналах и трубопроводах. — Л.: Госстройиздат, 1957. — 278 с.
452
15. Умаров А.Ю. Гидравлика.— Т.: Изд-во Госкомцен, 1987.— 64 с.
17. Умаров А.Ю. Гидравлика.— Т.: Изд-во НПО Конструктор, часть 2, 1992.— 58 с.
18. Умаров А.Ю. Исследование неравномерного безнапорного установившегося движения жидкости в каналах с применением ЭВМ.— Т.: ТАСИ, 1992.— 21 с.
МУНДАРИЖА

Муқаддима .. 3
Биринчи боб. Гидравлика қиринг ... 6
 1.1-§. Гидравлика фанининг мазмуни ... 6
 1.2-§. Гидравлика фанининг қисқача тарихи ва унинг асосчилари 7
 1.3-§. Физик қатталикларнинг үлчои бирликлар тизими. Ҳалқаро бирлик тизими ... 10
 1.4-§. Суюқлик ва унинг физик хоссалари ... 12
 1.5-§. Идеал ва реал суюқликлар ... 13
 1.6-§. Реал суюқликларнинг асосий физик хоссалари. Қовушоқлик ... 14
 1.7-§. Гидравлиқанинг амалда қўиллиниш намунаси 17
 Токорлаш учун савollar ... 18
Иккинчи боб. Гидростатика ... 19
 2.1-§. Гидростатик босим ва унинг хоссалари .. 19
 2.2-§. Тинч ҳолатдаги суюқликнинг асосий дифференциал тенгламаси (Л. Эйлер тенгламаси) .. 24
 2.3-§. Гидростатикаанинг асосий тенгламаси. Тинч ҳолатдаги суюқликкнинг дифференциал тенгламасини интеграллаш ... 28
 2.4-§. Фақат ҳажмий кучлардан бири — оғирлик кучи таъсирида бўлган тинч ҳолатдаги суюқликдаги гидростатик босим ... 29
 2.5-§. Босимни ўлчаш асбоблари. Сув ва симоб билан ишлайди-ган асбоблар. Механик асбоблар ... 33
 Гидростатикадан амалий машғулот қўтказиш учун услубий характерга эга бўлган намунаий масалалар .. 41
 2.6-§. Б. Паскаль қонунин ва унинг амалда қўиллиши 44
 2.7-§. Суюқлик босим кучининг девор юзасига таъсири 47
 2.8-§. Гидростатик босим маркази. Босим кучининг қўйиши нуктаси ... 51
 2.9-§. Суюқлик босимининг идиш тубига таъсири 56
2.10-§. Тўғри турътбучакли доворга таъбир этувчи гидростатик босимни анёқлашда графоаналитик усул ... 58

2.11-§. Гидростатик босим кучининг текис тўғри турътбучакли доворга таъсир .. 60

2.12-§. Суёқлиқнинг циляндрик юзага босими. Гидростатик бо- симнинг эпсораси. Суёқлиқ босим кучини анёқлашда умумий услубий кўрсатма .. 69

2.13-§. Суёқлиқ босим кучининг ётқиз (нотекис) юзаларга таъсирини анёқлашда амалиётда учрайдиган одатдий хол- лар ... 76

2.14-§. Суёқлиқларда жисмларнинг суъиши қонунни. Архимед қонунни .. 79

2.15-§. Жисмнинг чўқиши чуқурлиги ва уни сиқинб чиқарган сув хажми ... 83

2.16-§. Суёқлиқларда сузаётган жисмнинг чайкалмаслик шарти.
Остойчивост. Метомаркзаз .. 85

2.17-§. Суёқлиқларда сузаётган жисмнинг мувозанат ҳолати.
Мустаҳкам ва номустаҳкам мувозанат 86
Амалий машғулот ўтказиш учун гидростатикадан материаллар ... 87
Тақрорлаш учун саволлар ... 91

Учунчи боб. Гидродинамика асослари .. 92

3.1-§. Асосий тушунчалар ... 92

3.2-§. Суёқлиқ ҳаракатининг кинематикаси. Суёқлиқ ҳаракатини ўрганишда қўлланиладиган асосий аналитик усулар.
Ж. Лагранж ва Л. Эйлер усуллари ... 94

3.3-§. Суёқлиқ ҳокимининг барқарор ва бекар ҳарқати 97

3.4-§. Траектория. Ҳоким чизиги. Элементар ҳоким найчаси.
Суёқлиқнинг тўлиқ ҳокими .. 102

3.5-§. Суёқлиқ ҳокимининг ғиридвлик элементлари. Ҳокимнинг кўндаланг кесими бўйича ўртача тезлиги. Суёқлиқ ҳокимининг ҳажмий сарфи ... 111

3.6-§. Суёқлиқ ҳокимининг узлуксизлик тенгламаси 120

3.7-§. Суёқлиқ ҳокимининг узлуксизлик тенгламасининг
дифференциал шаклдаги кўриниш .. 124

3.8-§. Суёқлиқ ҳокимининг барқарор текис ва нотекис илгариланма ҳарқати. Напорли ва напорсиз ҳарқат .. 126

3.9-§. Горизонтал жойлашган қувурда идеал суёқлиқнинг элементар ҳоким найчаси ҳарқати учун Д. Бернулли тенгламаси .. 129

3.10-§. Негоризонтал жойлашган қувурда идеал суёқлиқнинг элементар ҳоким найчаси ҳарқати учун Д. Бернулли тенгламаси ... 130
3.11-§. Д. Бернуlli тенгламасидаги учасла халларининг маъноси (гидравлик, геометрик, энергетик) ... 143
3.12-§. Узанда реал суюқликнинг элементар оким найчаси учун Д. Бернуlli тенгламаси .. 148
3.13-§. Окимнинг кўндalanг кесимининг майдони бўйича босилмаларнинг нотекис таксимланиши (биринчи кўшимча ҳол) .. 149
3.14-§. Окими кўндalanг кесимининг майдони бўйича нукталарнинг ўрталаширилган тезликларнинг нотекис таксимланишининг суюқлик массасининг ҳаракат микдорига ва кинетик энергиясига таъсир (иккинчи кўшимча ҳол) .. 150
3.15-§. Узанда реал суюқликнинг тулиқ окими учун Д. Бернуlli тенгламаси ... 153
3.16-§. Д. Бернуlli тенгламасини амалда қўллаш шартлар ва у тенглама асосида ишлаб чиқилиган гидравлик асбоблар 156
3.17-§. Узанларда напорли ва напорсиз барқарор текис ва нотекис илгарилама ҳаракат учун Р—Р пьезометрик ва Е—Е напор чизикларининг шакллари тўғрисида умумий кўрсатмалар ... 158
Амалий машиналар ўтказиш учун гидродинамикадан материаллар ... 161
Намуна сифатида усул бўйича ҳаракатга эга бўлган масалалар ғарбий ғишиларни нусхалаш учун саволлар ... 161
Такрорлани учун саволлар ... 166

Тўртинчи боб. Гидравлик қаршиликлар ва суюқлик окимнинг барқарор ҳаракати пайтида ишқаланиш таъсирда йўқотилиган напор ... 167

4.1-§. Асосий тушенчалар ... 167
4.2-§. Реал суюқлик окимнинг икки хил ҳаракат тартиби. Ламинар ва турбулент ҳаракат. О. Рейнольдс сони ва унинг критик микдори ... 170
4.3-§. Суюқлик окимнинг барқарор текис илгарилама ҳаракатининг асосий тенгламаси ... 179
4.4-§. Ламинар ҳаракатлари окимнинг кўндalanг кесимининг майдони бўйича нукталарнинг ўрталаширилган тезликларининг таксимланиши ... 183
4.5-§. Суюқлик окимнинг ламинар ҳаракати пайтида ўзанинг узунлиги бўйича йўқотилган напор ... 185

456
4.6-§. Турбулент ҳаракатнни ҳисоблаш модели. Турбулент ҳаракатдаги оқимнинг кўндаланг кесимининг майдони бўйича нуқталардаги ўрталаштирилган тезликларнинг тақсимланиши .. 188

4.7-§. Ўрталаштирилган махалллой тезлик. Ламинар ҳаракат қатламчаси. Ғидравлик силик ва ғайдир-будур ўзан девори 189

4.8-§. Оқим кўндаланг кесимининг майдони бўйича нуқталардаги ўрталаштирилган тезликларнинг тақсимланиши формула-лари ... 193

4.9-§. Турбулент ҳаракатдаги суюқлиқ оқимнинг узунлиги бўй-ича йўқотилган напор. Дарси-Вейсбах коэффициенти.
 Гидравлик ишқаланиш коэффициенти .. 197

4.10-§. Қувуrlarda суюқлиқ оқимнинг напорли ҳаракати 200

4.11-§. Ойчқ ўзанларда суюқлиқ оқимнинг напорсиз ҳаракати . 209

4.12-§. Иккинчи даражали қаршилик соҳаси учун ўзанинг узунлиги бўйича йўқотилган напор. А. Шези формуласи.
 Сув сарфи модули. Тезлик модули ... 217

4.13-§. А. Шези коэффициентини ҳисоблаш учун эмпирик
 формулалар ... 220

4.14-§. Махалллой қаршиликлар таъсирида йўқотилган напор.
 Дж. Борда формуласи ... 222
 Амалий машғулот ўтказиш учун гидродинамикадан материал-лар ... 227
 Такрорлаш учун савollar ... 234

Бешинчи боб. Напорли қувуrlarda суюқлиқнинг барқдор ҳаракати .. 235

5.1-§. Напорли қувуrlarda суюқлиқ ҳаракати пайтида йўқотилган
 напорни ҳисоблаш формулалари ... 235

5.2-§. Йўқотилган напорларни кўшibi чиқиш. Тўлиқ ишқаланиш
 коэффициенти. Қисқа ва узун қувуrlар тушунчаси 238

5.3-§. Ўзгармас диаметрли оддий қисқа қувур 242

5.4-§. Оддий узун қувуrlарни гидравлик ҳисоблаш 247

5.5-§. Узун қувуrlарнинг ёнима-ён жойланиши ва кетма-хет
 уланиши ... 249

5.6-§. Мураккаб (тарқалган) узун қувуrlар тармогини гидравлик
 ҳисоблаш .. 252

5.7-§. Мураккаб ҳалқасимон узун қувуrlар тармогини гидравлик
 ҳисоблаш .. 256
 Амалий машғулот ўтказиш учун напорли қувуrlarda сувнинг
 ҳаракатини ҳисоблаш материаллари 257
 Такрорлаш учун савollar ... 263
Оътинчи боб. Очик ўзанларда суюқлик окимининг барқарор текис илгариланма ҳаракати ва қуний гидравлик элементларини ЭХМ ёрдамида ҳисоблаш .. 264
6.1-§. Асосий тушунчалар ... 264
6.2-§. Очик ўзанларда суюқлик окимининг барқарор текис илгариланма ҳаракатини ҳисоблаш формулалари 267
6.3-§. Очик ўзанларда суюқлик окимининг кўндаланг кесими майдонининг гидравлик элементлари .. 269
6.4-§. Очик ўзаннинг гидравлик қуний кўндаланг кесимини ҳисоблаш — трапеция шаклида қанал .. 272
6.5-§. Трапециядаги шаклилар ҳисоблаш қуний қуний кўндаланг кесими .. 274
6.6-§. Очик ўзанларда текис илгариланма ҳаракатдаги суюқлик окимининг қуний қатта ва қуний кичик рухсат этилган ўртача тезлиги ... 279
6.7-§. Трапециядаги каналлардаги суюқлик окимининг текис илгариланма ҳаракатини ҳисоблашда асосий масалалар .. 282
6.8-§. Очик ўзанларда суюқликнинг барқарор текис илгариланма ҳаракатининг гидравлик элементларини ЭХМ ёрдамида ҳисоблаш .. 292
6.9-§. Барқарор текис илгариланма ҳаракатининг нормал чукур- лингини ҳамда окимининг кўндаланг кесими майдони бўйича ўртча тезлигини ЭХМ ёрдамида ҳисоблаш 293
6.10-§. Окимининг нормал чукурлигини ва тезлигини ЭХМ ёрдамида ҳисоблаш учун масалалар .. 297
Аналар машиналот учун гидродинамикида материаллар. Очик ўзанларда суюқликнинг текис илгариланма ҳаракатини гидравлик ҳисоблаш ... 303
Такорлаш учун саволлар ... 304

Ёттинчи боб. Очик ўзанларда суюқлик окимининг барқарор нотекис илгариланма ҳаракати ва қуний гидравлик элементларини ЭХМ ёрдамида ҳисоблаш .. 305
7.1-§. Приматик ва ноприматик табий ва сунъий очик ўзан- ларда суюқликнинг барқарор нотекис илгариланма ҳаракати .. 306
7.2-§. Суюқлик окимининг барқарор нотекис илгариланма ҳаракатининг асосий дифференциал тенгламаси (дифференциал тенгламанинг биринчи қўрими) .. 310

458

www.ziyouz.com kutubxonasi
7.3-§. Суюқлик оқимининг барқарор нотекис илгариликма ҳаракатининг асосий дифференциал тенгламаси (дифференциал тенгламанинг иккиничи кўрнишини)314

7.4-§. Призматик ўзанлардаги суюқлик оқимининг барқарор нотекис илгариликма ҳаракати ..317

7.5-§. Тўртта ёрдамчи тушунчалар: оқимининг кўпдalanг кесимининг солиштирима энергияси, критик чукурлик, нормал чукурлик, критик нишаб ...319

7.6-§. Очиқ ўзанларда суюқлик оқимининг сокин, жўўқин ва критик ҳолатлари ...326

7.7-§. Эркин эғри сув сатҳи қизиги ЭЭССЧнинг шакли328

7.8-§. Суюқлик оқимининг барқарор нотекис илгариликма ҳаракатининг дифференциал тенгламасини иккиничи кўрнишини интеграллаш учун кўлай ҳола келтириш341

7.9-§. Даража кўрсаткичи тенглама, сув сафри модуллари писбати учун. Ўзаннинг гидравлик кўрсаткичи ..347

7.10-§. Суюқлик оқимининг барқарор нотекис илгариликма ҳаракатининг дифференциал тенгламасини Б.А. Бахметов усулида интеграллаш ...351

7.11-§. Суюқлик оқимининг барқарор нотекис илгариликма ҳаракатининг дифференциал тенгламасини В.И. Чарненский усулида интеграллаш ...355

7.12-§. Очиқ ўзанларда оқимининг нотекис илгариликма ҳаракатини В.И. Чарненский усулида ЭЭМ ёрдамида ҳисоблаш362

Гидродинамикадан амалий манзулот ўтказиш учун материаллар.

Очиқ ўзанларда суюқлик оқимининг нотекис илгариликма ҳаракатини эркин эғри сув сатҳи қизиги ЭЭССЧ ни ЭЭМ ёрдамида ҳисоблаш ..376

Такрорлаш учун савоялар ..382

Саккизинчи боб. Ўлқа девордаги кичик тешиклардан ва ўнга ўрнатилган қисқа кувур (насадка) лардан оқиб чиқаётган суюқликнинг ҳаракатини ўрганиш........383

8.1-§. Умумий тушунчалар ...383

8.2-§. Напор ўзгармас бўлган ҳолда ўлқа девордаги кичик тешикдан ва ўнга ўрнатилган ҳар хил шаклидаги қисқа кувур (насадка) лардан оқиб чиқаётган суюқликларнинг ҳаракати ...385

8.3-§. Оқимининг сиқишиш турлари. Ўлқа девордаги кичик тешиклардан оқиб чиқаётган суюқлик ҳаракатини ўрганишда $\epsilon, \sigma, \phi, \mu_0$ коэффициентларнинг қийматлари390

459

www.ziyouz.com kutubxonasi
8.4-§. Оқимнинг траекторияси ... 392
8.5-§. Юпқа двердаги кичик тешикдан окшч чиқаётган суюқлик
окимнинг ташкардан суюқлик билан кўимлган ҳолатидаги
ҳаракати ... 393
8.6-§. Напор ўзгармас бўлган ҳолда юпқа двердаги тешикка
ўринатилган қисқа кувур (насадка)дан окшч чиқаётган суюқ-
лик окимнинг ҳаракати .. 393
8.7-§. Двердаги тешикка ўринатилган қисқа (доиравий) кувурдан
окшч чиқаётган суюқлик окимнинг тезлиги ва сув сарфиини
аниқложчи формулалар .. 396
Юпқа двердаги кичик тешик ва унга ўринатилган қисқа кувур
(насадка)дан окшч чиқаётган суюқлик окимнинг тезлигини
ва сув сарфиини аниклаш бўйича амалий машғулот 397
Такрорлаш учун савollar ... 399

Тўққизинчи боб. Гидравлик жараёнларни (ҳолисаларни) физикавий модел-
лаш изарияси асослари. Гидравлик элементларни ҳисоб-
лашда ЭҲМин қўллаш .. 400
9.1-§. Гидравлик жараёнларни (ҳолисаларни) моделлаш усуллари 401
9.2-§. Гидравликда ўхшашлик назариясининг асосий тушиқчалари ... 402
9.3-§. Динамик ўхшашлик критерияси ... 407
9.4-§. Гидравлик жараёнларни (ҳолисаларни) физикавий
моделлашда асосий кўрсатмалар ... 413

Гидравлик жараёнларни (ҳолисаларни) физикавий моделлашга
оид амалий машғулот ... 414
Такрорлаш учун савollar ... 418

Ўнинчи боб. Ер ости сувларининг ҳаракати (фильтрация) 419
10.1-§. Асосий тушиқчалар .. 419
10.2-§. Ер ости сув окимнинг тезлиги. X. Дарсий формуласи 421
10.3-§. Ер ости сувлари ҳаракатининг (фильтрация)
коэффициентини аниклаш усуллари ... 425
10.4-§. Ер ости сувларининг напорсиз текис ва нотекис
илгариланма ҳаракати .. 428
10.5-§. Ер ости сувлари окимнинг нотекис илгариланма
ҳаракатининг дифференциал тенгламаси (призматик ўзан
учун) .. 432
10.6-§. Напорсиз ер ости сув окимнинг нотекис илгариланма
ҳаракатининг дифференциал тенгламасини интеграллаш ... 434
10.7-§. Ер ости сувларининг сув йигувчи галереялар ва дрена-ларга оқиб келиши ...437
10.8-§. Тенг ўлчамли бир ҳил таркибдағи ғрунталик қурилган тўғон орқали сизиб ўтаётган (филтрация) сувнинг ҳаракати ...441
10.9-§. Асоси сув ўтказмас қатламда жойлашган ғрунталик қурил-ган тўғон орқали сизиб ўтаётган сув сарфини ҳисоблаш ..442
10.10-§. Асоси сув ўтказувчан қатламда жойлашган, ғрунталик қурилган тўғон орқали сизиб ўтаётган сув сарфини ҳисоблаш ...446
Амалий мақсулот ўтказиш учун эр ости сувларининг
gалереялардағи, шунингдек, ғрунталик қурилган тўғон орқа-
ли сизиб ўтаётган (филтрация) сувнинг ҳаракатини ва
унинг сарфини ҳисоблаш ...447
Такрорлаш учун сўноллар ...450
Адабиёт ...451
Абдужаббор Юнусович Умаров

ГИДРАВЛИКА

Олий ўкув юртлари талабалари учун дарслик

Узбек тилида

700129, Тошкент, «УЗБЕКИСТОН» нашриёти, 2002

Мухаррир М. Саъдуллаев
Бадий мухаррир Т. Қаноатов
Тех. мухаррир Т. Ҳаритонова
Мусаххих М. Юлдашева

«Ўзбекистон» наширёти, 700129, Тошкент, Навоий кўчаси, 30. Нашр № 179—95.

Ўзбекистон Республикаси Давлат кўмитаси иқраадаги Тошкент матбая комбинатида босилди. 700129, Тошкент. Навоий кўчаси, 30.
Умаров А. Ю.
У 47 Гидравлика: Олий ва ўрта махсус таълим вазир-лиги олий техника ўкув юртлари талабалари учун дарслик.— Т.: Ўзбекистон, 2002.—460 б.
ISBN 5-640-01787-2

ББК 30.123я73

№ 456-2002
Аlisher Navoii nomidagi Ўзбекистон Республикасининг давлат кутубхонаси.

1603040100—103
У 2002
351 (04) 2001